Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ditgeq123i Structured version   Visualization version   GIF version

Theorem ditgeq123i 36253
Description: Equality inference for the directed integral. General version of ditgeq12i 36254 and ditgeq3i 36255. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
ditgeq123i.1 𝐴 = 𝐵
ditgeq123i.2 𝐶 = 𝐷
ditgeq123i.3 𝐸 = 𝐹
Assertion
Ref Expression
ditgeq123i ⨜[𝐴𝐶]𝐸 d𝑥 = ⨜[𝐵𝐷]𝐹 d𝑥

Proof of Theorem ditgeq123i
StepHypRef Expression
1 ditgeq123i.1 . . . 4 𝐴 = 𝐵
2 ditgeq123i.2 . . . 4 𝐶 = 𝐷
31, 2breq12i 5098 . . 3 (𝐴𝐶𝐵𝐷)
41, 2oveq12i 7358 . . . 4 (𝐴(,)𝐶) = (𝐵(,)𝐷)
5 ditgeq123i.3 . . . 4 𝐸 = 𝐹
64, 5itgeq12i 36250 . . 3 ∫(𝐴(,)𝐶)𝐸 d𝑥 = ∫(𝐵(,)𝐷)𝐹 d𝑥
72, 1oveq12i 7358 . . . . 5 (𝐶(,)𝐴) = (𝐷(,)𝐵)
87, 5itgeq12i 36250 . . . 4 ∫(𝐶(,)𝐴)𝐸 d𝑥 = ∫(𝐷(,)𝐵)𝐹 d𝑥
98negeqi 11353 . . 3 -∫(𝐶(,)𝐴)𝐸 d𝑥 = -∫(𝐷(,)𝐵)𝐹 d𝑥
103, 6, 9ifbieq12i 4500 . 2 if(𝐴𝐶, ∫(𝐴(,)𝐶)𝐸 d𝑥, -∫(𝐶(,)𝐴)𝐸 d𝑥) = if(𝐵𝐷, ∫(𝐵(,)𝐷)𝐹 d𝑥, -∫(𝐷(,)𝐵)𝐹 d𝑥)
11 df-ditg 25775 . 2 ⨜[𝐴𝐶]𝐸 d𝑥 = if(𝐴𝐶, ∫(𝐴(,)𝐶)𝐸 d𝑥, -∫(𝐶(,)𝐴)𝐸 d𝑥)
12 df-ditg 25775 . 2 ⨜[𝐵𝐷]𝐹 d𝑥 = if(𝐵𝐷, ∫(𝐵(,)𝐷)𝐹 d𝑥, -∫(𝐷(,)𝐵)𝐹 d𝑥)
1310, 11, 123eqtr4i 2764 1 ⨜[𝐴𝐶]𝐸 d𝑥 = ⨜[𝐵𝐷]𝐹 d𝑥
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  ifcif 4472   class class class wbr 5089  (class class class)co 7346  cle 11147  -cneg 11345  (,)cioo 13245  citg 25546  cdit 25774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-xp 5620  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-iota 6437  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-neg 11347  df-seq 13909  df-sum 15594  df-itg 25551  df-ditg 25775
This theorem is referenced by:  ditgeq12i  36254  ditgeq3i  36255
  Copyright terms: Public domain W3C validator