Proof of Theorem curry2
| Step | Hyp | Ref
| Expression |
| 1 | | fnfun 6668 |
. . . . 5
⊢ (𝐹 Fn (𝐴 × 𝐵) → Fun 𝐹) |
| 2 | | 1stconst 8125 |
. . . . . 6
⊢ (𝐶 ∈ 𝐵 → (1st ↾ (V ×
{𝐶})):(V × {𝐶})–1-1-onto→V) |
| 3 | | dff1o3 6854 |
. . . . . . 7
⊢
((1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V
↔ ((1st ↾ (V × {𝐶})):(V × {𝐶})–onto→V ∧ Fun ◡(1st ↾ (V × {𝐶})))) |
| 4 | 3 | simprbi 496 |
. . . . . 6
⊢
((1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V
→ Fun ◡(1st ↾ (V
× {𝐶}))) |
| 5 | 2, 4 | syl 17 |
. . . . 5
⊢ (𝐶 ∈ 𝐵 → Fun ◡(1st ↾ (V × {𝐶}))) |
| 6 | | funco 6606 |
. . . . 5
⊢ ((Fun
𝐹 ∧ Fun ◡(1st ↾ (V × {𝐶}))) → Fun (𝐹 ∘ ◡(1st ↾ (V × {𝐶})))) |
| 7 | 1, 5, 6 | syl2an 596 |
. . . 4
⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → Fun (𝐹 ∘ ◡(1st ↾ (V × {𝐶})))) |
| 8 | | dmco 6274 |
. . . . 5
⊢ dom
(𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) = (◡◡(1st ↾ (V × {𝐶})) “ dom 𝐹) |
| 9 | | fndm 6671 |
. . . . . . . 8
⊢ (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵)) |
| 10 | 9 | adantr 480 |
. . . . . . 7
⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → dom 𝐹 = (𝐴 × 𝐵)) |
| 11 | 10 | imaeq2d 6078 |
. . . . . 6
⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (◡◡(1st ↾ (V × {𝐶})) “ dom 𝐹) = (◡◡(1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵))) |
| 12 | | imacnvcnv 6226 |
. . . . . . . . 9
⊢ (◡◡(1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)) = ((1st ↾ (V ×
{𝐶})) “ (𝐴 × 𝐵)) |
| 13 | | df-ima 5698 |
. . . . . . . . 9
⊢
((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)) = ran ((1st ↾ (V ×
{𝐶})) ↾ (𝐴 × 𝐵)) |
| 14 | | resres 6010 |
. . . . . . . . . 10
⊢
((1st ↾ (V × {𝐶})) ↾ (𝐴 × 𝐵)) = (1st ↾ ((V ×
{𝐶}) ∩ (𝐴 × 𝐵))) |
| 15 | 14 | rneqi 5948 |
. . . . . . . . 9
⊢ ran
((1st ↾ (V × {𝐶})) ↾ (𝐴 × 𝐵)) = ran (1st ↾ ((V ×
{𝐶}) ∩ (𝐴 × 𝐵))) |
| 16 | 12, 13, 15 | 3eqtri 2769 |
. . . . . . . 8
⊢ (◡◡(1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)) = ran (1st ↾ ((V ×
{𝐶}) ∩ (𝐴 × 𝐵))) |
| 17 | | inxp 5842 |
. . . . . . . . . . . . 13
⊢ ((V
× {𝐶}) ∩ (𝐴 × 𝐵)) = ((V ∩ 𝐴) × ({𝐶} ∩ 𝐵)) |
| 18 | | incom 4209 |
. . . . . . . . . . . . . . 15
⊢ (V ∩
𝐴) = (𝐴 ∩ V) |
| 19 | | inv1 4398 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∩ V) = 𝐴 |
| 20 | 18, 19 | eqtri 2765 |
. . . . . . . . . . . . . 14
⊢ (V ∩
𝐴) = 𝐴 |
| 21 | 20 | xpeq1i 5711 |
. . . . . . . . . . . . 13
⊢ ((V ∩
𝐴) × ({𝐶} ∩ 𝐵)) = (𝐴 × ({𝐶} ∩ 𝐵)) |
| 22 | 17, 21 | eqtri 2765 |
. . . . . . . . . . . 12
⊢ ((V
× {𝐶}) ∩ (𝐴 × 𝐵)) = (𝐴 × ({𝐶} ∩ 𝐵)) |
| 23 | | snssi 4808 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ 𝐵 → {𝐶} ⊆ 𝐵) |
| 24 | | dfss2 3969 |
. . . . . . . . . . . . . 14
⊢ ({𝐶} ⊆ 𝐵 ↔ ({𝐶} ∩ 𝐵) = {𝐶}) |
| 25 | 23, 24 | sylib 218 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ 𝐵 → ({𝐶} ∩ 𝐵) = {𝐶}) |
| 26 | 25 | xpeq2d 5715 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ 𝐵 → (𝐴 × ({𝐶} ∩ 𝐵)) = (𝐴 × {𝐶})) |
