MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeliunxp2f Structured version   Visualization version   GIF version

Theorem opeliunxp2f 7859
Description: Membership in a union of Cartesian products, using bound-variable hypothesis for 𝐸 instead of distinct variable conditions as in opeliunxp2 5673. (Contributed by AV, 25-Oct-2020.)
Hypotheses
Ref Expression
opeliunxp2f.f 𝑥𝐸
opeliunxp2f.e (𝑥 = 𝐶𝐵 = 𝐸)
Assertion
Ref Expression
opeliunxp2f (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐸(𝑥)

Proof of Theorem opeliunxp2f
StepHypRef Expression
1 df-br 5031 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵)𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵))
2 relxp 5537 . . . . . 6 Rel ({𝑥} × 𝐵)
32rgenw 3118 . . . . 5 𝑥𝐴 Rel ({𝑥} × 𝐵)
4 reliun 5653 . . . . 5 (Rel 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥𝐴 Rel ({𝑥} × 𝐵))
53, 4mpbir 234 . . . 4 Rel 𝑥𝐴 ({𝑥} × 𝐵)
65brrelex1i 5572 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵)𝐷𝐶 ∈ V)
71, 6sylbir 238 . 2 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) → 𝐶 ∈ V)
8 elex 3459 . . 3 (𝐶𝐴𝐶 ∈ V)
98adantr 484 . 2 ((𝐶𝐴𝐷𝐸) → 𝐶 ∈ V)
10 nfiu1 4915 . . . . 5 𝑥 𝑥𝐴 ({𝑥} × 𝐵)
1110nfel2 2973 . . . 4 𝑥𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)
12 nfv 1915 . . . . 5 𝑥 𝐶𝐴
13 opeliunxp2f.f . . . . . 6 𝑥𝐸
1413nfel2 2973 . . . . 5 𝑥 𝐷𝐸
1512, 14nfan 1900 . . . 4 𝑥(𝐶𝐴𝐷𝐸)
1611, 15nfbi 1904 . . 3 𝑥(⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
17 opeq1 4763 . . . . 5 (𝑥 = 𝐶 → ⟨𝑥, 𝐷⟩ = ⟨𝐶, 𝐷⟩)
1817eleq1d 2874 . . . 4 (𝑥 = 𝐶 → (⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ ⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
19 eleq1 2877 . . . . 5 (𝑥 = 𝐶 → (𝑥𝐴𝐶𝐴))
20 opeliunxp2f.e . . . . . 6 (𝑥 = 𝐶𝐵 = 𝐸)
2120eleq2d 2875 . . . . 5 (𝑥 = 𝐶 → (𝐷𝐵𝐷𝐸))
2219, 21anbi12d 633 . . . 4 (𝑥 = 𝐶 → ((𝑥𝐴𝐷𝐵) ↔ (𝐶𝐴𝐷𝐸)))
2318, 22bibi12d 349 . . 3 (𝑥 = 𝐶 → ((⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐷𝐵)) ↔ (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))))
24 opeliunxp 5583 . . 3 (⟨𝑥, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝐷𝐵))
2516, 23, 24vtoclg1f 3514 . 2 (𝐶 ∈ V → (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸)))
267, 9, 25pm5.21nii 383 1 (⟨𝐶, 𝐷⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝐶𝐴𝐷𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wnfc 2936  wral 3106  Vcvv 3441  {csn 4525  cop 4531   ciun 4881   class class class wbr 5030   × cxp 5517  Rel wrel 5524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-iun 4883  df-br 5031  df-opab 5093  df-xp 5525  df-rel 5526
This theorem is referenced by:  mpoxeldm  7860  fsumcom2  15121  fprodcom2  15330  iunsnima2  30383
  Copyright terms: Public domain W3C validator