| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpexg | Structured version Visualization version GIF version | ||
| Description: The existence of an infinite Cartesian product. 𝑥 is normally a free-variable parameter in 𝐵. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 25-Jan-2015.) |
| Ref | Expression |
|---|---|
| ixpexg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniixp 8940 | . . . 4 ⊢ ∪ X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 2 | iunexg 7967 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 3 | xpexg 7749 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) ∈ V) | |
| 4 | 2, 3 | syldan 591 | . . . 4 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) ∈ V) |
| 5 | ssexg 5298 | . . . 4 ⊢ ((∪ X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) ∧ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) ∈ V) → ∪ X𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 6 | 1, 4, 5 | sylancr 587 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → ∪ X𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 7 | uniexb 7763 | . . 3 ⊢ (X𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ∪ X𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 8 | 6, 7 | sylibr 234 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → X𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 9 | ixpprc 8938 | . . . 4 ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 = ∅) | |
| 10 | 0ex 5282 | . . . 4 ⊢ ∅ ∈ V | |
| 11 | 9, 10 | eqeltrdi 2843 | . . 3 ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 12 | 11 | adantr 480 | . 2 ⊢ ((¬ 𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → X𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 13 | 8, 12 | pm2.61ian 811 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ⊆ wss 3931 ∅c0 4313 ∪ cuni 4888 ∪ ciun 4972 × cxp 5657 Xcixp 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ixp 8917 |
| This theorem is referenced by: konigthlem 10587 prdsbasex 17469 isfunc 17882 isnat 17968 natffn 17970 dmdprd 19986 dprdval 19991 elpt 23515 ptbasin2 23521 ptbasfi 23524 ptrest 37648 upixp 37758 hspval 46605 hspmbl 46625 vonioolem2 46677 vonicclem2 46680 |
| Copyright terms: Public domain | W3C validator |