Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isthinc2 Structured version   Visualization version   GIF version

Theorem isthinc2 49413
Description: A thin category is a category in which all hom-sets have cardinality less than or equal to the cardinality of 1o. (Contributed by Zhi Wang, 17-Sep-2024.)
Hypotheses
Ref Expression
isthinc.b 𝐵 = (Base‘𝐶)
isthinc.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
isthinc2 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) ≼ 1o))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐻,𝑦

Proof of Theorem isthinc2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 isthinc.b . . 3 𝐵 = (Base‘𝐶)
2 isthinc.h . . 3 𝐻 = (Hom ‘𝐶)
31, 2isthinc 49412 . 2 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
4 modom2 9199 . . . 4 (∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ (𝑥𝐻𝑦) ≼ 1o)
542ralbii 3109 . . 3 (∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) ≼ 1o)
65anbi2i 623 . 2 ((𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)) ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) ≼ 1o))
73, 6bitri 275 1 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 (𝑥𝐻𝑦) ≼ 1o))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  ∃*wmo 2532  wral 3045   class class class wbr 5110  cfv 6514  (class class class)co 7390  1oc1o 8430  cdom 8919  Basecbs 17186  Hom chom 17238  Catccat 17632  ThinCatcthinc 49410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-1o 8437  df-en 8922  df-dom 8923  df-sdom 8924  df-thinc 49411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator