MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumxp Structured version   Visualization version   GIF version

Theorem gsumxp 19758
Description: Write a group sum over a cartesian product as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
gsumxp.b 𝐵 = (Base‘𝐺)
gsumxp.z 0 = (0g𝐺)
gsumxp.g (𝜑𝐺 ∈ CMnd)
gsumxp.a (𝜑𝐴𝑉)
gsumxp.r (𝜑𝐶𝑊)
gsumxp.f (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
gsumxp.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumxp (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶 ↦ (𝑗𝐹𝑘))))))
Distinct variable groups:   𝑗,𝑘, 0   𝑗,𝐺,𝑘   𝜑,𝑗,𝑘   𝐴,𝑗,𝑘   𝐵,𝑗,𝑘   𝐶,𝑗,𝑘   𝑗,𝐹,𝑘   𝑗,𝑉
Allowed substitution hints:   𝑉(𝑘)   𝑊(𝑗,𝑘)

Proof of Theorem gsumxp
StepHypRef Expression
1 gsumxp.b . . 3 𝐵 = (Base‘𝐺)
2 gsumxp.z . . 3 0 = (0g𝐺)
3 gsumxp.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsumxp.a . . . 4 (𝜑𝐴𝑉)
5 gsumxp.r . . . 4 (𝜑𝐶𝑊)
64, 5xpexd 7686 . . 3 (𝜑 → (𝐴 × 𝐶) ∈ V)
7 relxp 5652 . . . 4 Rel (𝐴 × 𝐶)
87a1i 11 . . 3 (𝜑 → Rel (𝐴 × 𝐶))
9 dmxpss 6124 . . . 4 dom (𝐴 × 𝐶) ⊆ 𝐴
109a1i 11 . . 3 (𝜑 → dom (𝐴 × 𝐶) ⊆ 𝐴)
11 gsumxp.f . . 3 (𝜑𝐹:(𝐴 × 𝐶)⟶𝐵)
12 gsumxp.w . . 3 (𝜑𝐹 finSupp 0 )
131, 2, 3, 6, 8, 4, 10, 11, 12gsum2d 19754 . 2 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘))))))
14 df-ima 5647 . . . . . . 7 ((𝐴 × 𝐶) “ {𝑗}) = ran ((𝐴 × 𝐶) ↾ {𝑗})
15 df-res 5646 . . . . . . . . . . 11 ((𝐴 × 𝐶) ↾ {𝑗}) = ((𝐴 × 𝐶) ∩ ({𝑗} × V))
16 inxp 5789 . . . . . . . . . . 11 ((𝐴 × 𝐶) ∩ ({𝑗} × V)) = ((𝐴 ∩ {𝑗}) × (𝐶 ∩ V))
1715, 16eqtri 2761 . . . . . . . . . 10 ((𝐴 × 𝐶) ↾ {𝑗}) = ((𝐴 ∩ {𝑗}) × (𝐶 ∩ V))
18 simpr 486 . . . . . . . . . . . . 13 ((𝜑𝑗𝐴) → 𝑗𝐴)
1918snssd 4770 . . . . . . . . . . . 12 ((𝜑𝑗𝐴) → {𝑗} ⊆ 𝐴)
20 sseqin2 4176 . . . . . . . . . . . 12 ({𝑗} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑗}) = {𝑗})
2119, 20sylib 217 . . . . . . . . . . 11 ((𝜑𝑗𝐴) → (𝐴 ∩ {𝑗}) = {𝑗})
22 inv1 4355 . . . . . . . . . . . 12 (𝐶 ∩ V) = 𝐶
2322a1i 11 . . . . . . . . . . 11 ((𝜑𝑗𝐴) → (𝐶 ∩ V) = 𝐶)
2421, 23xpeq12d 5665 . . . . . . . . . 10 ((𝜑𝑗𝐴) → ((𝐴 ∩ {𝑗}) × (𝐶 ∩ V)) = ({𝑗} × 𝐶))
2517, 24eqtrid 2785 . . . . . . . . 9 ((𝜑𝑗𝐴) → ((𝐴 × 𝐶) ↾ {𝑗}) = ({𝑗} × 𝐶))
2625rneqd 5894 . . . . . . . 8 ((𝜑𝑗𝐴) → ran ((𝐴 × 𝐶) ↾ {𝑗}) = ran ({𝑗} × 𝐶))
27 vex 3448 . . . . . . . . . 10 𝑗 ∈ V
2827snnz 4738 . . . . . . . . 9 {𝑗} ≠ ∅
29 rnxp 6123 . . . . . . . . 9 ({𝑗} ≠ ∅ → ran ({𝑗} × 𝐶) = 𝐶)
3028, 29ax-mp 5 . . . . . . . 8 ran ({𝑗} × 𝐶) = 𝐶
3126, 30eqtrdi 2789 . . . . . . 7 ((𝜑𝑗𝐴) → ran ((𝐴 × 𝐶) ↾ {𝑗}) = 𝐶)
3214, 31eqtrid 2785 . . . . . 6 ((𝜑𝑗𝐴) → ((𝐴 × 𝐶) “ {𝑗}) = 𝐶)
3332mpteq1d 5201 . . . . 5 ((𝜑𝑗𝐴) → (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘𝐶 ↦ (𝑗𝐹𝑘)))
3433oveq2d 7374 . . . 4 ((𝜑𝑗𝐴) → (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝑘𝐶 ↦ (𝑗𝐹𝑘))))
3534mpteq2dva 5206 . . 3 (𝜑 → (𝑗𝐴 ↦ (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶 ↦ (𝑗𝐹𝑘)))))
3635oveq2d 7374 . 2 (𝜑 → (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶 ↦ (𝑗𝐹𝑘))))))
3713, 36eqtrd 2773 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗𝐴 ↦ (𝐺 Σg (𝑘𝐶 ↦ (𝑗𝐹𝑘))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2940  Vcvv 3444  cin 3910  wss 3911  c0 4283  {csn 4587   class class class wbr 5106  cmpt 5189   × cxp 5632  dom cdm 5634  ran crn 5635  cres 5636  cima 5637  Rel wrel 5639  wf 6493  cfv 6497  (class class class)co 7358   finSupp cfsupp 9308  Basecbs 17088  0gc0g 17326   Σg cgsu 17327  CMndccmn 19567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-of 7618  df-om 7804  df-1st 7922  df-2nd 7923  df-supp 8094  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-fsupp 9309  df-oi 9451  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-n0 12419  df-z 12505  df-uz 12769  df-fz 13431  df-fzo 13574  df-seq 13913  df-hash 14237  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-ress 17118  df-plusg 17151  df-0g 17328  df-gsum 17329  df-mre 17471  df-mrc 17472  df-acs 17474  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-submnd 18607  df-mulg 18878  df-cntz 19102  df-cmn 19569
This theorem is referenced by:  tsmsxplem1  23520  tsmsxplem2  23521  fedgmullem1  32381  fedgmullem2  32382
  Copyright terms: Public domain W3C validator