MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curry2 Structured version   Visualization version   GIF version

Theorem curry2 7918
Description: Composition with (1st ↾ (V × {𝐶})) turns any binary operation 𝐹 with a constant second operand into a function 𝐺 of the first operand only. This transformation is called "currying". (If this becomes frequently used, we can introduce a new notation for the hypothesis.) (Contributed by NM, 16-Dec-2008.)
Hypothesis
Ref Expression
curry2.1 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
Assertion
Ref Expression
curry2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → 𝐺 = (𝑥𝐴 ↦ (𝑥𝐹𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐺

Proof of Theorem curry2
StepHypRef Expression
1 fnfun 6517 . . . . 5 (𝐹 Fn (𝐴 × 𝐵) → Fun 𝐹)
2 1stconst 7911 . . . . . 6 (𝐶𝐵 → (1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V)
3 dff1o3 6706 . . . . . . 7 ((1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V ↔ ((1st ↾ (V × {𝐶})):(V × {𝐶})–onto→V ∧ Fun (1st ↾ (V × {𝐶}))))
43simprbi 496 . . . . . 6 ((1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V → Fun (1st ↾ (V × {𝐶})))
52, 4syl 17 . . . . 5 (𝐶𝐵 → Fun (1st ↾ (V × {𝐶})))
6 funco 6458 . . . . 5 ((Fun 𝐹 ∧ Fun (1st ↾ (V × {𝐶}))) → Fun (𝐹(1st ↾ (V × {𝐶}))))
71, 5, 6syl2an 595 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → Fun (𝐹(1st ↾ (V × {𝐶}))))
8 dmco 6147 . . . . 5 dom (𝐹(1st ↾ (V × {𝐶}))) = ((1st ↾ (V × {𝐶})) “ dom 𝐹)
9 fndm 6520 . . . . . . . 8 (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵))
109adantr 480 . . . . . . 7 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → dom 𝐹 = (𝐴 × 𝐵))
1110imaeq2d 5958 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → ((1st ↾ (V × {𝐶})) “ dom 𝐹) = ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)))
12 imacnvcnv 6098 . . . . . . . . 9 ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)) = ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵))
13 df-ima 5593 . . . . . . . . 9 ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)) = ran ((1st ↾ (V × {𝐶})) ↾ (𝐴 × 𝐵))
14 resres 5893 . . . . . . . . . 10 ((1st ↾ (V × {𝐶})) ↾ (𝐴 × 𝐵)) = (1st ↾ ((V × {𝐶}) ∩ (𝐴 × 𝐵)))
1514rneqi 5835 . . . . . . . . 9 ran ((1st ↾ (V × {𝐶})) ↾ (𝐴 × 𝐵)) = ran (1st ↾ ((V × {𝐶}) ∩ (𝐴 × 𝐵)))
1612, 13, 153eqtri 2770 . . . . . . . 8 ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)) = ran (1st ↾ ((V × {𝐶}) ∩ (𝐴 × 𝐵)))
17 inxp 5730 . . . . . . . . . . . . 13 ((V × {𝐶}) ∩ (𝐴 × 𝐵)) = ((V ∩ 𝐴) × ({𝐶} ∩ 𝐵))
18 incom 4131 . . . . . . . . . . . . . . 15 (V ∩ 𝐴) = (𝐴 ∩ V)
19 inv1 4325 . . . . . . . . . . . . . . 15 (𝐴 ∩ V) = 𝐴
2018, 19eqtri 2766 . . . . . . . . . . . . . 14 (V ∩ 𝐴) = 𝐴
2120xpeq1i 5606 . . . . . . . . . . . . 13 ((V ∩ 𝐴) × ({𝐶} ∩ 𝐵)) = (𝐴 × ({𝐶} ∩ 𝐵))
