Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 2ndcredom | Structured version Visualization version GIF version |
Description: A second-countable space has at most the cardinality of the continuum. (Contributed by Mario Carneiro, 9-Apr-2015.) |
Ref | Expression |
---|---|
2ndcredom | ⊢ (𝐽 ∈ 2ndω → 𝐽 ≼ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | is2ndc 22147 | . 2 ⊢ (𝐽 ∈ 2ndω ↔ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽)) | |
2 | tgdom 21679 | . . . . . 6 ⊢ (𝑥 ∈ TopBases → (topGen‘𝑥) ≼ 𝒫 𝑥) | |
3 | simpr 489 | . . . . . . . . 9 ⊢ ((𝑥 ∈ TopBases ∧ 𝑥 ≼ ω) → 𝑥 ≼ ω) | |
4 | nnenom 13398 | . . . . . . . . . 10 ⊢ ℕ ≈ ω | |
5 | 4 | ensymi 8578 | . . . . . . . . 9 ⊢ ω ≈ ℕ |
6 | domentr 8587 | . . . . . . . . 9 ⊢ ((𝑥 ≼ ω ∧ ω ≈ ℕ) → 𝑥 ≼ ℕ) | |
7 | 3, 5, 6 | sylancl 590 | . . . . . . . 8 ⊢ ((𝑥 ∈ TopBases ∧ 𝑥 ≼ ω) → 𝑥 ≼ ℕ) |
8 | pwdom 8692 | . . . . . . . 8 ⊢ (𝑥 ≼ ℕ → 𝒫 𝑥 ≼ 𝒫 ℕ) | |
9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ ((𝑥 ∈ TopBases ∧ 𝑥 ≼ ω) → 𝒫 𝑥 ≼ 𝒫 ℕ) |
10 | rpnnen 15629 | . . . . . . . 8 ⊢ ℝ ≈ 𝒫 ℕ | |
11 | 10 | ensymi 8578 | . . . . . . 7 ⊢ 𝒫 ℕ ≈ ℝ |
12 | domentr 8587 | . . . . . . 7 ⊢ ((𝒫 𝑥 ≼ 𝒫 ℕ ∧ 𝒫 ℕ ≈ ℝ) → 𝒫 𝑥 ≼ ℝ) | |
13 | 9, 11, 12 | sylancl 590 | . . . . . 6 ⊢ ((𝑥 ∈ TopBases ∧ 𝑥 ≼ ω) → 𝒫 𝑥 ≼ ℝ) |
14 | domtr 8581 | . . . . . 6 ⊢ (((topGen‘𝑥) ≼ 𝒫 𝑥 ∧ 𝒫 𝑥 ≼ ℝ) → (topGen‘𝑥) ≼ ℝ) | |
15 | 2, 13, 14 | syl2an2r 685 | . . . . 5 ⊢ ((𝑥 ∈ TopBases ∧ 𝑥 ≼ ω) → (topGen‘𝑥) ≼ ℝ) |
16 | breq1 5036 | . . . . 5 ⊢ ((topGen‘𝑥) = 𝐽 → ((topGen‘𝑥) ≼ ℝ ↔ 𝐽 ≼ ℝ)) | |
17 | 15, 16 | syl5ibcom 248 | . . . 4 ⊢ ((𝑥 ∈ TopBases ∧ 𝑥 ≼ ω) → ((topGen‘𝑥) = 𝐽 → 𝐽 ≼ ℝ)) |
18 | 17 | expimpd 458 | . . 3 ⊢ (𝑥 ∈ TopBases → ((𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → 𝐽 ≼ ℝ)) |
19 | 18 | rexlimiv 3205 | . 2 ⊢ (∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝐽) → 𝐽 ≼ ℝ) |
20 | 1, 19 | sylbi 220 | 1 ⊢ (𝐽 ∈ 2ndω → 𝐽 ≼ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∃wrex 3072 𝒫 cpw 4495 class class class wbr 5033 ‘cfv 6336 ωcom 7580 ≈ cen 8525 ≼ cdom 8526 ℝcr 10575 ℕcn 11675 topGenctg 16770 TopBasesctb 21646 2ndωc2ndc 22139 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-inf2 9138 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 ax-pre-sup 10654 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-se 5485 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-isom 6345 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-2o 8114 df-oadd 8117 df-omul 8118 df-er 8300 df-map 8419 df-pm 8420 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-sup 8940 df-inf 8941 df-oi 9008 df-card 9402 df-acn 9405 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-div 11337 df-nn 11676 df-2 11738 df-3 11739 df-n0 11936 df-z 12022 df-uz 12284 df-q 12390 df-rp 12432 df-ico 12786 df-icc 12787 df-fz 12941 df-fzo 13084 df-fl 13212 df-seq 13420 df-exp 13481 df-hash 13742 df-cj 14507 df-re 14508 df-im 14509 df-sqrt 14643 df-abs 14644 df-limsup 14877 df-clim 14894 df-rlim 14895 df-sum 15092 df-topgen 16776 df-2ndc 22141 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |