MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpexg Structured version   Visualization version   GIF version

Theorem ixpexg 8488
Description: The existence of an infinite Cartesian product. 𝑥 is normally a free-variable parameter in 𝐵. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 25-Jan-2015.)
Assertion
Ref Expression
ixpexg (∀𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem ixpexg
StepHypRef Expression
1 uniixp 8487 . . . 4 X𝑥𝐴 𝐵 ⊆ (𝐴 × 𝑥𝐴 𝐵)
2 iunexg 7666 . . . . 5 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → 𝑥𝐴 𝐵 ∈ V)
3 xpexg 7475 . . . . 5 ((𝐴 ∈ V ∧ 𝑥𝐴 𝐵 ∈ V) → (𝐴 × 𝑥𝐴 𝐵) ∈ V)
42, 3syldan 593 . . . 4 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → (𝐴 × 𝑥𝐴 𝐵) ∈ V)
5 ssexg 5229 . . . 4 (( X𝑥𝐴 𝐵 ⊆ (𝐴 × 𝑥𝐴 𝐵) ∧ (𝐴 × 𝑥𝐴 𝐵) ∈ V) → X𝑥𝐴 𝐵 ∈ V)
61, 4, 5sylancr 589 . . 3 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → X𝑥𝐴 𝐵 ∈ V)
7 uniexb 7488 . . 3 (X𝑥𝐴 𝐵 ∈ V ↔ X𝑥𝐴 𝐵 ∈ V)
86, 7sylibr 236 . 2 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → X𝑥𝐴 𝐵 ∈ V)
9 ixpprc 8485 . . . 4 𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
10 0ex 5213 . . . 4 ∅ ∈ V
119, 10eqeltrdi 2923 . . 3 𝐴 ∈ V → X𝑥𝐴 𝐵 ∈ V)
1211adantr 483 . 2 ((¬ 𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → X𝑥𝐴 𝐵 ∈ V)
138, 12pm2.61ian 810 1 (∀𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wcel 2114  wral 3140  Vcvv 3496  wss 3938  c0 4293   cuni 4840   ciun 4921   × cxp 5555  Xcixp 8463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ixp 8464
This theorem is referenced by:  konigthlem  9992  prdsbasex  16726  isfunc  17136  isnat  17219  natffn  17221  dmdprd  19122  dprdval  19127  elpt  22182  ptbasin2  22188  ptbasfi  22191  ptrest  34893  upixp  35006  hspval  42898  hspmbl  42918  vonioolem2  42970  vonicclem2  42973
  Copyright terms: Public domain W3C validator