MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  binom4 Structured version   Visualization version   GIF version

Theorem binom4 25687
Description: Work out a quartic binomial. (You would think that by this point it would be faster to use binom 15357, but it turns out to be just as much work to put it into this form after clearing all the sums and calculating binomial coefficients.) (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
binom4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))

Proof of Theorem binom4
StepHypRef Expression
1 df-4 11860 . . . 4 4 = (3 + 1)
21oveq2i 7202 . . 3 ((𝐴 + 𝐵)↑4) = ((𝐴 + 𝐵)↑(3 + 1))
3 addcl 10776 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
4 3nn0 12073 . . . 4 3 ∈ ℕ0
5 expp1 13607 . . . 4 (((𝐴 + 𝐵) ∈ ℂ ∧ 3 ∈ ℕ0) → ((𝐴 + 𝐵)↑(3 + 1)) = (((𝐴 + 𝐵)↑3) · (𝐴 + 𝐵)))
63, 4, 5sylancl 589 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑(3 + 1)) = (((𝐴 + 𝐵)↑3) · (𝐴 + 𝐵)))
72, 6syl5eq 2783 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴 + 𝐵)↑3) · (𝐴 + 𝐵)))
8 binom3 13756 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑3) = (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))))
98oveq1d 7206 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵)↑3) · (𝐴 + 𝐵)) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · (𝐴 + 𝐵)))
10 simpl 486 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
11 expcl 13618 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
1210, 4, 11sylancl 589 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑3) ∈ ℂ)
13 3cn 11876 . . . . . . 7 3 ∈ ℂ
1410sqcld 13679 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) ∈ ℂ)
15 simpr 488 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
1614, 15mulcld 10818 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐵) ∈ ℂ)
17 mulcl 10778 . . . . . . 7 ((3 ∈ ℂ ∧ ((𝐴↑2) · 𝐵) ∈ ℂ) → (3 · ((𝐴↑2) · 𝐵)) ∈ ℂ)
1813, 16, 17sylancr 590 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑2) · 𝐵)) ∈ ℂ)
1912, 18addcld 10817 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) ∈ ℂ)
2015sqcld 13679 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) ∈ ℂ)
2110, 20mulcld 10818 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑2)) ∈ ℂ)
22 mulcl 10778 . . . . . . 7 ((3 ∈ ℂ ∧ (𝐴 · (𝐵↑2)) ∈ ℂ) → (3 · (𝐴 · (𝐵↑2))) ∈ ℂ)
2313, 21, 22sylancr 590 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (𝐴 · (𝐵↑2))) ∈ ℂ)
24 expcl 13618 . . . . . . 7 ((𝐵 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐵↑3) ∈ ℂ)
2515, 4, 24sylancl 589 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑3) ∈ ℂ)
2623, 25addcld 10817 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) ∈ ℂ)
2719, 26addcld 10817 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) ∈ ℂ)
2827, 10, 15adddid 10822 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · (𝐴 + 𝐵)) = (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐴) + ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐵)))
291oveq2i 7202 . . . . . . . . 9 (𝐴↑4) = (𝐴↑(3 + 1))
30 expp1 13607 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑(3 + 1)) = ((𝐴↑3) · 𝐴))
3110, 4, 30sylancl 589 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑(3 + 1)) = ((𝐴↑3) · 𝐴))
3229, 31eqtr2id 2784 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) · 𝐴) = (𝐴↑4))
3313a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 3 ∈ ℂ)
3433, 16, 10mulassd 10821 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · 𝐵)) · 𝐴) = (3 · (((𝐴↑2) · 𝐵) · 𝐴)))
3514, 15, 10mul32d 11007 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) · 𝐴) = (((𝐴↑2) · 𝐴) · 𝐵))
36 df-3 11859 . . . . . . . . . . . . . 14 3 = (2 + 1)
3736oveq2i 7202 . . . . . . . . . . . . 13 (𝐴↑3) = (𝐴↑(2 + 1))
38 2nn0 12072 . . . . . . . . . . . . . 14 2 ∈ ℕ0
39 expp1 13607 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
4010, 38, 39sylancl 589 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
4137, 40eqtr2id 2784 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · 𝐴) = (𝐴↑3))
4241oveq1d 7206 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐴) · 𝐵) = ((𝐴↑3) · 𝐵))
4335, 42eqtrd 2771 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) · 𝐴) = ((𝐴↑3) · 𝐵))
