MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  div4p1lem1div2 Structured version   Visualization version   GIF version

Theorem div4p1lem1div2 12228
Description: An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
div4p1lem1div2 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))

Proof of Theorem div4p1lem1div2
StepHypRef Expression
1 6re 12063 . . . . . . 7 6 ∈ ℝ
21a1i 11 . . . . . 6 (𝑁 ∈ ℝ → 6 ∈ ℝ)
3 id 22 . . . . . 6 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
42, 3, 3leadd2d 11570 . . . . 5 (𝑁 ∈ ℝ → (6 ≤ 𝑁 ↔ (𝑁 + 6) ≤ (𝑁 + 𝑁)))
54biimpa 477 . . . 4 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (𝑁 + 6) ≤ (𝑁 + 𝑁))
6 recn 10961 . . . . . 6 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
76times2d 12217 . . . . 5 (𝑁 ∈ ℝ → (𝑁 · 2) = (𝑁 + 𝑁))
87adantr 481 . . . 4 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (𝑁 · 2) = (𝑁 + 𝑁))
95, 8breqtrrd 5102 . . 3 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (𝑁 + 6) ≤ (𝑁 · 2))
10 4cn 12058 . . . . . . . 8 4 ∈ ℂ
1110a1i 11 . . . . . . 7 (𝑁 ∈ ℝ → 4 ∈ ℂ)
12 2cn 12048 . . . . . . . 8 2 ∈ ℂ
1312a1i 11 . . . . . . 7 (𝑁 ∈ ℝ → 2 ∈ ℂ)
146, 11, 13addassd 10997 . . . . . 6 (𝑁 ∈ ℝ → ((𝑁 + 4) + 2) = (𝑁 + (4 + 2)))
15 4p2e6 12126 . . . . . . 7 (4 + 2) = 6
1615oveq2i 7286 . . . . . 6 (𝑁 + (4 + 2)) = (𝑁 + 6)
1714, 16eqtrdi 2794 . . . . 5 (𝑁 ∈ ℝ → ((𝑁 + 4) + 2) = (𝑁 + 6))
1817breq1d 5084 . . . 4 (𝑁 ∈ ℝ → (((𝑁 + 4) + 2) ≤ (𝑁 · 2) ↔ (𝑁 + 6) ≤ (𝑁 · 2)))
1918adantr 481 . . 3 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (((𝑁 + 4) + 2) ≤ (𝑁 · 2) ↔ (𝑁 + 6) ≤ (𝑁 · 2)))
209, 19mpbird 256 . 2 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 + 4) + 2) ≤ (𝑁 · 2))
21 4re 12057 . . . . . . . 8 4 ∈ ℝ
2221a1i 11 . . . . . . 7 (𝑁 ∈ ℝ → 4 ∈ ℝ)
23 4ne0 12081 . . . . . . . 8 4 ≠ 0
2423a1i 11 . . . . . . 7 (𝑁 ∈ ℝ → 4 ≠ 0)
253, 22, 24redivcld 11803 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℝ)
26 peano2re 11148 . . . . . 6 ((𝑁 / 4) ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
2725, 26syl 17 . . . . 5 (𝑁 ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
28 peano2rem 11288 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
2928rehalfcld 12220 . . . . 5 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℝ)
30 4pos 12080 . . . . . . 7 0 < 4
3121, 30pm3.2i 471 . . . . . 6 (4 ∈ ℝ ∧ 0 < 4)
3231a1i 11 . . . . 5 (𝑁 ∈ ℝ → (4 ∈ ℝ ∧ 0 < 4))
33 lemul1 11827 . . . . 5 ((((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → (((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2) ↔ (((𝑁 / 4) + 1) · 4) ≤ (((𝑁 − 1) / 2) · 4)))
3427, 29, 32, 33syl3anc 1370 . . . 4 (𝑁 ∈ ℝ → (((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2) ↔ (((𝑁 / 4) + 1) · 4) ≤ (((𝑁 − 1) / 2) · 4)))
3525recnd 11003 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℂ)
36 1cnd 10970 . . . . . 6 (𝑁 ∈ ℝ → 1 ∈ ℂ)
376, 11, 24divcan1d 11752 . . . . . . 7 (𝑁 ∈ ℝ → ((𝑁 / 4) · 4) = 𝑁)
