MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binom4 Structured version   Visualization version   GIF version

Theorem binom4 24868
Description: Work out a quartic binomial. (You would think that by this point it would be faster to use binom 14846, but it turns out to be just as much work to put it into this form after clearing all the sums and calculating binomial coefficients.) (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
binom4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))

Proof of Theorem binom4
StepHypRef Expression
1 df-4 11337 . . . 4 4 = (3 + 1)
21oveq2i 6853 . . 3 ((𝐴 + 𝐵)↑4) = ((𝐴 + 𝐵)↑(3 + 1))
3 addcl 10271 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
4 3nn0 11558 . . . 4 3 ∈ ℕ0
5 expp1 13074 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ 3 ∈ ℕ0) → ((𝐴 + 𝐵)↑(3 + 1)) = (((𝐴 + 𝐵)↑3) · (𝐴 + 𝐵)))
63, 4, 5sylancl 580 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑(3 + 1)) = (((𝐴 + 𝐵)↑3) · (𝐴 + 𝐵)))
72, 6syl5eq 2811 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴 + 𝐵)↑3) · (𝐴 + 𝐵)))
8 binom3 13192 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
98oveq1d 6857 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑3) · (𝐴 + 𝐵)) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · (𝐴 + 𝐵)))
10 simpl 474 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
11 expcl 13085 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
1210, 4, 11sylancl 580 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑3) ∈ ℂ)
13 3cn 11353 . . . . . . 7 3 ∈ ℂ
1410sqcld 13213 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
15 simpr 477 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
1614, 15mulcld 10314 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐵) ∈ ℂ)
17 mulcl 10273 . . . . . . 7 ((3 ∈ ℂ ∧ ((𝐴↑2) · 𝐵) ∈ ℂ) → (3 · ((𝐴↑2) · 𝐵)) ∈ ℂ)
1813, 16, 17sylancr 581 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑2) · 𝐵)) ∈ ℂ)
1912, 18addcld 10313 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) ∈ ℂ)
2015sqcld 13213 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) ∈ ℂ)
2110, 20mulcld 10314 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑2)) ∈ ℂ)
22 mulcl 10273 . . . . . . 7 ((3 ∈ ℂ ∧ (𝐴 · (𝐵↑2)) ∈ ℂ) → (3 · (𝐴 · (𝐵↑2))) ∈ ℂ)
2313, 21, 22sylancr 581 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (𝐴 · (𝐵↑2))) ∈ ℂ)
24 expcl 13085 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐵↑3) ∈ ℂ)
2515, 4, 24sylancl 580 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑3) ∈ ℂ)
2623, 25addcld 10313 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) ∈ ℂ)
2719, 26addcld 10313 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) ∈ ℂ)
2827, 10, 15adddid 10318 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · (𝐴 + 𝐵)) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐴) + ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐵)))
2919, 26, 10adddird 10319 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐴) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐴) + (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐴)))
3012, 18, 10adddird 10319 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐴) = (((𝐴↑3) · 𝐴) + ((3 · ((𝐴↑2) · 𝐵)) · 𝐴)))
311oveq2i 6853 . . . . . . . . 9 (𝐴↑4) = (𝐴↑(3 + 1))
32 expp1 13074 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑(3 + 1)) = ((𝐴↑3) · 𝐴))
3310, 4, 32sylancl 580 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑(3 + 1)) = ((𝐴↑3) · 𝐴))
3431, 33syl5req 2812 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) · 𝐴) = (𝐴↑4))
3513a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 3 ∈ ℂ)
3635, 16, 10mulassd 10317 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · 𝐵)) · 𝐴) = (3 · (((𝐴↑2) · 𝐵) · 𝐴)))
3714, 15, 10mul32d 10500 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) · 𝐴) = (((𝐴↑2) · 𝐴) · 𝐵))
38 df-3 11336 . . . . . . . . . . . . . 14 3 = (2 + 1)
3938oveq2i 6853 . . . . . . . . . . . . 13 (𝐴↑3) = (𝐴↑(2 + 1))
40 2nn0 11557 . . . . . . . . . . . . . 14 2 ∈ ℕ0
41 expp1 13074 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
4210, 40, 41sylancl 580 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
