MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpexg Structured version   Visualization version   GIF version

Theorem ixpexg 8856
Description: The existence of an infinite Cartesian product. 𝑥 is normally a free-variable parameter in 𝐵. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 25-Jan-2015.)
Assertion
Ref Expression
ixpexg (∀𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem ixpexg
StepHypRef Expression
1 uniixp 8855 . . . 4 X𝑥𝐴 𝐵 ⊆ (𝐴 × 𝑥𝐴 𝐵)
2 iunexg 7905 . . . . 5 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → 𝑥𝐴 𝐵 ∈ V)
3 xpexg 7690 . . . . 5 ((𝐴 ∈ V ∧ 𝑥𝐴 𝐵 ∈ V) → (𝐴 × 𝑥𝐴 𝐵) ∈ V)
42, 3syldan 591 . . . 4 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → (𝐴 × 𝑥𝐴 𝐵) ∈ V)
5 ssexg 5265 . . . 4 (( X𝑥𝐴 𝐵 ⊆ (𝐴 × 𝑥𝐴 𝐵) ∧ (𝐴 × 𝑥𝐴 𝐵) ∈ V) → X𝑥𝐴 𝐵 ∈ V)
61, 4, 5sylancr 587 . . 3 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → X𝑥𝐴 𝐵 ∈ V)
7 uniexb 7704 . . 3 (X𝑥𝐴 𝐵 ∈ V ↔ X𝑥𝐴 𝐵 ∈ V)
86, 7sylibr 234 . 2 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → X𝑥𝐴 𝐵 ∈ V)
9 ixpprc 8853 . . . 4 𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
10 0ex 5249 . . . 4 ∅ ∈ V
119, 10eqeltrdi 2836 . . 3 𝐴 ∈ V → X𝑥𝐴 𝐵 ∈ V)
1211adantr 480 . 2 ((¬ 𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → X𝑥𝐴 𝐵 ∈ V)
138, 12pm2.61ian 811 1 (∀𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2109  wral 3044  Vcvv 3438  wss 3905  c0 4286   cuni 4861   ciun 4944   × cxp 5621  Xcixp 8831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ixp 8832
This theorem is referenced by:  konigthlem  10481  prdsbasex  17372  isfunc  17789  isnat  17875  natffn  17877  dmdprd  19897  dprdval  19902  elpt  23475  ptbasin2  23481  ptbasfi  23484  ptrest  37601  upixp  37711  hspval  46594  hspmbl  46614  vonioolem2  46666  vonicclem2  46669
  Copyright terms: Public domain W3C validator