Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumxp | Structured version Visualization version GIF version |
Description: Write a group sum over a cartesian product as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
gsumxp.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumxp.z | ⊢ 0 = (0g‘𝐺) |
gsumxp.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsumxp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumxp.r | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
gsumxp.f | ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
gsumxp.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
gsumxp | ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumxp.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumxp.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsumxp.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | gsumxp.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | gsumxp.r | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
6 | 4, 5 | xpexd 7601 | . . 3 ⊢ (𝜑 → (𝐴 × 𝐶) ∈ V) |
7 | relxp 5607 | . . . 4 ⊢ Rel (𝐴 × 𝐶) | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → Rel (𝐴 × 𝐶)) |
9 | dmxpss 6074 | . . . 4 ⊢ dom (𝐴 × 𝐶) ⊆ 𝐴 | |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → dom (𝐴 × 𝐶) ⊆ 𝐴) |
11 | gsumxp.f | . . 3 ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) | |
12 | gsumxp.w | . . 3 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
13 | 1, 2, 3, 6, 8, 4, 10, 11, 12 | gsum2d 19573 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) |
14 | df-ima 5602 | . . . . . . 7 ⊢ ((𝐴 × 𝐶) “ {𝑗}) = ran ((𝐴 × 𝐶) ↾ {𝑗}) | |
15 | df-res 5601 | . . . . . . . . . . 11 ⊢ ((𝐴 × 𝐶) ↾ {𝑗}) = ((𝐴 × 𝐶) ∩ ({𝑗} × V)) | |
16 | inxp 5741 | . . . . . . . . . . 11 ⊢ ((𝐴 × 𝐶) ∩ ({𝑗} × V)) = ((𝐴 ∩ {𝑗}) × (𝐶 ∩ V)) | |
17 | 15, 16 | eqtri 2766 | . . . . . . . . . 10 ⊢ ((𝐴 × 𝐶) ↾ {𝑗}) = ((𝐴 ∩ {𝑗}) × (𝐶 ∩ V)) |
18 | simpr 485 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ 𝐴) | |
19 | 18 | snssd 4742 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → {𝑗} ⊆ 𝐴) |
20 | sseqin2 4149 | . . . . . . . . . . . 12 ⊢ ({𝑗} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑗}) = {𝑗}) | |
21 | 19, 20 | sylib 217 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐴 ∩ {𝑗}) = {𝑗}) |
22 | inv1 4328 | . . . . . . . . . . . 12 ⊢ (𝐶 ∩ V) = 𝐶 | |
23 | 22 | a1i 11 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐶 ∩ V) = 𝐶) |
24 | 21, 23 | xpeq12d 5620 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝐴 ∩ {𝑗}) × (𝐶 ∩ V)) = ({𝑗} × 𝐶)) |
25 | 17, 24 | eqtrid 2790 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝐴 × 𝐶) ↾ {𝑗}) = ({𝑗} × 𝐶)) |
26 | 25 | rneqd 5847 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ran ((𝐴 × 𝐶) ↾ {𝑗}) = ran ({𝑗} × 𝐶)) |
27 | vex 3436 | . . . . . . . . . 10 ⊢ 𝑗 ∈ V | |
28 | 27 | snnz 4712 | . . . . . . . . 9 ⊢ {𝑗} ≠ ∅ |
29 | rnxp 6073 | . . . . . . . . 9 ⊢ ({𝑗} ≠ ∅ → ran ({𝑗} × 𝐶) = 𝐶) | |
30 | 28, 29 | ax-mp 5 | . . . . . . . 8 ⊢ ran ({𝑗} × 𝐶) = 𝐶 |
31 | 26, 30 | eqtrdi 2794 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ran ((𝐴 × 𝐶) ↾ {𝑗}) = 𝐶) |
32 | 14, 31 | eqtrid 2790 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝐴 × 𝐶) “ {𝑗}) = 𝐶) |
33 | 32 | mpteq1d 5169 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘))) |
34 | 33 | oveq2d 7291 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) |
35 | 34 | mpteq2dva 5174 | . . 3 ⊢ (𝜑 → (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘))))) |
36 | 35 | oveq2d 7291 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
37 | 13, 36 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 {csn 4561 class class class wbr 5074 ↦ cmpt 5157 × cxp 5587 dom cdm 5589 ran crn 5590 ↾ cres 5591 “ cima 5592 Rel wrel 5594 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 finSupp cfsupp 9128 Basecbs 16912 0gc0g 17150 Σg cgsu 17151 CMndccmn 19386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-0g 17152 df-gsum 17153 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 |
This theorem is referenced by: tsmsxplem1 23304 tsmsxplem2 23305 fedgmullem1 31710 fedgmullem2 31711 |
Copyright terms: Public domain | W3C validator |