4339, 42syl5req 2812 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐴) = (𝐴↑3))
4443oveq1d 6857 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐴) · 𝐵) = ((𝐴↑3) · 𝐵))
4537, 44eqtrd 2799 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) · 𝐴) = ((𝐴↑3) · 𝐵))
4645oveq2d 6858 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (((𝐴↑2) · 𝐵) · 𝐴)) = (3 · ((𝐴↑3) · 𝐵)))
4736, 46eqtrd 2799 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · 𝐵)) · 𝐴) = (3 · ((𝐴↑3) · 𝐵)))
4834, 47oveq12d 6860 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) · 𝐴) + ((3 · ((𝐴↑2) · 𝐵)) · 𝐴)) = ((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))))
4930, 48eqtrd 2799 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐴) = ((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))))
5023, 25, 10adddird 10319 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐴) = (((3 · (𝐴 · (𝐵↑2))) · 𝐴) + ((𝐵↑3) · 𝐴)))
5135, 21, 10mulassd 10317 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) · 𝐴) = (3 · ((𝐴 · (𝐵↑2)) · 𝐴)))
5210, 20, 10mul32d 10500 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) · 𝐴) = ((𝐴 · 𝐴) · (𝐵↑2)))
5310sqvald 13212 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) = (𝐴 · 𝐴))
5453oveq1d 6857 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · (𝐵↑2)) = ((𝐴 · 𝐴) · (𝐵↑2)))
5552, 54eqtr4d 2802 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) · 𝐴) = ((𝐴↑2) · (𝐵↑2)))
5655oveq2d 6858 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴 · (𝐵↑2)) · 𝐴)) = (3 · ((𝐴↑2) · (𝐵↑2))))
5751, 56eqtrd 2799 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) · 𝐴) = (3 · ((𝐴↑2) · (𝐵↑2))))
5825, 10mulcomd 10315 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵↑3) · 𝐴) = (𝐴 · (𝐵↑3)))
5957, 58oveq12d 6860 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) · 𝐴) + ((𝐵↑3) · 𝐴)) = ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))))
6050, 59eqtrd 2799 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐴) = ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))))
6149, 60oveq12d 6860 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐴) + (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐴)) = (((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))))
6229, 61eqtrd 2799 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐴) = (((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))))
6319, 26, 15adddird 10319 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐵) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐵) + (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐵)))
6412, 18, 15adddird 10319 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐵) = (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · 𝐵)) · 𝐵)))
6535, 16, 15mulassd 10317 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · 𝐵)) · 𝐵) = (3 · (((𝐴↑2) · 𝐵) · 𝐵)))
6614, 15, 15mulassd 10317 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) · 𝐵) = ((𝐴↑2) · (𝐵 · 𝐵)))
6715sqvald 13212 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) = (𝐵 · 𝐵))
6867oveq2d 6858 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · (𝐵↑2)) = ((𝐴↑2) · (𝐵 · 𝐵)))
6966, 68eqtr4d 2802 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) · 𝐵) = ((𝐴↑2) · (𝐵↑2)))
7069oveq2d 6858 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (((𝐴↑2) · 𝐵) · 𝐵)) = (3 · ((𝐴↑2) · (𝐵↑2))))
7165, 70eqtrd 2799 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · 𝐵)) · 𝐵) = (3 · ((𝐴↑2) · (𝐵↑2))))
7271oveq2d 6858 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · 𝐵)) · 𝐵)) = (((𝐴↑3) · 𝐵) + (3 · ((𝐴↑2) · (𝐵↑2)))))
7364, 72eqtrd 2799 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐵) = (((𝐴↑3) · 𝐵) + (3 · ((𝐴↑2) · (𝐵↑2)))))
7423, 25, 15adddird 10319 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐵) = (((3 · (𝐴 · (𝐵↑2))) · 𝐵) + ((𝐵↑3) · 𝐵)))
7535, 21, 15mulassd 10317 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) · 𝐵) = (3 · ((𝐴 · (𝐵↑2)) · 𝐵)))
7610, 20, 15mulassd 10317 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) · 𝐵) = (𝐴 · ((𝐵↑2) · 𝐵)))
7738oveq2i 6853 . . . . . . . . . . . . 13 (𝐵↑3) = (𝐵↑(2 + 1))
78 expp1 13074 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐵↑(2 + 1)) = ((𝐵↑2) · 𝐵))