4443oveq2d 7207 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (((𝐴↑2) · 𝐵) · 𝐴)) = (3 · ((𝐴↑3) · 𝐵)))
4534, 44eqtrd 2771 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · 𝐵)) · 𝐴) = (3 · ((𝐴↑3) · 𝐵)))
4632, 45oveq12d 7209 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) · 𝐴) + ((3 · ((𝐴↑2) · 𝐵)) · 𝐴)) = ((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))))
4712, 10, 18, 46joinlmuladdmuld 10825 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐴) = ((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))))
4833, 21, 10mulassd 10821 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) · 𝐴) = (3 · ((𝐴 · (𝐵↑2)) · 𝐴)))
4910, 20, 10mul32d 11007 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) · 𝐴) = ((𝐴 · 𝐴) · (𝐵↑2)))
5010sqvald 13678 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑2) = (𝐴 · 𝐴))
5150oveq1d 7206 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · (𝐵↑2)) = ((𝐴 · 𝐴) · (𝐵↑2)))
5249, 51eqtr4d 2774 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) · 𝐴) = ((𝐴↑2) · (𝐵↑2)))
5352oveq2d 7207 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴 · (𝐵↑2)) · 𝐴)) = (3 · ((𝐴↑2) · (𝐵↑2))))
5448, 53eqtrd 2771 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) · 𝐴) = (3 · ((𝐴↑2) · (𝐵↑2))))
5525, 10mulcomd 10819 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵↑3) · 𝐴) = (𝐴 · (𝐵↑3)))
5654, 55oveq12d 7209 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) · 𝐴) + ((𝐵↑3) · 𝐴)) = ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))))
5723, 10, 25, 56joinlmuladdmuld 10825 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐴) = ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))))
5847, 57oveq12d 7209 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐴) + (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐴)) = (((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))))
5919, 10, 26, 58joinlmuladdmuld 10825 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐴) = (((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))))
6019, 26, 15adddird 10823 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐵) = ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐵) + (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐵)))
6133, 16, 15mulassd 10821 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · 𝐵)) · 𝐵) = (3 · (((𝐴↑2) · 𝐵) · 𝐵)))
6214, 15, 15mulassd 10821 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) · 𝐵) = ((𝐴↑2) · (𝐵 · 𝐵)))
6315sqvald 13678 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑2) = (𝐵 · 𝐵))
6463oveq2d 7207 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · (𝐵↑2)) = ((𝐴↑2) · (𝐵 · 𝐵)))
6562, 64eqtr4d 2774 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑2) · 𝐵) · 𝐵) = ((𝐴↑2) · (𝐵↑2)))
6665oveq2d 7207 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (((𝐴↑2) · 𝐵) · 𝐵)) = (3 · ((𝐴↑2) · (𝐵↑2))))
6761, 66eqtrd 2771 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · 𝐵)) · 𝐵) = (3 · ((𝐴↑2) · (𝐵↑2))))
6867oveq2d 7207 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · 𝐵)) · 𝐵)) = (((𝐴↑3) · 𝐵) + (3 · ((𝐴↑2) · (𝐵↑2)))))
6912, 15, 18, 68joinlmuladdmuld 10825 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐵) = (((𝐴↑3) · 𝐵) + (3 · ((𝐴↑2) · (𝐵↑2)))))
7033, 21, 15mulassd 10821 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) · 𝐵) = (3 · ((𝐴 · (𝐵↑2)) · 𝐵)))
7110, 20, 15mulassd 10821 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) · 𝐵) = (𝐴 · ((𝐵↑2) · 𝐵)))
7236oveq2i 7202 . . . . . . . . . . . . 13 (𝐵↑3) = (𝐵↑(2 + 1))
73 expp1 13607 . . . . . . . . . . . . . 14 ((𝐵 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐵↑(2 + 1)) = ((𝐵↑2) · 𝐵))
7415, 38, 73sylancl 589 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑(2 + 1)) = ((𝐵↑2) · 𝐵))
7572, 74eqtr2id 2784 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵↑2) · 𝐵) = (𝐵↑3))
7675oveq2d 7207 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · ((𝐵↑2) · 𝐵)) = (𝐴 · (𝐵↑3)))
7771, 76eqtrd 2771 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 · (𝐵↑2)) · 𝐵) = (𝐴 · (𝐵↑3)))
7877oveq2d 7207 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴 · (𝐵↑2)) · 𝐵)) = (3 · (𝐴 · (𝐵↑3))))
7970, 78eqtrd 2771 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑2))) · 𝐵) = (3 · (𝐴 · (𝐵↑3))))
801oveq2i 7202 . . . . . . . . 9 (𝐵↑4) = (𝐵↑(3 + 1))
81 expp1 13607 . . . . . . . . . 10 ((𝐵 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐵↑(3 + 1)) = ((𝐵↑3) · 𝐵))
8215, 4, 81sylancl 589 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑(3 + 1)) = ((𝐵↑3) · 𝐵))
8380, 82eqtr2id 2784 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐵↑3) · 𝐵) = (𝐵↑4))
8479, 83oveq12d 7209 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) · 𝐵) + ((𝐵↑3) · 𝐵)) = ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))
8523, 15, 25, 84joinlmuladdmuld 10825 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐵) = ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))
8669, 85oveq12d 7209 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) · 𝐵) + (((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3)) · 𝐵)) = ((((𝐴↑3) · 𝐵) + (3 · ((𝐴↑2) · (𝐵↑2)))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))
8712, 15mulcld 10818 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑3) · 𝐵) ∈ ℂ)
8814, 20mulcld 10818 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) · (𝐵↑2)) ∈ ℂ)
89 mulcl 10778 . . . . . . 7 ((3 ∈ ℂ ∧ ((𝐴↑2) · (𝐵↑2)) ∈ ℂ) → (3 · ((𝐴↑2) · (𝐵↑2))) ∈ ℂ)
9013, 88, 89sylancr 590 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑2) · (𝐵↑2))) ∈ ℂ)
9110, 25mulcld 10818 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · (𝐵↑3)) ∈ ℂ)
92 mulcl 10778 . . . . . . . 8 ((3 ∈ ℂ ∧ (𝐴 · (𝐵↑3)) ∈ ℂ) → (3 · (𝐴 · (𝐵↑3))) ∈ ℂ)
9313, 91, 92sylancr 590 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · (𝐴 · (𝐵↑3))) ∈ ℂ)
94 4nn0 12074 . . . . . . . 8 4 ∈ ℕ0
95 expcl 13618 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝐵↑4) ∈ ℂ)
9615, 94, 95sylancl 589 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵↑4) ∈ ℂ)
9793, 96addcld 10817 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)) ∈ ℂ)
9887, 90, 97addassd 10820 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) · 𝐵) + (3 · ((𝐴↑2) · (𝐵↑2)))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))) = (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
9960, 86, 983eqtrd 2775 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐵) = (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
10059, 99oveq12d 7209 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐴) + ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · 𝐵)) = ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))) + (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))))
101 expcl 13618 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℂ)
10210, 94, 101sylancl 589 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴↑4) ∈ ℂ)
103 mulcl 10778 . . . . . . 7 ((3 ∈ ℂ ∧ ((𝐴↑3) · 𝐵) ∈ ℂ) → (3 · ((𝐴↑3) · 𝐵)) ∈ ℂ)
10413, 87, 103sylancr 590 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (3 · ((𝐴↑3) · 𝐵)) ∈ ℂ)
105102, 104addcld 10817 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) ∈ ℂ)
10690, 91addcld 10817 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) ∈ ℂ)
10790, 97addcld 10817 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))) ∈ ℂ)
108105, 106, 87, 107add4d 11025 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))) + (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))) = ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((𝐴↑3) · 𝐵)) + (((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))))
109102, 104, 87addassd 10820 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((𝐴↑3) · 𝐵)) = ((𝐴↑4) + ((3 · ((𝐴↑3) · 𝐵)) + ((𝐴↑3) · 𝐵))))
1101oveq1i 7201 . . . . . . . . 9 (4 · ((𝐴↑3) · 𝐵)) = ((3 + 1) · ((𝐴↑3) · 𝐵))
111 ax-1cn 10752 . . . . . . . . . . 11 1 ∈ ℂ
112111a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 1 ∈ ℂ)
11333, 112, 87adddird 10823 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 + 1) · ((𝐴↑3) · 𝐵)) = ((3 · ((𝐴↑3) · 𝐵)) + (1 · ((𝐴↑3) · 𝐵))))
114110, 113syl5eq 2783 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (4 · ((𝐴↑3) · 𝐵)) = ((3 · ((𝐴↑3) · 𝐵)) + (1 · ((𝐴↑3) · 𝐵))))
