| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumxp | Structured version Visualization version GIF version | ||
| Description: Write a group sum over a cartesian product as a double sum. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| gsumxp.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumxp.z | ⊢ 0 = (0g‘𝐺) |
| gsumxp.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsumxp.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumxp.r | ⊢ (𝜑 → 𝐶 ∈ 𝑊) |
| gsumxp.f | ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) |
| gsumxp.w | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsumxp | ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumxp.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumxp.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumxp.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | gsumxp.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | gsumxp.r | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑊) | |
| 6 | 4, 5 | xpexd 7684 | . . 3 ⊢ (𝜑 → (𝐴 × 𝐶) ∈ V) |
| 7 | relxp 5634 | . . . 4 ⊢ Rel (𝐴 × 𝐶) | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → Rel (𝐴 × 𝐶)) |
| 9 | dmxpss 6118 | . . . 4 ⊢ dom (𝐴 × 𝐶) ⊆ 𝐴 | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → dom (𝐴 × 𝐶) ⊆ 𝐴) |
| 11 | gsumxp.f | . . 3 ⊢ (𝜑 → 𝐹:(𝐴 × 𝐶)⟶𝐵) | |
| 12 | gsumxp.w | . . 3 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 13 | 1, 2, 3, 6, 8, 4, 10, 11, 12 | gsum2d 19882 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘)))))) |
| 14 | df-ima 5629 | . . . . . . 7 ⊢ ((𝐴 × 𝐶) “ {𝑗}) = ran ((𝐴 × 𝐶) ↾ {𝑗}) | |
| 15 | df-res 5628 | . . . . . . . . . . 11 ⊢ ((𝐴 × 𝐶) ↾ {𝑗}) = ((𝐴 × 𝐶) ∩ ({𝑗} × V)) | |
| 16 | inxp 5771 | . . . . . . . . . . 11 ⊢ ((𝐴 × 𝐶) ∩ ({𝑗} × V)) = ((𝐴 ∩ {𝑗}) × (𝐶 ∩ V)) | |
| 17 | 15, 16 | eqtri 2754 | . . . . . . . . . 10 ⊢ ((𝐴 × 𝐶) ↾ {𝑗}) = ((𝐴 ∩ {𝑗}) × (𝐶 ∩ V)) |
| 18 | simpr 484 | . . . . . . . . . . . . 13 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝑗 ∈ 𝐴) | |
| 19 | 18 | snssd 4761 | . . . . . . . . . . . 12 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → {𝑗} ⊆ 𝐴) |
| 20 | sseqin2 4173 | . . . . . . . . . . . 12 ⊢ ({𝑗} ⊆ 𝐴 ↔ (𝐴 ∩ {𝑗}) = {𝑗}) | |
| 21 | 19, 20 | sylib 218 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐴 ∩ {𝑗}) = {𝑗}) |
| 22 | inv1 4348 | . . . . . . . . . . . 12 ⊢ (𝐶 ∩ V) = 𝐶 | |
| 23 | 22 | a1i 11 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐶 ∩ V) = 𝐶) |
| 24 | 21, 23 | xpeq12d 5647 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝐴 ∩ {𝑗}) × (𝐶 ∩ V)) = ({𝑗} × 𝐶)) |
| 25 | 17, 24 | eqtrid 2778 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝐴 × 𝐶) ↾ {𝑗}) = ({𝑗} × 𝐶)) |
| 26 | 25 | rneqd 5878 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ran ((𝐴 × 𝐶) ↾ {𝑗}) = ran ({𝑗} × 𝐶)) |
| 27 | vex 3440 | . . . . . . . . . 10 ⊢ 𝑗 ∈ V | |
| 28 | 27 | snnz 4729 | . . . . . . . . 9 ⊢ {𝑗} ≠ ∅ |
| 29 | rnxp 6117 | . . . . . . . . 9 ⊢ ({𝑗} ≠ ∅ → ran ({𝑗} × 𝐶) = 𝐶) | |
| 30 | 28, 29 | ax-mp 5 | . . . . . . . 8 ⊢ ran ({𝑗} × 𝐶) = 𝐶 |
| 31 | 26, 30 | eqtrdi 2782 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ran ((𝐴 × 𝐶) ↾ {𝑗}) = 𝐶) |
| 32 | 14, 31 | eqtrid 2778 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ((𝐴 × 𝐶) “ {𝑗}) = 𝐶) |
| 33 | 32 | mpteq1d 5181 | . . . . 5 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘)) = (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘))) |
| 34 | 33 | oveq2d 7362 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘))) = (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))) |
| 35 | 34 | mpteq2dva 5184 | . . 3 ⊢ (𝜑 → (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘)))) = (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘))))) |
| 36 | 35 | oveq2d 7362 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ ((𝐴 × 𝐶) “ {𝑗}) ↦ (𝑗𝐹𝑘))))) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
| 37 | 13, 36 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑗 ∈ 𝐴 ↦ (𝐺 Σg (𝑘 ∈ 𝐶 ↦ (𝑗𝐹𝑘)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∩ cin 3901 ⊆ wss 3902 ∅c0 4283 {csn 4576 class class class wbr 5091 ↦ cmpt 5172 × cxp 5614 dom cdm 5616 ran crn 5617 ↾ cres 5618 “ cima 5619 Rel wrel 5621 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 finSupp cfsupp 9245 Basecbs 17117 0gc0g 17340 Σg cgsu 17341 CMndccmn 19690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-uz 12730 df-fz 13405 df-fzo 13552 df-seq 13906 df-hash 14235 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-0g 17342 df-gsum 17343 df-mre 17485 df-mrc 17486 df-acs 17488 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-submnd 18689 df-mulg 18978 df-cntz 19227 df-cmn 19692 |
| This theorem is referenced by: tsmsxplem1 24066 tsmsxplem2 24067 fedgmullem1 33637 fedgmullem2 33638 evlselv 42619 |
| Copyright terms: Public domain | W3C validator |