| 27 | 22, 26 | eqtrid 2789 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ 𝐵 → ((V × {𝐶}) ∩ (𝐴 × 𝐵)) = (𝐴 × {𝐶})) |
| 28 | 27 | reseq2d 5997 |
. . . . . . . . . 10
⊢ (𝐶 ∈ 𝐵 → (1st ↾ ((V ×
{𝐶}) ∩ (𝐴 × 𝐵))) = (1st ↾ (𝐴 × {𝐶}))) |
| 29 | 28 | rneqd 5949 |
. . . . . . . . 9
⊢ (𝐶 ∈ 𝐵 → ran (1st ↾ ((V
× {𝐶}) ∩ (𝐴 × 𝐵))) = ran (1st ↾ (𝐴 × {𝐶}))) |
| 30 | | 1stconst 8125 |
. . . . . . . . . 10
⊢ (𝐶 ∈ 𝐵 → (1st ↾ (𝐴 × {𝐶})):(𝐴 × {𝐶})–1-1-onto→𝐴) |
| 31 | | f1ofo 6855 |
. . . . . . . . . 10
⊢
((1st ↾ (𝐴 × {𝐶})):(𝐴 × {𝐶})–1-1-onto→𝐴 → (1st ↾
(𝐴 × {𝐶})):(𝐴 × {𝐶})–onto→𝐴) |
| 32 | | forn 6823 |
. . . . . . . . . 10
⊢
((1st ↾ (𝐴 × {𝐶})):(𝐴 × {𝐶})–onto→𝐴 → ran (1st ↾ (𝐴 × {𝐶})) = 𝐴) |
| 33 | 30, 31, 32 | 3syl 18 |
. . . . . . . . 9
⊢ (𝐶 ∈ 𝐵 → ran (1st ↾ (𝐴 × {𝐶})) = 𝐴) |
| 34 | 29, 33 | eqtrd 2777 |
. . . . . . . 8
⊢ (𝐶 ∈ 𝐵 → ran (1st ↾ ((V
× {𝐶}) ∩ (𝐴 × 𝐵))) = 𝐴) |
| 35 | 16, 34 | eqtrid 2789 |
. . . . . . 7
⊢ (𝐶 ∈ 𝐵 → (◡◡(1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)) = 𝐴) |
| 36 | 35 | adantl 481 |
. . . . . 6
⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (◡◡(1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)) = 𝐴) |
| 37 | 11, 36 | eqtrd 2777 |
. . . . 5
⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (◡◡(1st ↾ (V × {𝐶})) “ dom 𝐹) = 𝐴) |
| 38 | 8, 37 | eqtrid 2789 |
. . . 4
⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → dom (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) = 𝐴) |
| 39 | | curry2.1 |
. . . . . 6
⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) |
| 40 | 39 | fneq1i 6665 |
. . . . 5
⊢ (𝐺 Fn 𝐴 ↔ (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) Fn 𝐴) |
| 41 | | df-fn 6564 |
. . . . 5
⊢ ((𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) Fn 𝐴 ↔ (Fun (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) ∧ dom (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) = 𝐴)) |
| 42 | 40, 41 | bitri 275 |
. . . 4
⊢ (𝐺 Fn 𝐴 ↔ (Fun (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) ∧ dom (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) = 𝐴)) |
| 43 | 7, 38, 42 | sylanbrc 583 |
. . 3
⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → 𝐺 Fn 𝐴) |
| 44 | | dffn5 6967 |
. . 3
⊢ (𝐺 Fn 𝐴 ↔ 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) |
| 45 | 43, 44 | sylib 218 |
. 2
⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥))) |
| 46 | 39 | fveq1i 6907 |
. . . . 5
⊢ (𝐺‘𝑥) = ((𝐹 ∘ ◡(1st ↾ (V × {𝐶})))‘𝑥) |
| 47 | | dff1o4 6856 |
. . . . . . . . 9
⊢
((1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V
↔ ((1st ↾ (V × {𝐶})) Fn (V × {𝐶}) ∧ ◡(1st ↾ (V × {𝐶})) Fn V)) |
| 48 | 2, 47 | sylib 218 |
. . . . . . . 8
⊢ (𝐶 ∈ 𝐵 → ((1st ↾ (V ×
{𝐶})) Fn (V × {𝐶}) ∧ ◡(1st ↾ (V × {𝐶})) Fn V)) |
| 49 | 48 | simprd 495 |
. . . . . . 7
⊢ (𝐶 ∈ 𝐵 → ◡(1st ↾ (V × {𝐶})) Fn V) |
| 50 | | vex 3484 |
. . . . . . 7
⊢ 𝑥 ∈ V |
| 51 | | fvco2 7006 |
. . . . . . 7
⊢ ((◡(1st ↾ (V × {𝐶})) Fn V ∧ 𝑥 ∈ V) → ((𝐹 ∘ ◡(1st ↾ (V × {𝐶})))‘𝑥) = (𝐹‘(◡(1st ↾ (V × {𝐶}))‘𝑥))) |
| 52 | 49, 50, 51 | sylancl 586 |
