MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curry2 Structured version   Visualization version   GIF version

Theorem curry2 8093
Description: Composition with (1st ↾ (V × {𝐶})) turns any binary operation 𝐹 with a constant second operand into a function 𝐺 of the first operand only. This transformation is called "currying". (If this becomes frequently used, we can introduce a new notation for the hypothesis.) (Contributed by NM, 16-Dec-2008.)
Hypothesis
Ref Expression
curry2.1 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
Assertion
Ref Expression
curry2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → 𝐺 = (𝑥𝐴 ↦ (𝑥𝐹𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝑥,𝐺

Proof of Theorem curry2
StepHypRef Expression
1 fnfun 6650 . . . . 5 (𝐹 Fn (𝐴 × 𝐵) → Fun 𝐹)
2 1stconst 8086 . . . . . 6 (𝐶𝐵 → (1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V)
3 dff1o3 6840 . . . . . . 7 ((1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V ↔ ((1st ↾ (V × {𝐶})):(V × {𝐶})–onto→V ∧ Fun (1st ↾ (V × {𝐶}))))
43simprbi 498 . . . . . 6 ((1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V → Fun (1st ↾ (V × {𝐶})))
52, 4syl 17 . . . . 5 (𝐶𝐵 → Fun (1st ↾ (V × {𝐶})))
6 funco 6589 . . . . 5 ((Fun 𝐹 ∧ Fun (1st ↾ (V × {𝐶}))) → Fun (𝐹(1st ↾ (V × {𝐶}))))
71, 5, 6syl2an 597 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → Fun (𝐹(1st ↾ (V × {𝐶}))))
8 dmco 6254 . . . . 5 dom (𝐹(1st ↾ (V × {𝐶}))) = ((1st ↾ (V × {𝐶})) “ dom 𝐹)
9 fndm 6653 . . . . . . . 8 (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵))
109adantr 482 . . . . . . 7 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → dom 𝐹 = (𝐴 × 𝐵))
1110imaeq2d 6060 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → ((1st ↾ (V × {𝐶})) “ dom 𝐹) = ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)))
12 imacnvcnv 6206 . . . . . . . . 9 ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)) = ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵))
13 df-ima 5690 . . . . . . . . 9 ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)) = ran ((1st ↾ (V × {𝐶})) ↾ (𝐴 × 𝐵))
14 resres 5995 . . . . . . . . . 10 ((1st ↾ (V × {𝐶})) ↾ (𝐴 × 𝐵)) = (1st ↾ ((V × {𝐶}) ∩ (𝐴 × 𝐵)))
1514rneqi 5937 . . . . . . . . 9 ran ((1st ↾ (V × {𝐶})) ↾ (𝐴 × 𝐵)) = ran (1st ↾ ((V × {𝐶}) ∩ (𝐴 × 𝐵)))
1612, 13, 153eqtri 2765 . . . . . . . 8 ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)) = ran (1st ↾ ((V × {𝐶}) ∩ (𝐴 × 𝐵)))
17 inxp 5833 . . . . . . . . . . . . 13 ((V × {𝐶}) ∩ (𝐴 × 𝐵)) = ((V ∩ 𝐴) × ({𝐶} ∩ 𝐵))
18 incom 4202 . . . . . . . . . . . . . . 15 (V ∩ 𝐴) = (𝐴 ∩ V)
19 inv1 4395 . . . . . . . . . . . . . . 15 (𝐴 ∩ V) = 𝐴
2018, 19eqtri 2761 . . . . . . . . . . . . . 14 (V ∩ 𝐴) = 𝐴
2120xpeq1i 5703 . . . . . . . . . . . . 13 ((V ∩ 𝐴) × ({𝐶} ∩ 𝐵)) = (𝐴 × ({𝐶} ∩ 𝐵))
2217, 21eqtri 2761 . . . . . . . . . . . 12 ((V × {𝐶}) ∩ (𝐴 × 𝐵)) = (𝐴 × ({𝐶} ∩ 𝐵))
23 snssi 4812 . . . . . . . . . . . . . 14 (𝐶𝐵 → {𝐶} ⊆ 𝐵)
24 df-ss 3966 . . . . . . . . . . . . . 14 ({𝐶} ⊆ 𝐵 ↔ ({𝐶} ∩ 𝐵) = {𝐶})
2523, 24sylib 217 . . . . . . . . . . . . 13 (𝐶𝐵 → ({𝐶} ∩ 𝐵) = {𝐶})
2625xpeq2d 5707 . . . . . . . . . . . 12 (𝐶𝐵 → (𝐴 × ({𝐶} ∩ 𝐵)) = (𝐴 × {𝐶}))
2722, 26eqtrid 2785 . . . . . . . . . . 11 (𝐶𝐵 → ((V × {𝐶}) ∩ (𝐴 × 𝐵)) = (𝐴 × {𝐶}))
2827reseq2d 5982 . . . . . . . . . 10 (𝐶𝐵 → (1st ↾ ((V × {𝐶}) ∩ (𝐴 × 𝐵))) = (1st ↾ (𝐴 × {𝐶})))
2928rneqd 5938 . . . . . . . . 9 (𝐶𝐵 → ran (1st ↾ ((V × {𝐶}) ∩ (𝐴 × 𝐵))) = ran (1st ↾ (𝐴 × {𝐶})))
30 1stconst 8086 . . . . . . . . . 10 (𝐶𝐵 → (1st ↾ (𝐴 × {𝐶})):(𝐴 × {𝐶})–1-1-onto𝐴)
31 f1ofo 6841 . . . . . . . . . 10 ((1st ↾ (𝐴 × {𝐶})):(𝐴 × {𝐶})–1-1-onto𝐴 → (1st ↾ (𝐴 × {𝐶})):(𝐴 × {𝐶})–onto𝐴)
32 forn 6809 . . . . . . . . . 10 ((1st ↾ (𝐴 × {𝐶})):(𝐴 × {𝐶})–onto𝐴 → ran (1st ↾ (𝐴 × {𝐶})) = 𝐴)
3330, 31, 323syl 18 . . . . . . . . 9 (𝐶𝐵 → ran (1st ↾ (𝐴 × {𝐶})) = 𝐴)
3429, 33eqtrd 2773 . . . . . . . 8 (𝐶𝐵 → ran (1st ↾ ((V × {𝐶}) ∩ (𝐴 × 𝐵))) = 𝐴)
3516, 34eqtrid 2785 . . . . . . 7 (𝐶𝐵 → ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)) = 𝐴)
3635adantl 483 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → ((1st ↾ (V × {𝐶})) “ (𝐴 × 𝐵)) = 𝐴)
3711, 36eqtrd 2773 . . . . 5 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → ((1st ↾ (V × {𝐶})) “ dom 𝐹) = 𝐴)
388, 37eqtrid 2785 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → dom (𝐹(1st ↾ (V × {𝐶}))) = 𝐴)
39 curry2.1 . . . . . 6 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
4039fneq1i 6647 . . . . 5 (𝐺 Fn 𝐴 ↔ (𝐹(1st ↾ (V × {𝐶}))) Fn 𝐴)
41 df-fn 6547 . . . . 5 ((𝐹(1st ↾ (V × {𝐶}))) Fn 𝐴 ↔ (Fun (𝐹(1st ↾ (V × {𝐶}))) ∧ dom (𝐹(1st ↾ (V × {𝐶}))) = 𝐴))
4240, 41bitri 275 . . . 4 (𝐺 Fn 𝐴 ↔ (Fun (𝐹(1st ↾ (V × {𝐶}))) ∧ dom (𝐹(1st ↾ (V × {𝐶}))) = 𝐴))
437, 38, 42sylanbrc 584 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → 𝐺 Fn 𝐴)
44 dffn5 6951 . . 3 (𝐺 Fn 𝐴𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
4543, 44sylib 217 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → 𝐺 = (𝑥𝐴 ↦ (𝐺𝑥)))
4639fveq1i 6893 . . . . 5 (𝐺𝑥) = ((𝐹(1st ↾ (V × {𝐶})))‘𝑥)
47 dff1o4 6842 . . . . . . . . 9 ((1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V ↔ ((1st ↾ (V × {𝐶})) Fn (V × {𝐶}) ∧ (1st ↾ (V × {𝐶})) Fn V))
482, 47sylib 217 . . . . . . . 8 (𝐶𝐵 → ((1st ↾ (V × {𝐶})) Fn (V × {𝐶}) ∧ (1st ↾ (V × {𝐶})) Fn V))
4948simprd 497 . . . . . . 7 (𝐶𝐵(1st ↾ (V × {𝐶})) Fn V)
50 vex 3479 . . . . . . 7 𝑥 ∈ V
51 fvco2 6989 . . . . . . 7 (((1st ↾ (V × {𝐶})) Fn V ∧ 𝑥 ∈ V) → ((𝐹(1st ↾ (V × {𝐶})))‘𝑥) = (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)))
5249, 50, 51sylancl 587 . . . . . 6 (𝐶𝐵 → ((𝐹(1st ↾ (V × {𝐶})))‘𝑥) = (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)))
5352ad2antlr 726 . . . . 5 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) ∧ 𝑥𝐴) → ((𝐹(1st ↾ (V × {𝐶})))‘𝑥) = (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)))
5446, 53eqtrid 2785 . . . 4 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)))
552adantr 482 . . . . . . . . 9 ((𝐶𝐵𝑥𝐴) → (1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V)
5650a1i 11 . . . . . . . . . 10 ((𝐶𝐵𝑥𝐴) → 𝑥 ∈ V)
57 snidg 4663 . . . . . . . . . . 11 (𝐶𝐵𝐶 ∈ {𝐶})
5857adantr 482 . . . . . . . . . 10 ((𝐶𝐵𝑥𝐴) → 𝐶 ∈ {𝐶})
5956, 58opelxpd 5716 . . . . . . . . 9 ((𝐶𝐵𝑥𝐴) → ⟨𝑥, 𝐶⟩ ∈ (V × {𝐶}))
6055, 59jca 513 . . . . . . . 8 ((𝐶𝐵𝑥𝐴) → ((1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V ∧ ⟨𝑥, 𝐶⟩ ∈ (V × {𝐶})))
6150a1i 11 . . . . . . . . . . . 12 (𝐶𝐵𝑥 ∈ V)
6261, 57opelxpd 5716 . . . . . . . . . . 11 (𝐶𝐵 → ⟨𝑥, 𝐶⟩ ∈ (V × {𝐶}))
6362fvresd 6912 . . . . . . . . . 10 (𝐶𝐵 → ((1st ↾ (V × {𝐶}))‘⟨𝑥, 𝐶⟩) = (1st ‘⟨𝑥, 𝐶⟩))
6463adantr 482 . . . . . . . . 9 ((𝐶𝐵𝑥𝐴) → ((1st ↾ (V × {𝐶}))‘⟨𝑥, 𝐶⟩) = (1st ‘⟨𝑥, 𝐶⟩))
65 op1stg 7987 . . . . . . . . . 10 ((𝑥𝐴𝐶𝐵) → (1st ‘⟨𝑥, 𝐶⟩) = 𝑥)
6665ancoms 460 . . . . . . . . 9 ((𝐶𝐵𝑥𝐴) → (1st ‘⟨𝑥, 𝐶⟩) = 𝑥)
6764, 66eqtrd 2773 . . . . . . . 8 ((𝐶𝐵𝑥𝐴) → ((1st ↾ (V × {𝐶}))‘⟨𝑥, 𝐶⟩) = 𝑥)
68 f1ocnvfv 7276 . . . . . . . 8 (((1st ↾ (V × {𝐶})):(V × {𝐶})–1-1-onto→V ∧ ⟨𝑥, 𝐶⟩ ∈ (V × {𝐶})) → (((1st ↾ (V × {𝐶}))‘⟨𝑥, 𝐶⟩) = 𝑥 → ((1st ↾ (V × {𝐶}))‘𝑥) = ⟨𝑥, 𝐶⟩))
6960, 67, 68sylc 65 . . . . . . 7 ((𝐶𝐵𝑥𝐴) → ((1st ↾ (V × {𝐶}))‘𝑥) = ⟨𝑥, 𝐶⟩)
7069fveq2d 6896 . . . . . 6 ((𝐶𝐵𝑥𝐴) → (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)) = (𝐹‘⟨𝑥, 𝐶⟩))
7170adantll 713 . . . . 5 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) ∧ 𝑥𝐴) → (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)) = (𝐹‘⟨𝑥, 𝐶⟩))
72 df-ov 7412 . . . . 5 (𝑥𝐹𝐶) = (𝐹‘⟨𝑥, 𝐶⟩)
7371, 72eqtr4di 2791 . . . 4 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) ∧ 𝑥𝐴) → (𝐹‘((1st ↾ (V × {𝐶}))‘𝑥)) = (𝑥𝐹𝐶))
7454, 73eqtrd 2773 . . 3 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝑥𝐹𝐶))
7574mpteq2dva 5249 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → (𝑥𝐴 ↦ (𝐺𝑥)) = (𝑥𝐴 ↦ (𝑥𝐹𝐶)))
7645, 75eqtrd 2773 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → 𝐺 = (𝑥𝐴 ↦ (𝑥𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  cin 3948  wss 3949  {csn 4629  cop 4635  cmpt 5232   × cxp 5675  ccnv 5676  dom cdm 5677  ran crn 5678  cres 5679  cima 5680  ccom 5681  Fun wfun 6538   Fn wfn 6539  ontowfo 6542  1-1-ontowf1o 6543  cfv 6544  (class class class)co 7409  1st c1st 7973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-1st 7975  df-2nd 7976
This theorem is referenced by:  curry2f  8094  curry2val  8095
  Copyright terms: Public domain W3C validator