7915, 40, 78sylancl 580 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑(2 + 1)) = ((𝐵↑2) · 𝐵))
8077, 79syl5req 2812 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵↑2) · 𝐵) = (𝐵↑3))
8180oveq2d 6858 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · ((𝐵↑2) · 𝐵)) = (𝐴 · (𝐵↑3)))
8276, 81eqtrd 2799 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) · 𝐵) = (𝐴 · (𝐵↑3)))
8382oveq2d 6858 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴 · (𝐵↑2)) · 𝐵)) = (3 · (𝐴 · (𝐵↑3))))
8475, 83eqtrd 2799 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) · 𝐵) = (3 · (𝐴 · (𝐵↑3))))
851oveq2i 6853 . . . . . . . . 9 (𝐵↑4) = (𝐵↑(3 + 1))
86 expp1 13074 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐵↑(3 + 1)) = ((𝐵↑3) · 𝐵))
8715, 4, 86sylancl 580 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑(3 + 1)) = ((𝐵↑3) · 𝐵))
8885, 87syl5req 2812 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵↑3) · 𝐵) = (𝐵↑4))
8984, 88oveq12d 6860 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) · 𝐵) + ((𝐵↑3) · 𝐵)) = ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))
9074, 89eqtrd 2799 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐵) = ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))
9173, 90oveq12d 6860 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐵) + (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐵)) = ((((𝐴↑3) · 𝐵) + (3 · ((𝐴↑2) · (𝐵↑2)))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))
9212, 15mulcld 10314 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) · 𝐵) ∈ ℂ)
9314, 20mulcld 10314 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · (𝐵↑2)) ∈ ℂ)
94 mulcl 10273 . . . . . . 7 ((3 ∈ ℂ ∧ ((𝐴↑2) · (𝐵↑2)) ∈ ℂ) → (3 · ((𝐴↑2) · (𝐵↑2))) ∈ ℂ)
9513, 93, 94sylancr 581 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑2) · (𝐵↑2))) ∈ ℂ)
9610, 25mulcld 10314 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑3)) ∈ ℂ)
97 mulcl 10273 . . . . . . . 8 ((3 ∈ ℂ ∧ (𝐴 · (𝐵↑3)) ∈ ℂ) → (3 · (𝐴 · (𝐵↑3))) ∈ ℂ)
9813, 96, 97sylancr 581 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (𝐴 · (𝐵↑3))) ∈ ℂ)
99 4nn0 11559 . . . . . . . 8 4 ∈ ℕ0
100 expcl 13085 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝐵↑4) ∈ ℂ)
10115, 99, 100sylancl 580 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑4) ∈ ℂ)
10298, 101addcld 10313 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)) ∈ ℂ)
10392, 95, 102addassd 10316 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) · 𝐵) + (3 · ((𝐴↑2) · (𝐵↑2)))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))) = (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
10463, 91, 1033eqtrd 2803 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐵) = (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
10562, 104oveq12d 6860 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐴) + ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐵)) = ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))) + (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))))
106 expcl 13085 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℂ)
10710, 99, 106sylancl 580 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑4) ∈ ℂ)
108 mulcl 10273 . . . . . . 7 ((3 ∈ ℂ ∧ ((𝐴↑3) · 𝐵) ∈ ℂ) → (3 · ((𝐴↑3) · 𝐵)) ∈ ℂ)
10913, 92, 108sylancr 581 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑3) · 𝐵)) ∈ ℂ)
110107, 109addcld 10313 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) ∈ ℂ)
11195, 96addcld 10313 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) ∈ ℂ)
11295, 102addcld 10313 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))) ∈ ℂ)
113110, 111, 92, 112add4d 10518 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))) + (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))) = ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((𝐴↑3) · 𝐵)) + (((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))))
114107, 109, 92addassd 10316 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((𝐴↑3) · 𝐵)) = ((𝐴↑4) + ((3 · ((𝐴↑3) · 𝐵)) + ((𝐴↑3) · 𝐵))))
1151oveq1i 6852 . . . . . . . . 9 (4 · ((𝐴↑3) · 𝐵)) = ((3 + 1) · ((𝐴↑3) · 𝐵))
116 ax-1cn 10247 . . . . . . . . . . 11 1 ∈ ℂ