. . . . . 6
⊢ (𝐶 ∈ 𝐵 → ((𝐹 ∘ ◡(1st ↾ (V × {𝐶})))‘𝑥) = (𝐹‘(◡(1st ↾ (V × {𝐶}))‘𝑥))) |
| 53 | 52 | ad2antlr 727 |
. . . . 5
⊢ (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝐹 ∘ ◡(1st ↾ (V × {𝐶})))‘𝑥) = (𝐹‘(◡(1st ↾ (V × {𝐶}))‘𝑥))) |
| 54 | 46, 53 | eqtrid 2789 |
. . . 4
⊢ (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝐹‘(◡(1st ↾ (V × {𝐶}))‘𝑥))) |
| 55 | 2 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → (1st ↾ (V ×
{𝐶})):(V × {𝐶})–1-1-onto→V) |
| 56 | 50 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ V) |
| 57 | | snidg 4660 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ 𝐵 → 𝐶 ∈ {𝐶}) |
| 58 | 57 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ {𝐶}) |
| 59 | 56, 58 | opelxpd 5724 |
. . . . . . . . 9
⊢ ((𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → 〈𝑥, 𝐶〉 ∈ (V × {𝐶})) |
| 60 | 55, 59 | jca 511 |
. . . . . . . 8
⊢ ((𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((1st ↾ (V ×
{𝐶})):(V × {𝐶})–1-1-onto→V
∧ 〈𝑥, 𝐶〉 ∈ (V × {𝐶}))) |
| 61 | 50 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ 𝐵 → 𝑥 ∈ V) |
| 62 | 61, 57 | opelxpd 5724 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ 𝐵 → 〈𝑥, 𝐶〉 ∈ (V × {𝐶})) |
| 63 | 62 | fvresd 6926 |
. . . . . . . . . 10
⊢ (𝐶 ∈ 𝐵 → ((1st ↾ (V ×
{𝐶}))‘〈𝑥, 𝐶〉) = (1st ‘〈𝑥, 𝐶〉)) |
| 64 | 63 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((1st ↾ (V ×
{𝐶}))‘〈𝑥, 𝐶〉) = (1st ‘〈𝑥, 𝐶〉)) |
| 65 | | op1stg 8026 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → (1st ‘〈𝑥, 𝐶〉) = 𝑥) |
| 66 | 65 | ancoms 458 |
. . . . . . . . 9
⊢ ((𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → (1st ‘〈𝑥, 𝐶〉) = 𝑥) |
| 67 | 64, 66 | eqtrd 2777 |
. . . . . . . 8
⊢ ((𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → ((1st ↾ (V ×
{𝐶}))‘〈𝑥, 𝐶〉) = 𝑥) |
| 68 | | f1ocnvfv 7298 |
. . . . . . . 8
⊢
(((1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V
∧ 〈𝑥, 𝐶〉 ∈ (V × {𝐶})) → (((1st
↾ (V × {𝐶}))‘〈𝑥, 𝐶〉) = 𝑥 → (◡(1st ↾ (V × {𝐶}))‘𝑥) = 〈𝑥, 𝐶〉)) |
| 69 | 60, 67, 68 | sylc 65 |
. . . . . . 7
⊢ ((𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → (◡(1st ↾ (V × {𝐶}))‘𝑥) = 〈𝑥, 𝐶〉) |
| 70 | 69 | fveq2d 6910 |
. . . . . 6
⊢ ((𝐶 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘(◡(1st ↾ (V × {𝐶}))‘𝑥)) = (𝐹‘〈𝑥, 𝐶〉)) |
| 71 | 70 | adantll 714 |
. . . . 5
⊢ (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐹‘(◡(1st ↾ (V × {𝐶}))‘𝑥)) = (𝐹‘〈𝑥, 𝐶〉)) |
| 72 | | df-ov 7434 |
. . . . 5
⊢ (𝑥𝐹𝐶) = (𝐹‘〈𝑥, 𝐶〉) |
| 73 | 71, 72 | eqtr4di 2795 |
. . . 4
⊢ (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐹‘(◡(1st ↾ (V × {𝐶}))‘𝑥)) = (𝑥𝐹𝐶)) |
| 74 | 54, 73 | eqtrd 2777 |
. . 3
⊢ (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) = (𝑥𝐹𝐶)) |
| 75 | 74 | mpteq2dva 5242 |
. 2
⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝑥 ∈ 𝐴 ↦ (𝐺‘𝑥)) = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))) |
| 76 | 45, 75 | eqtrd 2777 |
1
⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → 𝐺 = (𝑥 ∈ 𝐴 ↦ (𝑥𝐹𝐶))) |