| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpexg | Structured version Visualization version GIF version | ||
| Description: The existence of an infinite Cartesian product. 𝑥 is normally a free-variable parameter in 𝐵. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 25-Jan-2015.) |
| Ref | Expression |
|---|---|
| ixpexg | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniixp 8845 | . . . 4 ⊢ ∪ X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) | |
| 2 | iunexg 7895 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 3 | xpexg 7683 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ V) → (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) ∈ V) | |
| 4 | 2, 3 | syldan 591 | . . . 4 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) ∈ V) |
| 5 | ssexg 5261 | . . . 4 ⊢ ((∪ X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) ∧ (𝐴 × ∪ 𝑥 ∈ 𝐴 𝐵) ∈ V) → ∪ X𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 6 | 1, 4, 5 | sylancr 587 | . . 3 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → ∪ X𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 7 | uniexb 7697 | . . 3 ⊢ (X𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ∪ X𝑥 ∈ 𝐴 𝐵 ∈ V) | |
| 8 | 6, 7 | sylibr 234 | . 2 ⊢ ((𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → X𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 9 | ixpprc 8843 | . . . 4 ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 = ∅) | |
| 10 | 0ex 5245 | . . . 4 ⊢ ∅ ∈ V | |
| 11 | 9, 10 | eqeltrdi 2839 | . . 3 ⊢ (¬ 𝐴 ∈ V → X𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 12 | 11 | adantr 480 | . 2 ⊢ ((¬ 𝐴 ∈ V ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) → X𝑥 ∈ 𝐴 𝐵 ∈ V) |
| 13 | 8, 12 | pm2.61ian 811 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → X𝑥 ∈ 𝐴 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3902 ∅c0 4283 ∪ cuni 4859 ∪ ciun 4941 × cxp 5614 Xcixp 8821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ixp 8822 |
| This theorem is referenced by: konigthlem 10459 prdsbasex 17354 isfunc 17771 isnat 17857 natffn 17859 dmdprd 19913 dprdval 19918 elpt 23488 ptbasin2 23494 ptbasfi 23497 ptrest 37665 upixp 37775 hspval 46653 hspmbl 46673 vonioolem2 46725 vonicclem2 46728 |
| Copyright terms: Public domain | W3C validator |