MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  div4p1lem1div2 Structured version   Visualization version   GIF version

Theorem div4p1lem1div2 12519
Description: An integer greater than 5, divided by 4 and increased by 1, is less than or equal to the half of the integer minus 1. (Contributed by AV, 8-Jul-2021.)
Assertion
Ref Expression
div4p1lem1div2 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))

Proof of Theorem div4p1lem1div2
StepHypRef Expression
1 6re 12354 . . . . . . 7 6 ∈ ℝ
21a1i 11 . . . . . 6 (𝑁 ∈ ℝ → 6 ∈ ℝ)
3 id 22 . . . . . 6 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
42, 3, 3leadd2d 11856 . . . . 5 (𝑁 ∈ ℝ → (6 ≤ 𝑁 ↔ (𝑁 + 6) ≤ (𝑁 + 𝑁)))
54biimpa 476 . . . 4 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (𝑁 + 6) ≤ (𝑁 + 𝑁))
6 recn 11243 . . . . . 6 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
76times2d 12508 . . . . 5 (𝑁 ∈ ℝ → (𝑁 · 2) = (𝑁 + 𝑁))
87adantr 480 . . . 4 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (𝑁 · 2) = (𝑁 + 𝑁))
95, 8breqtrrd 5176 . . 3 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (𝑁 + 6) ≤ (𝑁 · 2))
10 4cn 12349 . . . . . . . 8 4 ∈ ℂ
1110a1i 11 . . . . . . 7 (𝑁 ∈ ℝ → 4 ∈ ℂ)
12 2cn 12339 . . . . . . . 8 2 ∈ ℂ
1312a1i 11 . . . . . . 7 (𝑁 ∈ ℝ → 2 ∈ ℂ)
146, 11, 13addassd 11281 . . . . . 6 (𝑁 ∈ ℝ → ((𝑁 + 4) + 2) = (𝑁 + (4 + 2)))
15 4p2e6 12417 . . . . . . 7 (4 + 2) = 6
1615oveq2i 7442 . . . . . 6 (𝑁 + (4 + 2)) = (𝑁 + 6)
1714, 16eqtrdi 2791 . . . . 5 (𝑁 ∈ ℝ → ((𝑁 + 4) + 2) = (𝑁 + 6))
1817breq1d 5158 . . . 4 (𝑁 ∈ ℝ → (((𝑁 + 4) + 2) ≤ (𝑁 · 2) ↔ (𝑁 + 6) ≤ (𝑁 · 2)))
1918adantr 480 . . 3 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (((𝑁 + 4) + 2) ≤ (𝑁 · 2) ↔ (𝑁 + 6) ≤ (𝑁 · 2)))
209, 19mpbird 257 . 2 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 + 4) + 2) ≤ (𝑁 · 2))
21 4re 12348 . . . . . . . 8 4 ∈ ℝ
2221a1i 11 . . . . . . 7 (𝑁 ∈ ℝ → 4 ∈ ℝ)
23 4ne0 12372 . . . . . . . 8 4 ≠ 0
2423a1i 11 . . . . . . 7 (𝑁 ∈ ℝ → 4 ≠ 0)
253, 22, 24redivcld 12093 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℝ)
26 peano2re 11432 . . . . . 6 ((𝑁 / 4) ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
2725, 26syl 17 . . . . 5 (𝑁 ∈ ℝ → ((𝑁 / 4) + 1) ∈ ℝ)
28 peano2rem 11574 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
2928rehalfcld 12511 . . . . 5 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℝ)
30 4pos 12371 . . . . . . 7 0 < 4
3121, 30pm3.2i 470 . . . . . 6 (4 ∈ ℝ ∧ 0 < 4)
3231a1i 11 . . . . 5 (𝑁 ∈ ℝ → (4 ∈ ℝ ∧ 0 < 4))
33 lemul1 12117 . . . . 5 ((((𝑁 / 4) + 1) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ ∧ (4 ∈ ℝ ∧ 0 < 4)) → (((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2) ↔ (((𝑁 / 4) + 1) · 4) ≤ (((𝑁 − 1) / 2) · 4)))
3427, 29, 32, 33syl3anc 1370 . . . 4 (𝑁 ∈ ℝ → (((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2) ↔ (((𝑁 / 4) + 1) · 4) ≤ (((𝑁 − 1) / 2) · 4)))
3525recnd 11287 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℂ)
36 1cnd 11254 . . . . . 6 (𝑁 ∈ ℝ → 1 ∈ ℂ)
376, 11, 24divcan1d 12042 . . . . . . 7 (𝑁 ∈ ℝ → ((𝑁 / 4) · 4) = 𝑁)
