Proof of Theorem opeliunxp2f
| Step | Hyp | Ref
| Expression |
| 1 | | df-br 5144 |
. . 3
⊢ (𝐶∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)𝐷 ↔ 〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)) |
| 2 | | relxp 5703 |
. . . . . 6
⊢ Rel
({𝑥} × 𝐵) |
| 3 | 2 | rgenw 3065 |
. . . . 5
⊢
∀𝑥 ∈
𝐴 Rel ({𝑥} × 𝐵) |
| 4 | | reliun 5826 |
. . . . 5
⊢ (Rel
∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥 ∈ 𝐴 Rel ({𝑥} × 𝐵)) |
| 5 | 3, 4 | mpbir 231 |
. . . 4
⊢ Rel
∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
| 6 | 5 | brrelex1i 5741 |
. . 3
⊢ (𝐶∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵)𝐷 → 𝐶 ∈ V) |
| 7 | 1, 6 | sylbir 235 |
. 2
⊢
(〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) → 𝐶 ∈ V) |
| 8 | | elex 3501 |
. . 3
⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ V) |
| 9 | 8 | adantr 480 |
. 2
⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸) → 𝐶 ∈ V) |
| 10 | | nfiu1 5027 |
. . . . 5
⊢
Ⅎ𝑥∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
| 11 | 10 | nfel2 2924 |
. . . 4
⊢
Ⅎ𝑥〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) |
| 12 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑥 𝐶 ∈ 𝐴 |
| 13 | | opeliunxp2f.f |
. . . . . 6
⊢
Ⅎ𝑥𝐸 |
| 14 | 13 | nfel2 2924 |
. . . . 5
⊢
Ⅎ𝑥 𝐷 ∈ 𝐸 |
| 15 | 12, 14 | nfan 1899 |
. . . 4
⊢
Ⅎ𝑥(𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸) |
| 16 | 11, 15 | nfbi 1903 |
. . 3
⊢
Ⅎ𝑥(〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) |
| 17 | | opeq1 4873 |
. . . . 5
⊢ (𝑥 = 𝐶 → 〈𝑥, 𝐷〉 = 〈𝐶, 𝐷〉) |
| 18 | 17 | eleq1d 2826 |
. . . 4
⊢ (𝑥 = 𝐶 → (〈𝑥, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ 〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
| 19 | | eleq1 2829 |
. . . . 5
⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) |
| 20 | | opeliunxp2f.e |
. . . . . 6
⊢ (𝑥 = 𝐶 → 𝐵 = 𝐸) |
| 21 | 20 | eleq2d 2827 |
. . . . 5
⊢ (𝑥 = 𝐶 → (𝐷 ∈ 𝐵 ↔ 𝐷 ∈ 𝐸)) |
| 22 | 19, 21 | anbi12d 632 |
. . . 4
⊢ (𝑥 = 𝐶 → ((𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸))) |
| 23 | 18, 22 | bibi12d 345 |
. . 3
⊢ (𝑥 = 𝐶 → ((〈𝑥, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) ↔ (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)))) |
| 24 | | opeliunxp 5752 |
. . 3
⊢
(〈𝑥, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵)) |
| 25 | 16, 23, 24 | vtoclg1f 3570 |
. 2
⊢ (𝐶 ∈ V → (〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸))) |
| 26 | 7, 9, 25 | pm5.21nii 378 |
1
⊢
(〈𝐶, 𝐷〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐸)) |