![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeliunxp2f | Structured version Visualization version GIF version |
Description: Membership in a union of Cartesian products, using bound-variable hypothesis for 𝐸 instead of distinct variable conditions as in opeliunxp2 5832. (Contributed by AV, 25-Oct-2020.) |
Ref | Expression |
---|---|
opeliunxp2f.f | ⊢ Ⅎ𝑥𝐸 |
opeliunxp2f.e | ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐸) |
Ref | Expression |
---|---|
opeliunxp2f | ⊢ (⟨𝐶, 𝐷⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5142 | . . 3 ⊢ (𝐶∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)𝐷 ↔ ⟨𝐶, 𝐷⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) | |
2 | relxp 5687 | . . . . . 6 ⊢ Rel ({𝑥} × 𝐵) | |
3 | 2 | rgenw 3059 | . . . . 5 ⊢ ∀𝑥 ∈ 𝐴 Rel ({𝑥} × 𝐵) |
4 | reliun 5809 | . . . . 5 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥 ∈ 𝐴 Rel ({𝑥} × 𝐵)) | |
5 | 3, 4 | mpbir 230 | . . . 4 ⊢ Rel ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
6 | 5 | brrelex1i 5725 | . . 3 ⊢ (𝐶∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)𝐷 → 𝐶 ∈ V) |
7 | 1, 6 | sylbir 234 | . 2 ⊢ (⟨𝐶, 𝐷⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) → 𝐶 ∈ V) |
8 | elex 3487 | . . 3 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) | |
9 | 8 | adantr 480 | . 2 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸) → 𝐶 ∈ V) |
10 | nfiu1 5024 | . . . . 5 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) | |
11 | 10 | nfel2 2915 | . . . 4 ⊢ Ⅎ𝑥⟨𝐶, 𝐷⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
12 | nfv 1909 | . . . . 5 ⊢ Ⅎ𝑥 𝐶 ∈ 𝐴 | |
13 | opeliunxp2f.f | . . . . . 6 ⊢ Ⅎ𝑥𝐸 | |
14 | 13 | nfel2 2915 | . . . . 5 ⊢ Ⅎ𝑥 𝐷 ∈ 𝐸 |
15 | 12, 14 | nfan 1894 | . . . 4 ⊢ Ⅎ𝑥(𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸) |
16 | 11, 15 | nfbi 1898 | . . 3 ⊢ Ⅎ𝑥(⟨𝐶, 𝐷⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) |
17 | opeq1 4868 | . . . . 5 ⊢ (𝑥 = 𝐶 → ⟨𝑥, 𝐷⟩ = ⟨𝐶, 𝐷⟩) | |
18 | 17 | eleq1d 2812 | . . . 4 ⊢ (𝑥 = 𝐶 → (⟨𝑥, 𝐷⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ ⟨𝐶, 𝐷⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
19 | eleq1 2815 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
20 | opeliunxp2f.e | . . . . . 6 ⊢ (𝑥 = 𝐶 → 𝐵 = 𝐸) | |
21 | 20 | eleq2d 2813 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐷 ∈ 𝐵 ↔ 𝐷 ∈ 𝐸)) |
22 | 19, 21 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸))) |
23 | 18, 22 | bibi12d 345 | . . 3 ⊢ (𝑥 = 𝐶 → ((⟨𝑥, 𝐷⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) ↔ (⟨𝐶, 𝐷⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)))) |
24 | opeliunxp 5736 | . . 3 ⊢ (⟨𝑥, 𝐷⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) | |
25 | 16, 23, 24 | vtoclg1f 3553 | . 2 ⊢ (𝐶 ∈ V → (⟨𝐶, 𝐷⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸))) |
26 | 7, 9, 25 | pm5.21nii 378 | 1 ⊢ (⟨𝐶, 𝐷⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Ⅎwnfc 2877 ∀wral 3055 Vcvv 3468 {csn 4623 ⟨cop 4629 ∪ ciun 4990 class class class wbr 5141 × cxp 5667 Rel wrel 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-iun 4992 df-br 5142 df-opab 5204 df-xp 5675 df-rel 5676 |
This theorem is referenced by: mpoxeldm 8197 fsumcom2 15726 fprodcom2 15934 iunsnima2 32357 |
Copyright terms: Public domain | W3C validator |