| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumxp | Structured version Visualization version GIF version | ||
| Description: Write a group sum over a cartesian product as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| gsumxp.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumxp.z | ⊢ 0 = (0g‘𝐺) |
| gsumxp.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumxp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumxp.r | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| gsumxp.f | ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
| gsumxp.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsumxp | ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumxp.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumxp.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumxp.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | gsumxp.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | gsumxp.r | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 6 | 4, 5 | xpexd 7690 | . . 3 ⊢ (𝜑 → (𝐴 × 𝐶) ∈ V) |
| 7 | relxp 5637 | . . . 4 ⊢ Rel (𝐴 × 𝐶) | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → Rel (𝐴 × 𝐶)) |
| 9 | dmxpss 6123 | . . . 4 ⊢ dom (𝐴 × 𝐶) ⊆ 𝐴 | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → dom (𝐴 × 𝐶) ⊆ 𝐴) |
| 11 | gsumxp.f | . . 3 ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) | |
| 12 | gsumxp.w | . . 3 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 13 | 1, 2, 3, 6, 8, 4, 10, 11, 12 | gsum2d 19886 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) |
| 14 | df-ima 5632 | . . . . . . 7 ⊢ ((𝐴 × 𝐶) “ {𝑗}) = ran ((𝐴 × 𝐶) ↾ {𝑗}) | |
| 15 | df-res 5631 | . . . . . . . . . . 11 ⊢ ((𝐴 × 𝐶) ↾ {𝑗}) = ((𝐴 × 𝐶) ∩ ({𝑗} × V)) | |
| 16 | inxp 5775 | . . . . . . . . . . 11 ⊢ ((𝐴 × 𝐶) ∩ ({𝑗} × V)) = ((𝐴 ∩ {𝑗}) × (𝐶 ∩ V)) | |
| 17 | 15, 16 | eqtri 2756 | . . . . . . . . . 10 ⊢ ((𝐴 × 𝐶) ↾ {𝑗}) = ((𝐴 ∩ {𝑗}) × (𝐶 ∩ V)) |
| 18 | simpr 484 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ 𝐴) | |
| 19 | 18 | snssd 4760 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → {𝑗} ⊆ 𝐴) |
| 20 | sseqin2 4172 | . . . . . . . . . . . 12 ⊢ ({𝑗} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑗}) = {𝑗}) | |
| 21 | 19, 20 | sylib 218 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐴 ∩ {𝑗}) = {𝑗}) |
| 22 | inv1 4347 | . . . . . . . . . . . 12 ⊢ (𝐶 ∩ V) = 𝐶 | |
| 23 | 22 | a1i 11 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐶 ∩ V) = 𝐶) |
| 24 | 21, 23 | xpeq12d 5650 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝐴 ∩ {𝑗}) × (𝐶 ∩ V)) = ({𝑗} × 𝐶)) |
| 25 | 17, 24 | eqtrid 2780 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝐴 × 𝐶) ↾ {𝑗}) = ({𝑗} × 𝐶)) |
| 26 | 25 | rneqd 5882 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ran ((𝐴 × 𝐶) ↾ {𝑗}) = ran ({𝑗} × 𝐶)) |
| 27 | vex 3441 | . . . . . . . . . 10 ⊢ 𝑗 ∈ V | |
| 28 | 27 | snnz 4728 | . . . . . . . . 9 ⊢ {𝑗} ≠ ∅ |
| 29 | rnxp 6122 | . . . . . . . . 9 ⊢ ({𝑗} ≠ ∅ → ran ({𝑗} × 𝐶) = 𝐶) | |
| 30 | 28, 29 | ax-mp 5 | . . . . . . . 8 ⊢ ran ({𝑗} × 𝐶) = 𝐶 |
| 31 | 26, 30 | eqtrdi 2784 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ran ((𝐴 × 𝐶) ↾ {𝑗}) = 𝐶) |
| 32 | 14, 31 | eqtrid 2780 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝐴 × 𝐶) “ {𝑗}) = 𝐶) |
| 33 | 32 | mpteq1d 5183 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘))) |
| 34 | 33 | oveq2d 7368 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) |
| 35 | 34 | mpteq2dva 5186 | . . 3 ⊢ (𝜑 → (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘))))) |
| 36 | 35 | oveq2d 7368 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
| 37 | 13, 36 | eqtrd 2768 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 {csn 4575 class class class wbr 5093 ↦ cmpt 5174 × cxp 5617 dom cdm 5619 ran crn 5620 ↾ cres 5621 “ cima 5622 Rel wrel 5624 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 finSupp cfsupp 9252 Basecbs 17122 0gc0g 17345 Σg cgsu 17346 CMndccmn 19694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-0g 17347 df-gsum 17348 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19231 df-cmn 19696 |
| This theorem is referenced by: tsmsxplem1 24069 tsmsxplem2 24070 fedgmullem1 33663 fedgmullem2 33664 evlselv 42705 |
| Copyright terms: Public domain | W3C validator |