![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumxp | Structured version Visualization version GIF version |
Description: Write a group sum over a cartesian product as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
gsumxp.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumxp.z | ⊢ 0 = (0g‘𝐺) |
gsumxp.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumxp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumxp.r | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
gsumxp.f | ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
gsumxp.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
gsumxp | ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumxp.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumxp.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsumxp.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsumxp.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | gsumxp.r | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
6 | 4, 5 | xpexd 7786 | . . 3 ⊢ (𝜑 → (𝐴 × 𝐶) ∈ V) |
7 | relxp 5718 | . . . 4 ⊢ Rel (𝐴 × 𝐶) | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → Rel (𝐴 × 𝐶)) |
9 | dmxpss 6202 | . . . 4 ⊢ dom (𝐴 × 𝐶) ⊆ 𝐴 | |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → dom (𝐴 × 𝐶) ⊆ 𝐴) |
11 | gsumxp.f | . . 3 ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) | |
12 | gsumxp.w | . . 3 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
13 | 1, 2, 3, 6, 8, 4, 10, 11, 12 | gsum2d 20014 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) |
14 | df-ima 5713 | . . . . . . 7 ⊢ ((𝐴 × 𝐶) “ {𝑗}) = ran ((𝐴 × 𝐶) ↾ {𝑗}) | |
15 | df-res 5712 | . . . . . . . . . . 11 ⊢ ((𝐴 × 𝐶) ↾ {𝑗}) = ((𝐴 × 𝐶) ∩ ({𝑗} × V)) | |
16 | inxp 5856 | . . . . . . . . . . 11 ⊢ ((𝐴 × 𝐶) ∩ ({𝑗} × V)) = ((𝐴 ∩ {𝑗}) × (𝐶 ∩ V)) | |
17 | 15, 16 | eqtri 2768 | . . . . . . . . . 10 ⊢ ((𝐴 × 𝐶) ↾ {𝑗}) = ((𝐴 ∩ {𝑗}) × (𝐶 ∩ V)) |
18 | simpr 484 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ 𝐴) | |
19 | 18 | snssd 4834 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → {𝑗} ⊆ 𝐴) |
20 | sseqin2 4244 | . . . . . . . . . . . 12 ⊢ ({𝑗} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑗}) = {𝑗}) | |
21 | 19, 20 | sylib 218 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐴 ∩ {𝑗}) = {𝑗}) |
22 | inv1 4421 | . . . . . . . . . . . 12 ⊢ (𝐶 ∩ V) = 𝐶 | |
23 | 22 | a1i 11 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐶 ∩ V) = 𝐶) |
24 | 21, 23 | xpeq12d 5731 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝐴 ∩ {𝑗}) × (𝐶 ∩ V)) = ({𝑗} × 𝐶)) |
25 | 17, 24 | eqtrid 2792 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝐴 × 𝐶) ↾ {𝑗}) = ({𝑗} × 𝐶)) |
26 | 25 | rneqd 5963 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ran ((𝐴 × 𝐶) ↾ {𝑗}) = ran ({𝑗} × 𝐶)) |
27 | vex 3492 | . . . . . . . . . 10 ⊢ 𝑗 ∈ V | |
28 | 27 | snnz 4801 | . . . . . . . . 9 ⊢ {𝑗} ≠ ∅ |
29 | rnxp 6201 | . . . . . . . . 9 ⊢ ({𝑗} ≠ ∅ → ran ({𝑗} × 𝐶) = 𝐶) | |
30 | 28, 29 | ax-mp 5 | . . . . . . . 8 ⊢ ran ({𝑗} × 𝐶) = 𝐶 |
31 | 26, 30 | eqtrdi 2796 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ran ((𝐴 × 𝐶) ↾ {𝑗}) = 𝐶) |
32 | 14, 31 | eqtrid 2792 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝐴 × 𝐶) “ {𝑗}) = 𝐶) |
33 | 32 | mpteq1d 5261 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘))) |
34 | 33 | oveq2d 7464 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) |
35 | 34 | mpteq2dva 5266 | . . 3 ⊢ (𝜑 → (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘))))) |
36 | 35 | oveq2d 7464 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
37 | 13, 36 | eqtrd 2780 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 {csn 4648 class class class wbr 5166 ↦ cmpt 5249 × cxp 5698 dom cdm 5700 ran crn 5701 ↾ cres 5702 “ cima 5703 Rel wrel 5705 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 finSupp cfsupp 9431 Basecbs 17258 0gc0g 17499 Σg cgsu 17500 CMndccmn 19822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-gsum 17502 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 |
This theorem is referenced by: tsmsxplem1 24182 tsmsxplem2 24183 fedgmullem1 33642 fedgmullem2 33643 evlselv 42542 |
Copyright terms: Public domain | W3C validator |