MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpin Structured version   Visualization version   GIF version

Theorem ixpin 8914
Description: The intersection of two infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.)
Assertion
Ref Expression
ixpin X𝑥𝐴 (𝐵𝐶) = (X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem ixpin
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 anandi 673 . . . 4 ((𝑓 Fn 𝐴 ∧ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)) ↔ ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ∧ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)))
2 elin 3957 . . . . . . 7 ((𝑓𝑥) ∈ (𝐵𝐶) ↔ ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ∈ 𝐶))
32ralbii 3085 . . . . . 6 (∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶) ↔ ∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ∈ 𝐶))
4 r19.26 3103 . . . . . 6 (∀𝑥𝐴 ((𝑓𝑥) ∈ 𝐵 ∧ (𝑓𝑥) ∈ 𝐶) ↔ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
53, 4bitri 275 . . . . 5 (∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶) ↔ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
65anbi2i 622 . . . 4 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶)) ↔ (𝑓 Fn 𝐴 ∧ (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)))
7 vex 3470 . . . . . 6 𝑓 ∈ V
87elixp 8895 . . . . 5 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
97elixp 8895 . . . . 5 (𝑓X𝑥𝐴 𝐶 ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶))
108, 9anbi12i 626 . . . 4 ((𝑓X𝑥𝐴 𝐵𝑓X𝑥𝐴 𝐶) ↔ ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ∧ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)))
111, 6, 103bitr4i 303 . . 3 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶)) ↔ (𝑓X𝑥𝐴 𝐵𝑓X𝑥𝐴 𝐶))
127elixp 8895 . . 3 (𝑓X𝑥𝐴 (𝐵𝐶) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ (𝐵𝐶)))
13 elin 3957 . . 3 (𝑓 ∈ (X𝑥𝐴 𝐵X𝑥𝐴 𝐶) ↔ (𝑓X𝑥𝐴 𝐵𝑓X𝑥𝐴 𝐶))
1411, 12, 133bitr4i 303 . 2 (𝑓X𝑥𝐴 (𝐵𝐶) ↔ 𝑓 ∈ (X𝑥𝐴 𝐵X𝑥𝐴 𝐶))
1514eqriv 2721 1 X𝑥𝐴 (𝐵𝐶) = (X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1533  wcel 2098  wral 3053  cin 3940   Fn wfn 6529  cfv 6534  Xcixp 8888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-iota 6486  df-fun 6536  df-fn 6537  df-fv 6542  df-ixp 8889
This theorem is referenced by:  ptbasin  23425  ptclsg  23463  ptrest  36990
  Copyright terms: Public domain W3C validator