MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binom4 Structured version   Visualization version   GIF version

Theorem binom4 26000
Description: Work out a quartic binomial. (You would think that by this point it would be faster to use binom 15542, but it turns out to be just as much work to put it into this form after clearing all the sums and calculating binomial coefficients.) (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
binom4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))

Proof of Theorem binom4
StepHypRef Expression
1 df-4 12038 . . . 4 4 = (3 + 1)
21oveq2i 7286 . . 3 ((𝐴 + 𝐵)↑4) = ((𝐴 + 𝐵)↑(3 + 1))
3 addcl 10953 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
4 3nn0 12251 . . . 4 3 ∈ ℕ0
5 expp1 13789 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ 3 ∈ ℕ0) → ((𝐴 + 𝐵)↑(3 + 1)) = (((𝐴 + 𝐵)↑3) · (𝐴 + 𝐵)))
63, 4, 5sylancl 586 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑(3 + 1)) = (((𝐴 + 𝐵)↑3) · (𝐴 + 𝐵)))
72, 6eqtrid 2790 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴 + 𝐵)↑3) · (𝐴 + 𝐵)))
8 binom3 13939 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
98oveq1d 7290 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑3) · (𝐴 + 𝐵)) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · (𝐴 + 𝐵)))
10 simpl 483 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
11 expcl 13800 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
1210, 4, 11sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑3) ∈ ℂ)
13 3cn 12054 . . . . . . 7 3 ∈ ℂ
1410sqcld 13862 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
15 simpr 485 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
1614, 15mulcld 10995 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐵) ∈ ℂ)
17 mulcl 10955 . . . . . . 7 ((3 ∈ ℂ ∧ ((𝐴↑2) · 𝐵) ∈ ℂ) → (3 · ((𝐴↑2) · 𝐵)) ∈ ℂ)
1813, 16, 17sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑2) · 𝐵)) ∈ ℂ)
1912, 18addcld 10994 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) ∈ ℂ)
2015sqcld 13862 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) ∈ ℂ)
2110, 20mulcld 10995 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑2)) ∈ ℂ)
22 mulcl 10955 . . . . . . 7 ((3 ∈ ℂ ∧ (𝐴 · (𝐵↑2)) ∈ ℂ) → (3 · (𝐴 · (𝐵↑2))) ∈ ℂ)
2313, 21, 22sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (𝐴 · (𝐵↑2))) ∈ ℂ)
24 expcl 13800 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐵↑3) ∈ ℂ)
2515, 4, 24sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑3) ∈ ℂ)
2623, 25addcld 10994 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) ∈ ℂ)
2719, 26addcld 10994 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) ∈ ℂ)
2827, 10, 15adddid 10999 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · (𝐴 + 𝐵)) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐴) + ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐵)))
291oveq2i 7286 . . . . . . . . 9 (𝐴↑4) = (𝐴↑(3 + 1))
30 expp1 13789 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑(3 + 1)) = ((𝐴↑3) · 𝐴))
3110, 4, 30sylancl 586 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑(3 + 1)) = ((𝐴↑3) · 𝐴))
3229, 31eqtr2id 2791 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) · 𝐴) = (𝐴↑4))
3313a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 3 ∈ ℂ)
3433, 16, 10mulassd 10998 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · 𝐵)) · 𝐴) = (3 · (((𝐴↑2) · 𝐵) · 𝐴)))
3514, 15, 10mul32d 11185 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) · 𝐴) = (((𝐴↑2) · 𝐴) · 𝐵))
36 df-3 12037 . . . . . . . . . . . . . 14 3 = (2 + 1)
3736oveq2i 7286 . . . . . . . . . . . . 13 (𝐴↑3) = (𝐴↑(2 + 1))
38 2nn0 12250 . . . . . . . . . . . . . 14 2 ∈ ℕ0
39 expp1 13789 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
4010, 38, 39sylancl 586 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
4137, 40eqtr2id 2791 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐴) = (𝐴↑3))
4241oveq1d 7290 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐴) · 𝐵) = ((𝐴↑3) · 𝐵))
4335, 42eqtrd 2778 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) · 𝐴) = ((𝐴↑3) · 𝐵))
4443oveq2d 7291 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (((𝐴↑2) · 𝐵) · 𝐴)) = (3 · ((𝐴↑3) · 𝐵)))
4534, 44eqtrd 2778 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · 𝐵)) · 𝐴) = (3 · ((𝐴↑3) · 𝐵)))
4632, 45oveq12d 7293 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) · 𝐴) + ((3 · ((𝐴↑2) · 𝐵)) · 𝐴)) = ((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))))
4712, 10, 18, 46joinlmuladdmuld 11002 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐴) = ((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))))
4833, 21, 10mulassd 10998 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) · 𝐴) = (3 · ((𝐴 · (𝐵↑2)) · 𝐴)))
4910, 20, 10mul32d 11185 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) · 𝐴) = ((𝐴 · 𝐴) · (𝐵↑2)))
5010sqvald 13861 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) = (𝐴 · 𝐴))
5150oveq1d 7290 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · (𝐵↑2)) = ((𝐴 · 𝐴) · (𝐵↑2)))
5249, 51eqtr4d 2781 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) · 𝐴) = ((𝐴↑2) · (𝐵↑2)))
5352oveq2d 7291 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴 · (𝐵↑2)) · 𝐴)) = (3 · ((𝐴↑2) · (𝐵↑2))))
5448, 53eqtrd 2778 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) · 𝐴) = (3 · ((𝐴↑2) · (𝐵↑2))))
5525, 10mulcomd 10996 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵↑3) · 𝐴) = (𝐴 · (𝐵↑3)))
5654, 55oveq12d 7293 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) · 𝐴) + ((𝐵↑3) · 𝐴)) = ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))))
5723, 10, 25, 56joinlmuladdmuld 11002 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐴) = ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))))
5847, 57oveq12d 7293 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐴) + (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐴)) = (((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))))
5919, 10, 26, 58joinlmuladdmuld 11002 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐴) = (((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))))
6019, 26, 15adddird 11000 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐵) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐵) + (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐵)))
6133, 16, 15mulassd 10998 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · 𝐵)) · 𝐵) = (3 · (((𝐴↑2) · 𝐵) · 𝐵)))
6214, 15, 15mulassd 10998 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) · 𝐵) = ((𝐴↑2) · (𝐵 · 𝐵)))
6315sqvald 13861 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) = (𝐵 · 𝐵))
6463oveq2d 7291 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · (𝐵↑2)) = ((𝐴↑2) · (𝐵 · 𝐵)))
6562, 64eqtr4d 2781 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) · 𝐵) = ((𝐴↑2) · (𝐵↑2)))
6665oveq2d 7291 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (((𝐴↑2) · 𝐵) · 𝐵)) = (3 · ((𝐴↑2) · (𝐵↑2))))
6761, 66eqtrd 2778 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · 𝐵)) · 𝐵) = (3 · ((𝐴↑2) · (𝐵↑2))))
6867oveq2d 7291 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · 𝐵)) · 𝐵)) = (((𝐴↑3) · 𝐵) + (3 · ((𝐴↑2) · (𝐵↑2)))))
6912, 15, 18, 68joinlmuladdmuld 11002 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐵) = (((𝐴↑3) · 𝐵) + (3 · ((𝐴↑2) · (𝐵↑2)))))
7033, 21, 15mulassd 10998 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) · 𝐵) = (3 · ((𝐴 · (𝐵↑2)) · 𝐵)))
7110, 20, 15mulassd 10998 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) · 𝐵) = (𝐴 · ((𝐵↑2) · 𝐵)))
7236oveq2i 7286 . . . . . . . . . . . . 13 (𝐵↑3) = (𝐵↑(2 + 1))
73 expp1 13789 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐵↑(2 + 1)) = ((𝐵↑2) · 𝐵))
7415, 38, 73sylancl 586 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑(2 + 1)) = ((𝐵↑2) · 𝐵))
7572, 74eqtr2id 2791 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵↑2) · 𝐵) = (𝐵↑3))
7675oveq2d 7291 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · ((𝐵↑2) · 𝐵)) = (𝐴 · (𝐵↑3)))