3810mullidi 11264 . . . . . . . 8 (1 · 4) = 4
3938a1i 11 . . . . . . 7 (𝑁 ∈ ℝ → (1 · 4) = 4)
4037, 39oveq12d 7449 . . . . . 6 (𝑁 ∈ ℝ → (((𝑁 / 4) · 4) + (1 · 4)) = (𝑁 + 4))
4135, 11, 36, 40joinlmuladdmuld 11286 . . . . 5 (𝑁 ∈ ℝ → (((𝑁 / 4) + 1) · 4) = (𝑁 + 4))
42 2t2e4 12428 . . . . . . . . 9 (2 · 2) = 4
4342eqcomi 2744 . . . . . . . 8 4 = (2 · 2)
4443a1i 11 . . . . . . 7 (𝑁 ∈ ℝ → 4 = (2 · 2))
4544oveq2d 7447 . . . . . 6 (𝑁 ∈ ℝ → (((𝑁 − 1) / 2) · 4) = (((𝑁 − 1) / 2) · (2 · 2)))
4629recnd 11287 . . . . . . 7 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℂ)
47 mulass 11241 . . . . . . . 8 ((((𝑁 − 1) / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ∈ ℂ) → ((((𝑁 − 1) / 2) · 2) · 2) = (((𝑁 − 1) / 2) · (2 · 2)))
4847eqcomd 2741 . . . . . . 7 ((((𝑁 − 1) / 2) ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ∈ ℂ) → (((𝑁 − 1) / 2) · (2 · 2)) = ((((𝑁 − 1) / 2) · 2) · 2))
4946, 13, 13, 48syl3anc 1370 . . . . . 6 (𝑁 ∈ ℝ → (((𝑁 − 1) / 2) · (2 · 2)) = ((((𝑁 − 1) / 2) · 2) · 2))
5028recnd 11287 . . . . . . . . 9 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℂ)
51 2ne0 12368 . . . . . . . . . 10 2 ≠ 0
5251a1i 11 . . . . . . . . 9 (𝑁 ∈ ℝ → 2 ≠ 0)
5350, 13, 52divcan1d 12042 . . . . . . . 8 (𝑁 ∈ ℝ → (((𝑁 − 1) / 2) · 2) = (𝑁 − 1))
5453oveq1d 7446 . . . . . . 7 (𝑁 ∈ ℝ → ((((𝑁 − 1) / 2) · 2) · 2) = ((𝑁 − 1) · 2))
556, 36, 13subdird 11718 . . . . . . 7 (𝑁 ∈ ℝ → ((𝑁 − 1) · 2) = ((𝑁 · 2) − (1 · 2)))
5612mullidi 11264 . . . . . . . . 9 (1 · 2) = 2
5756a1i 11 . . . . . . . 8 (𝑁 ∈ ℝ → (1 · 2) = 2)
5857oveq2d 7447 . . . . . . 7 (𝑁 ∈ ℝ → ((𝑁 · 2) − (1 · 2)) = ((𝑁 · 2) − 2))
5954, 55, 583eqtrd 2779 . . . . . 6 (𝑁 ∈ ℝ → ((((𝑁 − 1) / 2) · 2) · 2) = ((𝑁 · 2) − 2))
6045, 49, 593eqtrd 2779 . . . . 5 (𝑁 ∈ ℝ → (((𝑁 − 1) / 2) · 4) = ((𝑁 · 2) − 2))
6141, 60breq12d 5161 . . . 4 (𝑁 ∈ ℝ → ((((𝑁 / 4) + 1) · 4) ≤ (((𝑁 − 1) / 2) · 4) ↔ (𝑁 + 4) ≤ ((𝑁 · 2) − 2)))
623, 22readdcld 11288 . . . . 5 (𝑁 ∈ ℝ → (𝑁 + 4) ∈ ℝ)
63 2re 12338 . . . . . 6 2 ∈ ℝ
6463a1i 11 . . . . 5 (𝑁 ∈ ℝ → 2 ∈ ℝ)
653, 64remulcld 11289 . . . . 5 (𝑁 ∈ ℝ → (𝑁 · 2) ∈ ℝ)
66 leaddsub 11737 . . . . . 6 (((𝑁 + 4) ∈ ℝ ∧ 2 ∈ ℝ ∧ (𝑁 · 2) ∈ ℝ) → (((𝑁 + 4) + 2) ≤ (𝑁 · 2) ↔ (𝑁 + 4) ≤ ((𝑁 · 2) − 2)))
6766bicomd 223 . . . . 5 (((𝑁 + 4) ∈ ℝ ∧ 2 ∈ ℝ ∧ (𝑁 · 2) ∈ ℝ) → ((𝑁 + 4) ≤ ((𝑁 · 2) − 2) ↔ ((𝑁 + 4) + 2) ≤ (𝑁 · 2)))
6862, 64, 65, 67syl3anc 1370 . . . 4 (𝑁 ∈ ℝ → ((𝑁 + 4) ≤ ((𝑁 · 2) − 2) ↔ ((𝑁 + 4) + 2) ≤ (𝑁 · 2)))
6934, 61, 683bitrd 305 . . 3 (𝑁 ∈ ℝ → (((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2) ↔ ((𝑁 + 4) + 2) ≤ (𝑁 · 2)))
7069adantr 480 . 2 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → (((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2) ↔ ((𝑁 + 4) + 2) ≤ (𝑁 · 2)))
7120, 70mpbird 257 1 ((𝑁 ∈ ℝ ∧ 6 ≤ 𝑁) → ((𝑁 / 4) + 1) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  2c2 12319  4c4 12321  6c6 12323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331
This theorem is referenced by:  fldiv4p1lem1div2  13872
  Copyright terms: Public domain W3C validator