2217, 21eqtri 2766 . . . . . . . . . . . 12 ((V × {𝐶}) ∩ (𝐴 × 𝐵)) = (𝐴 × ({𝐶} ∩ 𝐵))
23 snssi 4738 . . . . . . . . . . . . . 14 (𝐶𝐵 → {𝐶} ⊆ 𝐵)
24 df-ss 3900 . . . . . . . . . . . . . 14 ({𝐶} ⊆ 𝐵 ↔ ({𝐶} ∩ 𝐵) = {𝐶})
2523, 24sylib 217 . . . . . . . . . . . . 13 (𝐶𝐵 → ({𝐶} ∩ 𝐵) = {𝐶})
2625xpeq2d 5610 . . . . . . . . . . . 12 (𝐶𝐵 → (𝐴 × ({𝐶} ∩ 𝐵)) = (𝐴 × {𝐶}))
2722, 26eqtrid 2790 . . . . . . . . . . 11 (𝐶𝐵 → ((V × {𝐶}) ∩ (𝐴 × 𝐵)) = (𝐴 × {𝐶}))
2827reseq2d 5880 . . . . . . . . . 10 (𝐶𝐵 → (1st ↾ ((V × {𝐶}) ∩ (𝐴 × 𝐵))) = (1st ↾ (𝐴 × {𝐶})))
2928rneqd 5836 . . . . . . . . 9 (𝐶𝐵 → ran (1st ↾ ((V × {𝐶}) ∩ (𝐴 × 𝐵))) = ran (1st ↾ (𝐴 × {𝐶})))
30 1stconst 7911 . . . . . . . . . 10 (𝐶𝐵 → (1st ↾ (𝐴 × {𝐶})):(𝐴 × {𝐶})–1-1-onto𝐴)
31 f1ofo 6707 . . . . . . . . . 10 ((1st ↾ (𝐴 × {𝐶})):(𝐴 × {𝐶})–1-1-onto𝐴 → (1st ↾ (𝐴 × {𝐶})):(𝐴 × {𝐶})–onto𝐴)
32 forn 6675 . . . . . . . . . 10 ((1st ↾ (𝐴 × {𝐶})):(𝐴 × {𝐶})–onto𝐴 → ran (1st ↾ (𝐴 × {𝐶})) = 𝐴)
3330, 31, 323syl 18 . . . . . . . . 9 (𝐶𝐵 → ran (1st ↾ (𝐴 × {𝐶})) = 𝐴)
3429, 33eqtrd 2778 . . . . . . . 8 (𝐶𝐵 → ran (1st ↾ ((V × {𝐶}) ∩ (𝐴 × 𝐵))) = 𝐴)
3516, 34eqtrid 2790 . . . . . . 7 (𝐶𝐵 → ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)) = 𝐴)
3635adantl 481 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)) = 𝐴)
3711, 36eqtrd 2778 . . . . 5 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → ((1st ↾ (V × {𝐶})) “ dom 𝐹) = 𝐴)
388, 37eqtrid 2790 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → dom (𝐹(1st ↾ (V × {𝐶}))) = 𝐴)
39 curry2.1 . . . . . 6 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
4039fneq1i 6514 . . . . 5 (𝐺 Fn 𝐴 ↔ (𝐹(1st ↾ (V × {𝐶}))) Fn 𝐴)
41 df-fn 6421 . . . . 5 ((𝐹(1st ↾ (V × {𝐶}))) Fn 𝐴 ↔ (Fun (𝐹(1st ↾ (V × {𝐶}))) ∧ dom (𝐹(1st ↾ (V × {𝐶}))) = 𝐴))
4240, 41bitri 274 . . . 4 (𝐺 Fn 𝐴 ↔ (Fun (𝐹(1st ↾ (V × {𝐶}))) ∧ dom (𝐹(1st ↾ (V × {𝐶}))) = 𝐴))
437, 38, 42sylanbrc 582 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → 𝐺 Fn 𝐴)
44 dffn5 6810 . . 3 (𝐺 Fn 𝐴𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
4543, 44sylib 217 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → 𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
4639fveq1i 6757 . . . . 5 (𝐺𝑥) = ((𝐹(1st ↾ (V × {𝐶})))‘𝑥)
47 dff1o4 6708 . . . . . . . . 9 ((1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V ↔ ((1st ↾ (V × {𝐶})) Fn (V × {𝐶}) ∧ (1st ↾ (V × {𝐶})) Fn V))
482, 47sylib 217 . . . . . . . 8 (𝐶𝐵 → ((1st ↾ (V × {𝐶})) Fn (V × {𝐶}) ∧ (1st ↾ (V × {𝐶})) Fn V))
4948simprd 495 . . . . . . 7 (𝐶𝐵(1st ↾ (V × {𝐶})) Fn V)
50 vex 3426 . . . . . . 7 𝑥 ∈ V
51 fvco2 6847 . . . . . . 7 (((1st ↾ (V × {𝐶})) Fn V ∧ 𝑥 ∈ V) → ((𝐹(1st ↾ (V × {𝐶})))‘𝑥) = (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)))
