| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumxp | Structured version Visualization version GIF version | ||
| Description: Write a group sum over a cartesian product as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| gsumxp.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumxp.z | ⊢ 0 = (0g‘𝐺) |
| gsumxp.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumxp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumxp.r | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| gsumxp.f | ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
| gsumxp.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsumxp | ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumxp.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumxp.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumxp.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | gsumxp.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | gsumxp.r | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 6 | 4, 5 | xpexd 7691 | . . 3 ⊢ (𝜑 → (𝐴 × 𝐶) ∈ V) |
| 7 | relxp 5641 | . . . 4 ⊢ Rel (𝐴 × 𝐶) | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → Rel (𝐴 × 𝐶)) |
| 9 | dmxpss 6124 | . . . 4 ⊢ dom (𝐴 × 𝐶) ⊆ 𝐴 | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → dom (𝐴 × 𝐶) ⊆ 𝐴) |
| 11 | gsumxp.f | . . 3 ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) | |
| 12 | gsumxp.w | . . 3 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 13 | 1, 2, 3, 6, 8, 4, 10, 11, 12 | gsum2d 19869 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) |
| 14 | df-ima 5636 | . . . . . . 7 ⊢ ((𝐴 × 𝐶) “ {𝑗}) = ran ((𝐴 × 𝐶) ↾ {𝑗}) | |
| 15 | df-res 5635 | . . . . . . . . . . 11 ⊢ ((𝐴 × 𝐶) ↾ {𝑗}) = ((𝐴 × 𝐶) ∩ ({𝑗} × V)) | |
| 16 | inxp 5778 | . . . . . . . . . . 11 ⊢ ((𝐴 × 𝐶) ∩ ({𝑗} × V)) = ((𝐴 ∩ {𝑗}) × (𝐶 ∩ V)) | |
| 17 | 15, 16 | eqtri 2752 | . . . . . . . . . 10 ⊢ ((𝐴 × 𝐶) ↾ {𝑗}) = ((𝐴 ∩ {𝑗}) × (𝐶 ∩ V)) |
| 18 | simpr 484 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ 𝐴) | |
| 19 | 18 | snssd 4763 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → {𝑗} ⊆ 𝐴) |
| 20 | sseqin2 4176 | . . . . . . . . . . . 12 ⊢ ({𝑗} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑗}) = {𝑗}) | |
| 21 | 19, 20 | sylib 218 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐴 ∩ {𝑗}) = {𝑗}) |
| 22 | inv1 4351 | . . . . . . . . . . . 12 ⊢ (𝐶 ∩ V) = 𝐶 | |
| 23 | 22 | a1i 11 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐶 ∩ V) = 𝐶) |
| 24 | 21, 23 | xpeq12d 5654 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝐴 ∩ {𝑗}) × (𝐶 ∩ V)) = ({𝑗} × 𝐶)) |
| 25 | 17, 24 | eqtrid 2776 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝐴 × 𝐶) ↾ {𝑗}) = ({𝑗} × 𝐶)) |
| 26 | 25 | rneqd 5884 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ran ((𝐴 × 𝐶) ↾ {𝑗}) = ran ({𝑗} × 𝐶)) |
| 27 | vex 3442 | . . . . . . . . . 10 ⊢ 𝑗 ∈ V | |
| 28 | 27 | snnz 4730 | . . . . . . . . 9 ⊢ {𝑗} ≠ ∅ |
| 29 | rnxp 6123 | . . . . . . . . 9 ⊢ ({𝑗} ≠ ∅ → ran ({𝑗} × 𝐶) = 𝐶) | |
| 30 | 28, 29 | ax-mp 5 | . . . . . . . 8 ⊢ ran ({𝑗} × 𝐶) = 𝐶 |
| 31 | 26, 30 | eqtrdi 2780 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ran ((𝐴 × 𝐶) ↾ {𝑗}) = 𝐶) |
| 32 | 14, 31 | eqtrid 2776 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝐴 × 𝐶) “ {𝑗}) = 𝐶) |
| 33 | 32 | mpteq1d 5185 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘))) |
| 34 | 33 | oveq2d 7369 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) |
| 35 | 34 | mpteq2dva 5188 | . . 3 ⊢ (𝜑 → (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘))))) |
| 36 | 35 | oveq2d 7369 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
| 37 | 13, 36 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 {csn 4579 class class class wbr 5095 ↦ cmpt 5176 × cxp 5621 dom cdm 5623 ran crn 5624 ↾ cres 5625 “ cima 5626 Rel wrel 5628 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 finSupp cfsupp 9270 Basecbs 17138 0gc0g 17361 Σg cgsu 17362 CMndccmn 19677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-0g 17363 df-gsum 17364 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 |
| This theorem is referenced by: tsmsxplem1 24056 tsmsxplem2 24057 fedgmullem1 33601 fedgmullem2 33602 evlselv 42560 |
| Copyright terms: Public domain | W3C validator |