MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  div4p1lem1div2 Structured version   Visualization version   GIF version

Theorem div4p1lem1div2 11895
Description: An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
div4p1lem1div2 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))

Proof of Theorem div4p1lem1div2
StepHypRef Expression
1 6re 11730 . . . . . . 7 6 ∈ ℝ
21a1i 11 . . . . . 6 (𝑁 ∈ ℝ → 6 ∈ ℝ)
3 id 22 . . . . . 6 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
42, 3, 3leadd2d 11238 . . . . 5 (𝑁 ∈ ℝ → (6 ≤ 𝑁 ↔ (𝑁 + 6) ≤ (𝑁 + 𝑁)))
54biimpa 479 . . . 4 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (𝑁 + 6) ≤ (𝑁 + 𝑁))
6 recn 10630 . . . . . 6 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
76times2d 11884 . . . . 5 (𝑁 ∈ ℝ → (𝑁 · 2) = (𝑁 + 𝑁))
87adantr 483 . . . 4 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (𝑁 · 2) = (𝑁 + 𝑁))
95, 8breqtrrd 5097 . . 3 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (𝑁 + 6) ≤ (𝑁 · 2))
10 4cn 11725 . . . . . . . 8 4 ∈ ℂ
1110a1i 11 . . . . . . 7 (𝑁 ∈ ℝ → 4 ∈ ℂ)
12 2cn 11715 . . . . . . . 8 2 ∈ ℂ
1312a1i 11 . . . . . . 7 (𝑁 ∈ ℝ → 2 ∈ ℂ)
146, 11, 13addassd 10666 . . . . . 6 (𝑁 ∈ ℝ → ((𝑁 + 4) + 2) = (𝑁 + (4 + 2)))
15 4p2e6 11793 . . . . . . 7 (4 + 2) = 6
1615oveq2i 7170 . . . . . 6 (𝑁 + (4 + 2)) = (𝑁 + 6)
1714, 16syl6eq 2875 . . . . 5 (𝑁 ∈ ℝ → ((𝑁 + 4) + 2) = (𝑁 + 6))
1817breq1d 5079 . . . 4 (𝑁 ∈ ℝ → (((𝑁 + 4) + 2) ≤ (𝑁 · 2) ↔ (𝑁 + 6) ≤ (𝑁 · 2)))
1918adantr 483 . . 3 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (((𝑁 + 4) + 2) ≤ (𝑁 · 2) ↔ (𝑁 + 6) ≤ (𝑁 · 2)))
209, 19mpbird 259 . 2 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 + 4) + 2) ≤ (𝑁 · 2))
21 4re 11724 . . . . . . . 8 4 ∈ ℝ
2221a1i 11 . . . . . . 7 (𝑁 ∈ ℝ → 4 ∈ ℝ)
23 4ne0 11748 . . . . . . . 8 4 ≠ 0
2423a1i 11 . . . . . . 7 (𝑁 ∈ ℝ → 4 ≠ 0)
253, 22, 24redivcld 11471 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℝ)
26 peano2re 10816 . . . . . 6 ((𝑁 / 4) ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
2725, 26syl 17 . . . . 5 (𝑁 ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
28 peano2rem 10956 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
2928rehalfcld 11887 . . . . 5 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℝ)
30 4pos 11747 . . . . . . 7 0 < 4
3121, 30pm3.2i 473 . . . . . 6 (4 ∈ ℝ ∧ 0 < 4)
3231a1i 11 . . . . 5 (𝑁 ∈ ℝ → (4 ∈ ℝ ∧ 0 < 4))
33 lemul1 11495 . . . . 5 ((((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → (((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2) ↔ (((𝑁 / 4) + 1) · 4) ≤ (((𝑁 − 1) / 2) · 4)))
3427, 29, 32, 33syl3anc 1367 . . . 4 (𝑁 ∈ ℝ → (((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2) ↔ (((𝑁 / 4) + 1) · 4) ≤ (((𝑁 − 1) / 2) · 4)))
3525recnd 10672 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℂ)
36 1cnd 10639 . . . . . 6 (𝑁 ∈ ℝ → 1 ∈ ℂ)
376, 11, 24divcan1d 11420 . . . . . . 7 (𝑁 ∈ ℝ → ((𝑁 / 4) · 4) = 𝑁)
3810mulid2i 10649 . . . . . . . 8 (1 · 4) = 4
3938a1i 11 . . . . . . 7 (𝑁 ∈ ℝ → (1 · 4) = 4)
4037, 39oveq12d 7177 . . . . . 6 (𝑁 ∈ ℝ → (((𝑁 / 4) · 4) + (1 · 4)) = (𝑁 + 4))
4135, 11, 36, 40joinlmuladdmuld 10671 . . . . 5 (𝑁 ∈ ℝ → (((𝑁 / 4) + 1) · 4) = (𝑁 + 4))
42 2t2e4 11804 . . . . . . . . 9 (2 · 2) = 4
4342eqcomi 2833 . . . . . . . 8 4 = (2 · 2)
4443a1i 11 . . . . . . 7 (𝑁 ∈ ℝ → 4 = (2 · 2))
4544oveq2d 7175 . . . . . 6 (𝑁 ∈ ℝ → (((𝑁 − 1) / 2) · 4) = (((𝑁 − 1) / 2) · (2 · 2)))
4629recnd 10672 . . . . . . 7 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℂ)
47 mulass 10628 . . . . . . . 8 ((((𝑁 − 1) / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ∈ ℂ) → ((((𝑁 − 1) / 2) · 2) · 2) = (((𝑁 − 1) / 2) · (2 · 2)))
4847eqcomd 2830 . . . . . . 7 ((((𝑁 − 1) / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ∈ ℂ) → (((𝑁 − 1) / 2) · (2 · 2)) = ((((𝑁 − 1) / 2) · 2) · 2))
4946, 13, 13, 48syl3anc 1367 . . . . . 6 (𝑁 ∈ ℝ → (((𝑁 − 1) / 2) · (2 · 2)) = ((((𝑁 − 1) / 2) · 2) · 2))
5028recnd 10672 . . . . . . . . 9 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℂ)
51 2ne0 11744 . . . . . . . . . 10 2 ≠ 0
5251a1i 11 . . . . . . . . 9 (𝑁 ∈ ℝ → 2 ≠ 0)
5350, 13, 52divcan1d 11420 . . . . . . . 8 (𝑁 ∈ ℝ → (((𝑁 − 1) / 2) · 2) = (𝑁 − 1))
5453oveq1d 7174 . . . . . . 7 (𝑁 ∈ ℝ → ((((𝑁 − 1) / 2) · 2) · 2) = ((𝑁 − 1) · 2))
556, 36, 13subdird 11100 . . . . . . 7 (𝑁 ∈ ℝ → ((𝑁 − 1) · 2) = ((𝑁 · 2) − (1 · 2)))
5612mulid2i 10649 . . . . . . . . 9 (1 · 2) = 2
5756a1i 11 . . . . . . . 8 (𝑁 ∈ ℝ → (1 · 2) = 2)
5857oveq2d 7175 . . . . . . 7 (𝑁 ∈ ℝ → ((𝑁 · 2) − (1 · 2)) = ((𝑁 · 2) − 2))
5954, 55, 583eqtrd 2863 . . . . . 6 (𝑁 ∈ ℝ → ((((𝑁 − 1) / 2) · 2) · 2) = ((𝑁 · 2) − 2))
6045, 49, 593eqtrd 2863 . . . . 5 (𝑁 ∈ ℝ → (((𝑁 − 1) / 2) · 4) = ((𝑁 · 2) − 2))
6141, 60breq12d 5082 . . . 4 (𝑁 ∈ ℝ → ((((𝑁 / 4) + 1) · 4) ≤ (((𝑁 − 1) / 2) · 4) ↔ (𝑁 + 4) ≤ ((𝑁 · 2) − 2)))
623, 22readdcld 10673 . . . . 5 (𝑁 ∈ ℝ → (𝑁 + 4) ∈ ℝ)
63 2re 11714 . . . . . 6 2 ∈ ℝ
6463a1i 11 . . . . 5 (𝑁 ∈ ℝ → 2 ∈ ℝ)
653, 64remulcld 10674 . . . . 5 (𝑁 ∈ ℝ → (𝑁 · 2) ∈ ℝ)
66 leaddsub 11119 . . . . . 6 (((𝑁 + 4) ∈ ℝ ∧ 2 ∈ ℝ ∧ (𝑁 · 2) ∈ ℝ) → (((𝑁 + 4) + 2) ≤ (𝑁 · 2) ↔ (𝑁 + 4) ≤ ((𝑁 · 2) − 2)))
6766bicomd 225 . . . . 5 (((𝑁 + 4) ∈ ℝ ∧ 2 ∈ ℝ ∧ (𝑁 · 2) ∈ ℝ) → ((𝑁 + 4) ≤ ((𝑁 · 2) − 2) ↔ ((𝑁 + 4) + 2) ≤ (𝑁 · 2)))
6862, 64, 65, 67syl3anc 1367 . . . 4 (𝑁 ∈ ℝ → ((𝑁 + 4) ≤ ((𝑁 · 2) − 2) ↔ ((𝑁 + 4) + 2) ≤ (𝑁 · 2)))
6934, 61, 683bitrd 307 . . 3 (𝑁 ∈ ℝ → (((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2) ↔ ((𝑁 + 4) + 2) ≤ (𝑁 · 2)))
7069adantr 483 . 2 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2) ↔ ((𝑁 + 4) + 2) ≤ (𝑁 · 2)))
7120, 70mpbird 259 1 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019   class class class wbr 5069  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545   < clt 10678  cle 10679  cmin 10873   / cdiv 11300  2c2 11695  4c4 11697  6c6 11699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707
This theorem is referenced by:  fldiv4p1lem1div2  13208
  Copyright terms: Public domain W3C validator