117116a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 1 ∈ ℂ)
11835, 117, 92adddird 10319 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 + 1) · ((𝐴↑3) · 𝐵)) = ((3 · ((𝐴↑3) · 𝐵)) + (1 · ((𝐴↑3) · 𝐵))))
119115, 118syl5eq 2811 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (4 · ((𝐴↑3) · 𝐵)) = ((3 · ((𝐴↑3) · 𝐵)) + (1 · ((𝐴↑3) · 𝐵))))
12092mulid2d 10312 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑3) · 𝐵)) = ((𝐴↑3) · 𝐵))
121120oveq2d 6858 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑3) · 𝐵)) + (1 · ((𝐴↑3) · 𝐵))) = ((3 · ((𝐴↑3) · 𝐵)) + ((𝐴↑3) · 𝐵)))
122119, 121eqtrd 2799 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (4 · ((𝐴↑3) · 𝐵)) = ((3 · ((𝐴↑3) · 𝐵)) + ((𝐴↑3) · 𝐵)))
123122oveq2d 6858 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) = ((𝐴↑4) + ((3 · ((𝐴↑3) · 𝐵)) + ((𝐴↑3) · 𝐵))))
124114, 123eqtr4d 2802 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((𝐴↑3) · 𝐵)) = ((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))))
12595, 96, 95, 102add4d 10518 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))) = (((3 · ((𝐴↑2) · (𝐵↑2))) + (3 · ((𝐴↑2) · (𝐵↑2)))) + ((𝐴 · (𝐵↑3)) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
126 3p3e6 11430 . . . . . . . . 9 (3 + 3) = 6
127126oveq1i 6852 . . . . . . . 8 ((3 + 3) · ((𝐴↑2) · (𝐵↑2))) = (6 · ((𝐴↑2) · (𝐵↑2)))
12835, 35, 93adddird 10319 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 + 3) · ((𝐴↑2) · (𝐵↑2))) = ((3 · ((𝐴↑2) · (𝐵↑2))) + (3 · ((𝐴↑2) · (𝐵↑2)))))
129127, 128syl5eqr 2813 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (6 · ((𝐴↑2) · (𝐵↑2))) = ((3 · ((𝐴↑2) · (𝐵↑2))) + (3 · ((𝐴↑2) · (𝐵↑2)))))
130 3p1e4 11423 . . . . . . . . . . . . 13 (3 + 1) = 4
13113, 116, 130addcomli 10482 . . . . . . . . . . . 12 (1 + 3) = 4
132131oveq1i 6852 . . . . . . . . . . 11 ((1 + 3) · (𝐴 · (𝐵↑3))) = (4 · (𝐴 · (𝐵↑3)))
133117, 35, 96adddird 10319 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 3) · (𝐴 · (𝐵↑3))) = ((1 · (𝐴 · (𝐵↑3))) + (3 · (𝐴 · (𝐵↑3)))))
134132, 133syl5eqr 2813 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (4 · (𝐴 · (𝐵↑3))) = ((1 · (𝐴 · (𝐵↑3))) + (3 · (𝐴 · (𝐵↑3)))))
13596mulid2d 10312 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · (𝐴 · (𝐵↑3))) = (𝐴 · (𝐵↑3)))
136135oveq1d 6857 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 · (𝐴 · (𝐵↑3))) + (3 · (𝐴 · (𝐵↑3)))) = ((𝐴 · (𝐵↑3)) + (3 · (𝐴 · (𝐵↑3)))))
137134, 136eqtrd 2799 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (4 · (𝐴 · (𝐵↑3))) = ((𝐴 · (𝐵↑3)) + (3 · (𝐴 · (𝐵↑3)))))
138137oveq1d 6857 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)) = (((𝐴 · (𝐵↑3)) + (3 · (𝐴 · (𝐵↑3)))) + (𝐵↑4)))
13996, 98, 101addassd 10316 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · (𝐵↑3)) + (3 · (𝐴 · (𝐵↑3)))) + (𝐵↑4)) = ((𝐴 · (𝐵↑3)) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))
140138, 139eqtrd 2799 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)) = ((𝐴 · (𝐵↑3)) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))
141129, 140oveq12d 6860 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4))) = (((3 · ((𝐴↑2) · (𝐵↑2))) + (3 · ((𝐴↑2) · (𝐵↑2)))) + ((𝐴 · (𝐵↑3)) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
142125, 141eqtr4d 2802 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))) = ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))
143124, 142oveq12d 6860 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((𝐴↑3) · 𝐵)) + (((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
144113, 143eqtrd 2799 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))) + (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
14528, 105, 1443eqtrd 2803 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · (𝐴 + 𝐵)) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
1467, 9, 1453eqtrd 2803 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1652  wcel 2155  (class class class)co 6842  cc 10187  1c1 10190   + caddc 10192   · cmul 10194  2c2 11327  3c3 11328  4c4 11329  6c6 11331  0cn0 11538  cexp 13067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-n0 11539  df-z 11625  df-uz 11887  df-seq 13009  df-exp 13068
This theorem is referenced by:  quart1  24874
  Copyright terms: Public domain W3C validator