7771, 76eqtrd 2778 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) · 𝐵) = (𝐴 · (𝐵↑3)))
7877oveq2d 7291 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴 · (𝐵↑2)) · 𝐵)) = (3 · (𝐴 · (𝐵↑3))))
7970, 78eqtrd 2778 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) · 𝐵) = (3 · (𝐴 · (𝐵↑3))))
801oveq2i 7286 . . . . . . . . 9 (𝐵↑4) = (𝐵↑(3 + 1))
81 expp1 13789 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐵↑(3 + 1)) = ((𝐵↑3) · 𝐵))
8215, 4, 81sylancl 586 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑(3 + 1)) = ((𝐵↑3) · 𝐵))
8380, 82eqtr2id 2791 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵↑3) · 𝐵) = (𝐵↑4))
8479, 83oveq12d 7293 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) · 𝐵) + ((𝐵↑3) · 𝐵)) = ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))
8523, 15, 25, 84joinlmuladdmuld 11002 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐵) = ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))
8669, 85oveq12d 7293 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐵) + (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐵)) = ((((𝐴↑3) · 𝐵) + (3 · ((𝐴↑2) · (𝐵↑2)))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))
8712, 15mulcld 10995 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) · 𝐵) ∈ ℂ)
8814, 20mulcld 10995 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · (𝐵↑2)) ∈ ℂ)
89 mulcl 10955 . . . . . . 7 ((3 ∈ ℂ ∧ ((𝐴↑2) · (𝐵↑2)) ∈ ℂ) → (3 · ((𝐴↑2) · (𝐵↑2))) ∈ ℂ)
9013, 88, 89sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑2) · (𝐵↑2))) ∈ ℂ)
9110, 25mulcld 10995 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑3)) ∈ ℂ)
92 mulcl 10955 . . . . . . . 8 ((3 ∈ ℂ ∧ (𝐴 · (𝐵↑3)) ∈ ℂ) → (3 · (𝐴 · (𝐵↑3))) ∈ ℂ)
9313, 91, 92sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (𝐴 · (𝐵↑3))) ∈ ℂ)
94 4nn0 12252 . . . . . . . 8 4 ∈ ℕ0
95 expcl 13800 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝐵↑4) ∈ ℂ)
9615, 94, 95sylancl 586 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑4) ∈ ℂ)
9793, 96addcld 10994 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)) ∈ ℂ)
9887, 90, 97addassd 10997 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) · 𝐵) + (3 · ((𝐴↑2) · (𝐵↑2)))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))) = (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
9960, 86, 983eqtrd 2782 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐵) = (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
10059, 99oveq12d 7293 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐴) + ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐵)) = ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))) + (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))))
101 expcl 13800 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℂ)
10210, 94, 101sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑4) ∈ ℂ)
103 mulcl 10955 . . . . . . 7 ((3 ∈ ℂ ∧ ((𝐴↑3) · 𝐵) ∈ ℂ) → (3 · ((𝐴↑3) · 𝐵)) ∈ ℂ)
10413, 87, 103sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑3) · 𝐵)) ∈ ℂ)
105102, 104addcld 10994 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) ∈ ℂ)
10690, 91addcld 10994 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) ∈ ℂ)
10790, 97addcld 10994 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))) ∈ ℂ)
108105, 106, 87, 107add4d 11203 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))) + (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))) = ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((𝐴↑3) · 𝐵)) + (((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))))
109102, 104, 87addassd 10997 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((𝐴↑3) · 𝐵)) = ((𝐴↑4) + ((3 · ((𝐴↑3) · 𝐵)) + ((𝐴↑3) · 𝐵))))
1101oveq1i 7285 . . . . . . . . 9 (4 · ((𝐴↑3) · 𝐵)) = ((3 + 1) · ((𝐴↑3) · 𝐵))
111 ax-1cn 10929 . . . . . . . . . . 11 1 ∈ ℂ
112111a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 1 ∈ ℂ)
11333, 112, 87adddird 11000 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 + 1) · ((𝐴↑3) · 𝐵)) = ((3 · ((𝐴↑3) · 𝐵)) + (1 · ((𝐴↑3) · 𝐵))))
114110, 113eqtrid 2790 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (4 · ((𝐴↑3) · 𝐵)) = ((3 · ((𝐴↑3) · 𝐵)) + (1 · ((𝐴↑3) · 𝐵))))
11587mulid2d 10993 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑3) · 𝐵)) = ((𝐴↑3) · 𝐵))
116115oveq2d 7291 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑3) · 𝐵)) + (1 · ((𝐴↑3) · 𝐵))) = ((3 · ((𝐴↑3) · 𝐵)) + ((𝐴↑3) · 𝐵)))
117114, 116eqtrd 2778 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (4 · ((𝐴↑3) · 𝐵)) = ((3 · ((𝐴↑3) · 𝐵)) + ((𝐴↑3) · 𝐵)))
118117oveq2d 7291 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) = ((𝐴↑4) + ((3 · ((𝐴↑3) · 𝐵)) + ((𝐴↑3) · 𝐵))))
119109, 118eqtr4d 2781 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((𝐴↑3) · 𝐵)) = ((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))))
12090, 91, 90, 97add4d 11203 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))) = (((3 · ((𝐴↑2) · (𝐵↑2))) + (3 · ((𝐴↑2) · (𝐵↑2)))) + ((𝐴 · (𝐵↑3)) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
121 3p3e6 12125 . . . . . . . . 9 (3 + 3) = 6
122121oveq1i 7285 . . . . . . . 8 ((3 + 3) · ((𝐴↑2) · (𝐵↑2))) = (6 · ((𝐴↑2) · (𝐵↑2)))
12333, 33, 88adddird 11000 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 + 3) · ((𝐴↑2) · (𝐵↑2))) = ((3 · ((𝐴↑2) · (𝐵↑2))) + (3 · ((𝐴↑2) · (𝐵↑2)))))
124122, 123eqtr3id 2792 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (6 · ((𝐴↑2) · (𝐵↑2))) = ((3 · ((𝐴↑2) · (𝐵↑2))) + (3 · ((𝐴↑2) · (𝐵↑2)))))
125 3p1e4 12118 . . . . . . . . . . . . 13 (3 + 1) = 4
12613, 111, 125addcomli 11167 . . . . . . . . . . . 12 (1 + 3) = 4
127126oveq1i 7285 . . . . . . . . . . 11 ((1 + 3) · (𝐴 · (𝐵↑3))) = (4 · (𝐴 · (𝐵↑3)))
128112, 33, 91adddird 11000 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 3) · (𝐴 · (𝐵↑3))) = ((1 · (𝐴 · (𝐵↑3))) + (3 · (𝐴 · (𝐵↑3)))))
129127, 128eqtr3id 2792 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (4 · (𝐴 · (𝐵↑3))) = ((1 · (𝐴 · (𝐵↑3))) + (3 · (𝐴 · (𝐵↑3)))))
13091mulid2d 10993 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · (𝐴 · (𝐵↑3))) = (𝐴 · (𝐵↑3)))
131130oveq1d 7290 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 · (𝐴 · (𝐵↑3))) + (3 · (𝐴 · (𝐵↑3)))) = ((𝐴 · (𝐵↑3)) + (3 · (𝐴 · (𝐵↑3)))))
132129, 131eqtrd 2778 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (4 · (𝐴 · (𝐵↑3))) = ((𝐴 · (𝐵↑3)) + (3 · (𝐴 · (𝐵↑3)))))
133132oveq1d 7290 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)) = (((𝐴 · (𝐵↑3)) + (3 · (𝐴 · (𝐵↑3)))) + (𝐵↑4)))
13491, 93, 96addassd 10997 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · (𝐵↑3)) + (3 · (𝐴 · (𝐵↑3)))) + (𝐵↑4)) = ((𝐴 · (𝐵↑3)) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))
135133, 134eqtrd 2778 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)) = ((𝐴 · (𝐵↑3)) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))
136124, 135oveq12d 7293 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4))) = (((3 · ((𝐴↑2) · (𝐵↑2))) + (3 · ((𝐴↑2) · (𝐵↑2)))) + ((𝐴 · (𝐵↑3)) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
137120, 136eqtr4d 2781 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))) = ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))
138119, 137oveq12d 7293 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((𝐴↑3) · 𝐵)) + (((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
139108, 138eqtrd 2778 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))) + (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
14028, 100, 1393eqtrd 2782 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · (𝐴 + 𝐵)) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
1417, 9, 1403eqtrd 2782 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  (class class class)co 7275  cc 10869  1c1 10872   + caddc 10874   · cmul 10876  2c2 12028  3c3 12029  4c4 12030  6c6 12032  0cn0 12233  cexp 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-exp 13783
This theorem is referenced by:  quart1  26006
  Copyright terms: Public domain W3C validator