3810mulid2i 10980 . . . . . . . 8 (1 · 4) = 4
3938a1i 11 . . . . . . 7 (𝑁 ∈ ℝ → (1 · 4) = 4)
4037, 39oveq12d 7293 . . . . . 6 (𝑁 ∈ ℝ → (((𝑁 / 4) · 4) + (1 · 4)) = (𝑁 + 4))
4135, 11, 36, 40joinlmuladdmuld 11002 . . . . 5 (𝑁 ∈ ℝ → (((𝑁 / 4) + 1) · 4) = (𝑁 + 4))
42 2t2e4 12137 . . . . . . . . 9 (2 · 2) = 4
4342eqcomi 2747 . . . . . . . 8 4 = (2 · 2)
4443a1i 11 . . . . . . 7 (𝑁 ∈ ℝ → 4 = (2 · 2))
4544oveq2d 7291 . . . . . 6 (𝑁 ∈ ℝ → (((𝑁 − 1) / 2) · 4) = (((𝑁 − 1) / 2) · (2 · 2)))
4629recnd 11003 . . . . . . 7 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℂ)
47 mulass 10959 . . . . . . . 8 ((((𝑁 − 1) / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ∈ ℂ) → ((((𝑁 − 1) / 2) · 2) · 2) = (((𝑁 − 1) / 2) · (2 · 2)))
4847eqcomd 2744 . . . . . . 7 ((((𝑁 − 1) / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ∈ ℂ) → (((𝑁 − 1) / 2) · (2 · 2)) = ((((𝑁 − 1) / 2) · 2) · 2))
4946, 13, 13, 48syl3anc 1370 . . . . . 6 (𝑁 ∈ ℝ → (((𝑁 − 1) / 2) · (2 · 2)) = ((((𝑁 − 1) / 2) · 2) · 2))
5028recnd 11003 . . . . . . . . 9 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℂ)
51 2ne0 12077 . . . . . . . . . 10 2 ≠ 0
5251a1i 11 . . . . . . . . 9 (𝑁 ∈ ℝ → 2 ≠ 0)
5350, 13, 52divcan1d 11752 . . . . . . . 8 (𝑁 ∈ ℝ → (((𝑁 − 1) / 2) · 2) = (𝑁 − 1))
5453oveq1d 7290 . . . . . . 7 (𝑁 ∈ ℝ → ((((𝑁 − 1) / 2) · 2) · 2) = ((𝑁 − 1) · 2))
556, 36, 13subdird 11432 . . . . . . 7 (𝑁 ∈ ℝ → ((𝑁 − 1) · 2) = ((𝑁 · 2) − (1 · 2)))
5612mulid2i 10980 . . . . . . . . 9 (1 · 2) = 2
5756a1i 11 . . . . . . . 8 (𝑁 ∈ ℝ → (1 · 2) = 2)
5857oveq2d 7291 . . . . . . 7 (𝑁 ∈ ℝ → ((𝑁 · 2) − (1 · 2)) = ((𝑁 · 2) − 2))
5954, 55, 583eqtrd 2782 . . . . . 6 (𝑁 ∈ ℝ → ((((𝑁 − 1) / 2) · 2) · 2) = ((𝑁 · 2) − 2))
6045, 49, 593eqtrd 2782 . . . . 5 (𝑁 ∈ ℝ → (((𝑁 − 1) / 2) · 4) = ((𝑁 · 2) − 2))
6141, 60breq12d 5087 . . . 4 (𝑁 ∈ ℝ → ((((𝑁 / 4) + 1) · 4) ≤ (((𝑁 − 1) / 2) · 4) ↔ (𝑁 + 4) ≤ ((𝑁 · 2) − 2)))
623, 22readdcld 11004 . . . . 5 (𝑁 ∈ ℝ → (𝑁 + 4) ∈ ℝ)
63 2re 12047 . . . . . 6 2 ∈ ℝ
6463a1i 11 . . . . 5 (𝑁 ∈ ℝ → 2 ∈ ℝ)
653, 64remulcld 11005 . . . . 5 (𝑁 ∈ ℝ → (𝑁 · 2) ∈ ℝ)
66 leaddsub 11451 . . . . . 6 (((𝑁 + 4) ∈ ℝ ∧ 2 ∈ ℝ ∧ (𝑁 · 2) ∈ ℝ) → (((𝑁 + 4) + 2) ≤ (𝑁 · 2) ↔ (𝑁 + 4) ≤ ((𝑁 · 2) − 2)))
6766bicomd 222 . . . . 5 (((𝑁 + 4) ∈ ℝ ∧ 2 ∈ ℝ ∧ (𝑁 · 2) ∈ ℝ) → ((𝑁 + 4) ≤ ((𝑁 · 2) − 2) ↔ ((𝑁 + 4) + 2) ≤ (𝑁 · 2)))
6862, 64, 65, 67syl3anc 1370 . . . 4 (𝑁 ∈ ℝ → ((𝑁 + 4) ≤ ((𝑁 · 2) − 2) ↔ ((𝑁 + 4) + 2) ≤ (𝑁 · 2)))
6934, 61, 683bitrd 305 . . 3 (𝑁 ∈ ℝ → (((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2) ↔ ((𝑁 + 4) + 2) ≤ (𝑁 · 2)))
7069adantr 481 . 2 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2) ↔ ((𝑁 + 4) + 2) ≤ (𝑁 · 2)))
7120, 70mpbird 256 1 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  2c2 12028  4c4 12030  6c6 12032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040
This theorem is referenced by:  fldiv4p1lem1div2  13555
  Copyright terms: Public domain W3C validator