5249, 50, 51sylancl 585 . . . . . 6 (𝐶𝐵 → ((𝐹(1st ↾ (V × {𝐶})))‘𝑥) = (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)))
5352ad2antlr 723 . . . . 5 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) ∧ 𝑥𝐴) → ((𝐹(1st ↾ (V × {𝐶})))‘𝑥) = (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)))
5446, 53eqtrid 2790 . . . 4 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)))
552adantr 480 . . . . . . . . 9 ((𝐶𝐵𝑥𝐴) → (1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V)
5650a1i 11 . . . . . . . . . 10 ((𝐶𝐵𝑥𝐴) → 𝑥 ∈ V)
57 snidg 4592 . . . . . . . . . . 11 (𝐶𝐵𝐶 ∈ {𝐶})
5857adantr 480 . . . . . . . . . 10 ((𝐶𝐵𝑥𝐴) → 𝐶 ∈ {𝐶})
5956, 58opelxpd 5618 . . . . . . . . 9 ((𝐶𝐵𝑥𝐴) → ⟨𝑥, 𝐶⟩ ∈ (V × {𝐶}))
6055, 59jca 511 . . . . . . . 8 ((𝐶𝐵𝑥𝐴) → ((1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V ∧ ⟨𝑥, 𝐶⟩ ∈ (V × {𝐶})))
6150a1i 11 . . . . . . . . . . . 12 (𝐶𝐵𝑥 ∈ V)
6261, 57opelxpd 5618 . . . . . . . . . . 11 (𝐶𝐵 → ⟨𝑥, 𝐶⟩ ∈ (V × {𝐶}))
6362fvresd 6776 . . . . . . . . . 10 (𝐶𝐵 → ((1st ↾ (V × {𝐶}))‘⟨𝑥, 𝐶⟩) = (1st ‘⟨𝑥, 𝐶⟩))
6463adantr 480 . . . . . . . . 9 ((𝐶𝐵𝑥𝐴) → ((1st ↾ (V × {𝐶}))‘⟨𝑥, 𝐶⟩) = (1st ‘⟨𝑥, 𝐶⟩))
65 op1stg 7816 . . . . . . . . . 10 ((𝑥𝐴𝐶𝐵) → (1st ‘⟨𝑥, 𝐶⟩) = 𝑥)
6665ancoms 458 . . . . . . . . 9 ((𝐶𝐵𝑥𝐴) → (1st ‘⟨𝑥, 𝐶⟩) = 𝑥)
6764, 66eqtrd 2778 . . . . . . . 8 ((𝐶𝐵𝑥𝐴) → ((1st ↾ (V × {𝐶}))‘⟨𝑥, 𝐶⟩) = 𝑥)
68 f1ocnvfv 7131 . . . . . . . 8 (((1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V ∧ ⟨𝑥, 𝐶⟩ ∈ (V × {𝐶})) → (((1st ↾ (V × {𝐶}))‘⟨𝑥, 𝐶⟩) = 𝑥 → ((1st ↾ (V × {𝐶}))‘𝑥) = ⟨𝑥, 𝐶⟩))
6960, 67, 68sylc 65 . . . . . . 7 ((𝐶𝐵𝑥𝐴) → ((1st ↾ (V × {𝐶}))‘𝑥) = ⟨𝑥, 𝐶⟩)
7069fveq2d 6760 . . . . . 6 ((𝐶𝐵𝑥𝐴) → (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)) = (𝐹‘⟨𝑥, 𝐶⟩))
7170adantll 710 . . . . 5 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) ∧ 𝑥𝐴) → (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)) = (𝐹‘⟨𝑥, 𝐶⟩))
72 df-ov 7258 . . . . 5 (𝑥𝐹𝐶) = (𝐹‘⟨𝑥, 𝐶⟩)
7371, 72eqtr4di 2797 . . . 4 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) ∧ 𝑥𝐴) → (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)) = (𝑥𝐹𝐶))
7454, 73eqtrd 2778 . . 3 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝑥𝐹𝐶))
7574mpteq2dva 5170 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → (𝑥𝐴 ↦ (𝐺𝑥)) = (𝑥𝐴 ↦ (𝑥𝐹𝐶)))
7645, 75eqtrd 2778 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → 𝐺 = (𝑥𝐴 ↦ (𝑥𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cin 3882  wss 3883  {csn 4558  cop 4564  cmpt 5153   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  ccom 5584  Fun wfun 6412   Fn wfn 6413  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  1st c1st 7802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-1st 7804  df-2nd 7805
This theorem is referenced by:  curry2f  7919  curry2val  7920
  Copyright terms: Public domain W3C validator