MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpexg Structured version   Visualization version   GIF version

Theorem ixpexg 8963
Description: The existence of an infinite Cartesian product. 𝑥 is normally a free-variable parameter in 𝐵. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 25-Jan-2015.)
Assertion
Ref Expression
ixpexg (∀𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem ixpexg
StepHypRef Expression
1 uniixp 8962 . . . 4 X𝑥𝐴 𝐵 ⊆ (𝐴 × 𝑥𝐴 𝐵)
2 iunexg 7989 . . . . 5 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → 𝑥𝐴 𝐵 ∈ V)
3 xpexg 7771 . . . . 5 ((𝐴 ∈ V ∧ 𝑥𝐴 𝐵 ∈ V) → (𝐴 × 𝑥𝐴 𝐵) ∈ V)
42, 3syldan 591 . . . 4 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → (𝐴 × 𝑥𝐴 𝐵) ∈ V)
5 ssexg 5322 . . . 4 (( X𝑥𝐴 𝐵 ⊆ (𝐴 × 𝑥𝐴 𝐵) ∧ (𝐴 × 𝑥𝐴 𝐵) ∈ V) → X𝑥𝐴 𝐵 ∈ V)
61, 4, 5sylancr 587 . . 3 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → X𝑥𝐴 𝐵 ∈ V)
7 uniexb 7785 . . 3 (X𝑥𝐴 𝐵 ∈ V ↔ X𝑥𝐴 𝐵 ∈ V)
86, 7sylibr 234 . 2 ((𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → X𝑥𝐴 𝐵 ∈ V)
9 ixpprc 8960 . . . 4 𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
10 0ex 5306 . . . 4 ∅ ∈ V
119, 10eqeltrdi 2848 . . 3 𝐴 ∈ V → X𝑥𝐴 𝐵 ∈ V)
1211adantr 480 . 2 ((¬ 𝐴 ∈ V ∧ ∀𝑥𝐴 𝐵𝑉) → X𝑥𝐴 𝐵 ∈ V)
138, 12pm2.61ian 811 1 (∀𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2107  wral 3060  Vcvv 3479  wss 3950  c0 4332   cuni 4906   ciun 4990   × cxp 5682  Xcixp 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-ixp 8939
This theorem is referenced by:  konigthlem  10609  prdsbasex  17496  isfunc  17910  isnat  17996  natffn  17998  dmdprd  20019  dprdval  20024  elpt  23581  ptbasin2  23587  ptbasfi  23590  ptrest  37627  upixp  37737  hspval  46629  hspmbl  46649  vonioolem2  46701  vonicclem2  46704
  Copyright terms: Public domain W3C validator