Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isthinc2 Structured version   Visualization version   GIF version

Theorem isthinc2 49273
Description: A thin category is a category in which all hom-sets have cardinality less than or equal to the cardinality of 1o. (Contributed by Zhi Wang, 17-Sep-2024.)
Hypotheses
Ref Expression
isthinc.b 𝐵 = (Base‘𝐶)
isthinc.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
isthinc2 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) ≼ 1o))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐻,𝑦

Proof of Theorem isthinc2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 isthinc.b . . 3 𝐵 = (Base‘𝐶)
2 isthinc.h . . 3 𝐻 = (Hom ‘𝐶)
31, 2isthinc 49272 . 2 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
4 modom2 9258 . . . 4 (∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ (𝑥𝐻𝑦) ≼ 1o)
542ralbii 3116 . . 3 (∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) ≼ 1o)
65anbi2i 623 . 2 ((𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) ≼ 1o))
73, 6bitri 275 1 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) ≼ 1o))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  ∃*wmo 2538  wral 3052   class class class wbr 5124  cfv 6536  (class class class)co 7410  1oc1o 8478  cdom 8962  Basecbs 17233  Hom chom 17287  Catccat 17681  ThinCatcthinc 49270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-1o 8485  df-en 8965  df-dom 8966  df-sdom 8967  df-thinc 49271
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator