MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  discr1 Structured version   Visualization version   GIF version

Theorem discr1 13882
Description: A nonnegative quadratic form has nonnegative leading coefficient. (Contributed by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
discr.1 (𝜑𝐴 ∈ ℝ)
discr.2 (𝜑𝐵 ∈ ℝ)
discr.3 (𝜑𝐶 ∈ ℝ)
discr.4 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
discr1.5 𝑋 = if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1)
Assertion
Ref Expression
discr1 (𝜑 → 0 ≤ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥

Proof of Theorem discr1
StepHypRef Expression
1 oveq1 7262 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥↑2) = (𝑋↑2))
21oveq2d 7271 . . . . . . 7 (𝑥 = 𝑋 → (𝐴 · (𝑥↑2)) = (𝐴 · (𝑋↑2)))
3 oveq2 7263 . . . . . . 7 (𝑥 = 𝑋 → (𝐵 · 𝑥) = (𝐵 · 𝑋))
42, 3oveq12d 7273 . . . . . 6 (𝑥 = 𝑋 → ((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) = ((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)))
54oveq1d 7270 . . . . 5 (𝑥 = 𝑋 → (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) = (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶))
65breq2d 5082 . . . 4 (𝑥 = 𝑋 → (0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) ↔ 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶)))
7 discr.4 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
87ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
98adantr 480 . . . 4 ((𝜑𝐴 < 0) → ∀𝑥 ∈ ℝ 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
10 discr1.5 . . . . 5 𝑋 = if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1)
11 discr.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1211adantr 480 . . . . . . . . 9 ((𝜑𝐴 < 0) → 𝐵 ∈ ℝ)
13 discr.3 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
1413adantr 480 . . . . . . . . . 10 ((𝜑𝐴 < 0) → 𝐶 ∈ ℝ)
15 0re 10908 . . . . . . . . . 10 0 ∈ ℝ
16 ifcl 4501 . . . . . . . . . 10 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
1714, 15, 16sylancl 585 . . . . . . . . 9 ((𝜑𝐴 < 0) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
1812, 17readdcld 10935 . . . . . . . 8 ((𝜑𝐴 < 0) → (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ)
19 peano2re 11078 . . . . . . . 8 ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ → ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ∈ ℝ)
2018, 19syl 17 . . . . . . 7 ((𝜑𝐴 < 0) → ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ∈ ℝ)
21 discr.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
2221adantr 480 . . . . . . . 8 ((𝜑𝐴 < 0) → 𝐴 ∈ ℝ)
2322renegcld 11332 . . . . . . 7 ((𝜑𝐴 < 0) → -𝐴 ∈ ℝ)
2421lt0neg1d 11474 . . . . . . . . 9 (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴))
2524biimpa 476 . . . . . . . 8 ((𝜑𝐴 < 0) → 0 < -𝐴)
2625gt0ne0d 11469 . . . . . . 7 ((𝜑𝐴 < 0) → -𝐴 ≠ 0)
2720, 23, 26redivcld 11733 . . . . . 6 ((𝜑𝐴 < 0) → (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ∈ ℝ)
28 1re 10906 . . . . . 6 1 ∈ ℝ
29 ifcl 4501 . . . . . 6 (((((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1) ∈ ℝ)
3027, 28, 29sylancl 585 . . . . 5 ((𝜑𝐴 < 0) → if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1) ∈ ℝ)
3110, 30eqeltrid 2843 . . . 4 ((𝜑𝐴 < 0) → 𝑋 ∈ ℝ)
326, 9, 31rspcdva 3554 . . 3 ((𝜑𝐴 < 0) → 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶))
33 resqcl 13772 . . . . . . . . 9 (𝑋 ∈ ℝ → (𝑋↑2) ∈ ℝ)
3431, 33syl 17 . . . . . . . 8 ((𝜑𝐴 < 0) → (𝑋↑2) ∈ ℝ)
3522, 34remulcld 10936 . . . . . . 7 ((𝜑𝐴 < 0) → (𝐴 · (𝑋↑2)) ∈ ℝ)
3612, 31remulcld 10936 . . . . . . 7 ((𝜑𝐴 < 0) → (𝐵 · 𝑋) ∈ ℝ)
3735, 36readdcld 10935 . . . . . 6 ((𝜑𝐴 < 0) → ((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) ∈ ℝ)
3837, 14readdcld 10935 . . . . 5 ((𝜑𝐴 < 0) → (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) ∈ ℝ)
3922, 31remulcld 10936 . . . . . . 7 ((𝜑𝐴 < 0) → (𝐴 · 𝑋) ∈ ℝ)
4039, 18readdcld 10935 . . . . . 6 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) ∈ ℝ)
4140, 31remulcld 10936 . . . . 5 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) ∈ ℝ)
4215a1i 11 . . . . 5 ((𝜑𝐴 < 0) → 0 ∈ ℝ)
4317, 31remulcld 10936 . . . . . . 7 ((𝜑𝐴 < 0) → (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋) ∈ ℝ)
44 max2 12850 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
4515, 14, 44sylancr 586 . . . . . . . 8 ((𝜑𝐴 < 0) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
46 max1 12848 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
4715, 14, 46sylancr 586 . . . . . . . . 9 ((𝜑𝐴 < 0) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
48 max1 12848 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ∈ ℝ) → 1 ≤ if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1))
4928, 27, 48sylancr 586 . . . . . . . . . 10 ((𝜑𝐴 < 0) → 1 ≤ if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1))
5049, 10breqtrrdi 5112 . . . . . . . . 9 ((𝜑𝐴 < 0) → 1 ≤ 𝑋)
5117, 31, 47, 50lemulge11d 11842 . . . . . . . 8 ((𝜑𝐴 < 0) → if(0 ≤ 𝐶, 𝐶, 0) ≤ (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋))
5214, 17, 43, 45, 51letrd 11062 . . . . . . 7 ((𝜑𝐴 < 0) → 𝐶 ≤ (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋))
5314, 43, 37, 52leadd2dd 11520 . . . . . 6 ((𝜑𝐴 < 0) → (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)))
5439, 12readdcld 10935 . . . . . . . . 9 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) + 𝐵) ∈ ℝ)
5554recnd 10934 . . . . . . . 8 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) + 𝐵) ∈ ℂ)
5617recnd 10934 . . . . . . . 8 ((𝜑𝐴 < 0) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℂ)
5731recnd 10934 . . . . . . . 8 ((𝜑𝐴 < 0) → 𝑋 ∈ ℂ)
5855, 56, 57adddird 10931 . . . . . . 7 ((𝜑𝐴 < 0) → ((((𝐴 · 𝑋) + 𝐵) + if(0 ≤ 𝐶, 𝐶, 0)) · 𝑋) = ((((𝐴 · 𝑋) + 𝐵) · 𝑋) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)))
5939recnd 10934 . . . . . . . . 9 ((𝜑𝐴 < 0) → (𝐴 · 𝑋) ∈ ℂ)
6012recnd 10934 . . . . . . . . 9 ((𝜑𝐴 < 0) → 𝐵 ∈ ℂ)
6159, 60, 56addassd 10928 . . . . . . . 8 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + 𝐵) + if(0 ≤ 𝐶, 𝐶, 0)) = ((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))))
6261oveq1d 7270 . . . . . . 7 ((𝜑𝐴 < 0) → ((((𝐴 · 𝑋) + 𝐵) + if(0 ≤ 𝐶, 𝐶, 0)) · 𝑋) = (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋))
6322recnd 10934 . . . . . . . . . . . 12 ((𝜑𝐴 < 0) → 𝐴 ∈ ℂ)
6463, 57, 57mulassd 10929 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) · 𝑋) = (𝐴 · (𝑋 · 𝑋)))
65 sqval 13763 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑋↑2) = (𝑋 · 𝑋))
6657, 65syl 17 . . . . . . . . . . . 12 ((𝜑𝐴 < 0) → (𝑋↑2) = (𝑋 · 𝑋))
6766oveq2d 7271 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → (𝐴 · (𝑋↑2)) = (𝐴 · (𝑋 · 𝑋)))
6864, 67eqtr4d 2781 . . . . . . . . . 10 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) · 𝑋) = (𝐴 · (𝑋↑2)))
6968oveq1d 7270 . . . . . . . . 9 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) · 𝑋) + (𝐵 · 𝑋)) = ((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)))
7059, 57, 60, 69joinlmuladdmuld 10933 . . . . . . . 8 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + 𝐵) · 𝑋) = ((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)))
7170oveq1d 7270 . . . . . . 7 ((𝜑𝐴 < 0) → ((((𝐴 · 𝑋) + 𝐵) · 𝑋) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)) = (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)))
7258, 62, 713eqtr3d 2786 . . . . . 6 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) = (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)))
7353, 72breqtrrd 5098 . . . . 5 ((𝜑𝐴 < 0) → (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) ≤ (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋))
7423, 31remulcld 10936 . . . . . . . . . 10 ((𝜑𝐴 < 0) → (-𝐴 · 𝑋) ∈ ℝ)
7518ltp1d 11835 . . . . . . . . . 10 ((𝜑𝐴 < 0) → (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) < ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1))
76 max2 12850 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ∈ ℝ) → (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1))
7728, 27, 76sylancr 586 . . . . . . . . . . . 12 ((𝜑𝐴 < 0) → (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1))
7877, 10breqtrrdi 5112 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ 𝑋)
79 ledivmul 11781 . . . . . . . . . . . 12 ((((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (-𝐴 ∈ ℝ ∧ 0 < -𝐴)) → ((((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ 𝑋 ↔ ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ≤ (-𝐴 · 𝑋)))
8020, 31, 23, 25, 79syl112anc 1372 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → ((((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ 𝑋 ↔ ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ≤ (-𝐴 · 𝑋)))
8178, 80mpbid 231 . . . . . . . . . 10 ((𝜑𝐴 < 0) → ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ≤ (-𝐴 · 𝑋))
8218, 20, 74, 75, 81ltletrd 11065 . . . . . . . . 9 ((𝜑𝐴 < 0) → (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) < (-𝐴 · 𝑋))
8363, 57mulneg1d 11358 . . . . . . . . . 10 ((𝜑𝐴 < 0) → (-𝐴 · 𝑋) = -(𝐴 · 𝑋))
84 df-neg 11138 . . . . . . . . . 10 -(𝐴 · 𝑋) = (0 − (𝐴 · 𝑋))
8583, 84eqtrdi 2795 . . . . . . . . 9 ((𝜑𝐴 < 0) → (-𝐴 · 𝑋) = (0 − (𝐴 · 𝑋)))
8682, 85breqtrd 5096 . . . . . . . 8 ((𝜑𝐴 < 0) → (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) < (0 − (𝐴 · 𝑋)))
8739, 18, 42ltaddsub2d 11506 . . . . . . . 8 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) < 0 ↔ (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) < (0 − (𝐴 · 𝑋))))
8886, 87mpbird 256 . . . . . . 7 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) < 0)
8928a1i 11 . . . . . . . . 9 ((𝜑𝐴 < 0) → 1 ∈ ℝ)
90 0lt1 11427 . . . . . . . . . 10 0 < 1
9190a1i 11 . . . . . . . . 9 ((𝜑𝐴 < 0) → 0 < 1)
9242, 89, 31, 91, 50ltletrd 11065 . . . . . . . 8 ((𝜑𝐴 < 0) → 0 < 𝑋)
93 ltmul1 11755 . . . . . . . 8 ((((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) ∈ ℝ ∧ 0 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 0 < 𝑋)) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) < 0 ↔ (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) < (0 · 𝑋)))
9440, 42, 31, 92, 93syl112anc 1372 . . . . . . 7 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) < 0 ↔ (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) < (0 · 𝑋)))
9588, 94mpbid 231 . . . . . 6 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) < (0 · 𝑋))
9657mul02d 11103 . . . . . 6 ((𝜑𝐴 < 0) → (0 · 𝑋) = 0)
9795, 96breqtrd 5096 . . . . 5 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) < 0)
9838, 41, 42, 73, 97lelttrd 11063 . . . 4 ((𝜑𝐴 < 0) → (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) < 0)
99 ltnle 10985 . . . . 5 (((((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) ∈ ℝ ∧ 0 ∈ ℝ) → ((((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) < 0 ↔ ¬ 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶)))
10038, 15, 99sylancl 585 . . . 4 ((𝜑𝐴 < 0) → ((((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) < 0 ↔ ¬ 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶)))
10198, 100mpbid 231 . . 3 ((𝜑𝐴 < 0) → ¬ 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶))
10232, 101pm2.65da 813 . 2 (𝜑 → ¬ 𝐴 < 0)
103 lelttric 11012 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴𝐴 < 0))
10415, 21, 103sylancr 586 . . 3 (𝜑 → (0 ≤ 𝐴𝐴 < 0))
105104ord 860 . 2 (𝜑 → (¬ 0 ≤ 𝐴𝐴 < 0))
106102, 105mt3d 148 1 (𝜑 → 0 ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  ifcif 4456   class class class wbr 5070  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  2c2 11958  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711
This theorem is referenced by:  discr  13883
  Copyright terms: Public domain W3C validator