11587mulid2d 10816 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · ((𝐴↑3) · 𝐵)) = ((𝐴↑3) · 𝐵))
116115oveq2d 7207 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 · ((𝐴↑3) · 𝐵)) + (1 · ((𝐴↑3) · 𝐵))) = ((3 · ((𝐴↑3) · 𝐵)) + ((𝐴↑3) · 𝐵)))
117114, 116eqtrd 2771 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (4 · ((𝐴↑3) · 𝐵)) = ((3 · ((𝐴↑3) · 𝐵)) + ((𝐴↑3) · 𝐵)))
118117oveq2d 7207 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) = ((𝐴↑4) + ((3 · ((𝐴↑3) · 𝐵)) + ((𝐴↑3) · 𝐵))))
119109, 118eqtr4d 2774 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((𝐴↑3) · 𝐵)) = ((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))))
12090, 91, 90, 97add4d 11025 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))) = (((3 · ((𝐴↑2) · (𝐵↑2))) + (3 · ((𝐴↑2) · (𝐵↑2)))) + ((𝐴 · (𝐵↑3)) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
121 3p3e6 11947 . . . . . . . . 9 (3 + 3) = 6
122121oveq1i 7201 . . . . . . . 8 ((3 + 3) · ((𝐴↑2) · (𝐵↑2))) = (6 · ((𝐴↑2) · (𝐵↑2)))
12333, 33, 88adddird 10823 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((3 + 3) · ((𝐴↑2) · (𝐵↑2))) = ((3 · ((𝐴↑2) · (𝐵↑2))) + (3 · ((𝐴↑2) · (𝐵↑2)))))
124122, 123eqtr3id 2785 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (6 · ((𝐴↑2) · (𝐵↑2))) = ((3 · ((𝐴↑2) · (𝐵↑2))) + (3 · ((𝐴↑2) · (𝐵↑2)))))
125 3p1e4 11940 . . . . . . . . . . . . 13 (3 + 1) = 4
12613, 111, 125addcomli 10989 . . . . . . . . . . . 12 (1 + 3) = 4
127126oveq1i 7201 . . . . . . . . . . 11 ((1 + 3) · (𝐴 · (𝐵↑3))) = (4 · (𝐴 · (𝐵↑3)))
128112, 33, 91adddird 10823 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 3) · (𝐴 · (𝐵↑3))) = ((1 · (𝐴 · (𝐵↑3))) + (3 · (𝐴 · (𝐵↑3)))))
129127, 128eqtr3id 2785 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (4 · (𝐴 · (𝐵↑3))) = ((1 · (𝐴 · (𝐵↑3))) + (3 · (𝐴 · (𝐵↑3)))))
13091mulid2d 10816 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 · (𝐴 · (𝐵↑3))) = (𝐴 · (𝐵↑3)))
131130oveq1d 7206 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 · (𝐴 · (𝐵↑3))) + (3 · (𝐴 · (𝐵↑3)))) = ((𝐴 · (𝐵↑3)) + (3 · (𝐴 · (𝐵↑3)))))
132129, 131eqtrd 2771 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (4 · (𝐴 · (𝐵↑3))) = ((𝐴 · (𝐵↑3)) + (3 · (𝐴 · (𝐵↑3)))))
133132oveq1d 7206 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)) = (((𝐴 · (𝐵↑3)) + (3 · (𝐴 · (𝐵↑3)))) + (𝐵↑4)))
13491, 93, 96addassd 10820 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 · (𝐵↑3)) + (3 · (𝐴 · (𝐵↑3)))) + (𝐵↑4)) = ((𝐴 · (𝐵↑3)) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))
135133, 134eqtrd 2771 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)) = ((𝐴 · (𝐵↑3)) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))
136124, 135oveq12d 7209 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4))) = (((3 · ((𝐴↑2) · (𝐵↑2))) + (3 · ((𝐴↑2) · (𝐵↑2)))) + ((𝐴 · (𝐵↑3)) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
137120, 136eqtr4d 2774 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))) = ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))
138119, 137oveq12d 7209 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((𝐴↑3) · 𝐵)) + (((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
139108, 138eqtrd 2771 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑4) + (3 · ((𝐴↑3) · 𝐵))) + ((3 · ((𝐴↑2) · (𝐵↑2))) + (𝐴 · (𝐵↑3)))) + (((𝐴↑3) · 𝐵) + ((3 · ((𝐴↑2) · (𝐵↑2))) + ((3 · (𝐴 · (𝐵↑3))) + (𝐵↑4))))) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
14028, 100, 1393eqtrd 2775 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((((𝐴↑3) + (3 · ((𝐴↑2) · 𝐵))) + ((3 · (𝐴 · (𝐵↑2))) + (𝐵↑3))) · (𝐴 + 𝐵)) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
1417, 9, 1403eqtrd 2775 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑4) = (((𝐴↑4) + (4 · ((𝐴↑3) · 𝐵))) + ((6 · ((𝐴↑2) · (𝐵↑2))) + ((4 · (𝐴 · (𝐵↑3))) + (𝐵↑4)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  (class class class)co 7191  cc 10692  1c1 10695   + caddc 10697   · cmul 10699  2c2 11850  3c3 11851  4c4 11852  6c6 11854  0cn0 12055  cexp 13600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-n0 12056  df-z 12142  df-uz 12404  df-seq 13540  df-exp 13601
This theorem is referenced by:  quart1  25693
  Copyright terms: Public domain W3C validator