MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  discr1 Structured version   Visualization version   GIF version

Theorem discr1 14189
Description: A nonnegative quadratic form has nonnegative leading coefficient. (Contributed by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
discr.1 (𝜑𝐴 ∈ ℝ)
discr.2 (𝜑𝐵 ∈ ℝ)
discr.3 (𝜑𝐶 ∈ ℝ)
discr.4 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
discr1.5 𝑋 = if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1)
Assertion
Ref Expression
discr1 (𝜑 → 0 ≤ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥

Proof of Theorem discr1
StepHypRef Expression
1 oveq1 7403 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥↑2) = (𝑋↑2))
21oveq2d 7412 . . . . . . 7 (𝑥 = 𝑋 → (𝐴 · (𝑥↑2)) = (𝐴 · (𝑋↑2)))
3 oveq2 7404 . . . . . . 7 (𝑥 = 𝑋 → (𝐵 · 𝑥) = (𝐵 · 𝑋))
42, 3oveq12d 7414 . . . . . 6 (𝑥 = 𝑋 → ((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) = ((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)))
54oveq1d 7411 . . . . 5 (𝑥 = 𝑋 → (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) = (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶))
65breq2d 5156 . . . 4 (𝑥 = 𝑋 → (0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) ↔ 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶)))
7 discr.4 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
87ralrimiva 3147 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
98adantr 482 . . . 4 ((𝜑𝐴 < 0) → ∀𝑥 ∈ ℝ 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
10 discr1.5 . . . . 5 𝑋 = if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1)
11 discr.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1211adantr 482 . . . . . . . . 9 ((𝜑𝐴 < 0) → 𝐵 ∈ ℝ)
13 discr.3 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
1413adantr 482 . . . . . . . . . 10 ((𝜑𝐴 < 0) → 𝐶 ∈ ℝ)
15 0re 11203 . . . . . . . . . 10 0 ∈ ℝ
16 ifcl 4569 . . . . . . . . . 10 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
1714, 15, 16sylancl 587 . . . . . . . . 9 ((𝜑𝐴 < 0) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
1812, 17readdcld 11230 . . . . . . . 8 ((𝜑𝐴 < 0) → (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ)
19 peano2re 11374 . . . . . . . 8 ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ → ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ∈ ℝ)
2018, 19syl 17 . . . . . . 7 ((𝜑𝐴 < 0) → ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ∈ ℝ)
21 discr.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
2221adantr 482 . . . . . . . 8 ((𝜑𝐴 < 0) → 𝐴 ∈ ℝ)
2322renegcld 11628 . . . . . . 7 ((𝜑𝐴 < 0) → -𝐴 ∈ ℝ)
2421lt0neg1d 11770 . . . . . . . . 9 (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴))
2524biimpa 478 . . . . . . . 8 ((𝜑𝐴 < 0) → 0 < -𝐴)
2625gt0ne0d 11765 . . . . . . 7 ((𝜑𝐴 < 0) → -𝐴 ≠ 0)
2720, 23, 26redivcld 12029 . . . . . 6 ((𝜑𝐴 < 0) → (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ∈ ℝ)
28 1re 11201 . . . . . 6 1 ∈ ℝ
29 ifcl 4569 . . . . . 6 (((((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1) ∈ ℝ)
3027, 28, 29sylancl 587 . . . . 5 ((𝜑𝐴 < 0) → if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1) ∈ ℝ)
3110, 30eqeltrid 2838 . . . 4 ((𝜑𝐴 < 0) → 𝑋 ∈ ℝ)
326, 9, 31rspcdva 3612 . . 3 ((𝜑𝐴 < 0) → 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶))
33 resqcl 14076 . . . . . . . . 9 (𝑋 ∈ ℝ → (𝑋↑2) ∈ ℝ)
3431, 33syl 17 . . . . . . . 8 ((𝜑𝐴 < 0) → (𝑋↑2) ∈ ℝ)
3522, 34remulcld 11231 . . . . . . 7 ((𝜑𝐴 < 0) → (𝐴 · (𝑋↑2)) ∈ ℝ)
3612, 31remulcld 11231 . . . . . . 7 ((𝜑𝐴 < 0) → (𝐵 · 𝑋) ∈ ℝ)
3735, 36readdcld 11230 . . . . . 6 ((𝜑𝐴 < 0) → ((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) ∈ ℝ)
3837, 14readdcld 11230 . . . . 5 ((𝜑𝐴 < 0) → (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) ∈ ℝ)
3922, 31remulcld 11231 . . . . . . 7 ((𝜑𝐴 < 0) → (𝐴 · 𝑋) ∈ ℝ)
4039, 18readdcld 11230 . . . . . 6 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) ∈ ℝ)
4140, 31remulcld 11231 . . . . 5 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) ∈ ℝ)
4215a1i 11 . . . . 5 ((𝜑𝐴 < 0) → 0 ∈ ℝ)
4317, 31remulcld 11231 . . . . . . 7 ((𝜑𝐴 < 0) → (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋) ∈ ℝ)
44 max2 13153 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
4515, 14, 44sylancr 588 . . . . . . . 8 ((𝜑𝐴 < 0) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
46 max1 13151 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
4715, 14, 46sylancr 588 . . . . . . . . 9 ((𝜑𝐴 < 0) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
48 max1 13151 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ∈ ℝ) → 1 ≤ if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1))
4928, 27, 48sylancr 588 . . . . . . . . . 10 ((𝜑𝐴 < 0) → 1 ≤ if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1))
5049, 10breqtrrdi 5186 . . . . . . . . 9 ((𝜑𝐴 < 0) → 1 ≤ 𝑋)
5117, 31, 47, 50lemulge11d 12138 . . . . . . . 8 ((𝜑𝐴 < 0) → if(0 ≤ 𝐶, 𝐶, 0) ≤ (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋))
5214, 17, 43, 45, 51letrd 11358 . . . . . . 7 ((𝜑𝐴 < 0) → 𝐶 ≤ (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋))
5314, 43, 37, 52leadd2dd 11816 . . . . . 6 ((𝜑𝐴 < 0) → (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)))
5439, 12readdcld 11230 . . . . . . . . 9 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) + 𝐵) ∈ ℝ)
5554recnd 11229 . . . . . . . 8 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) + 𝐵) ∈ ℂ)
5617recnd 11229 . . . . . . . 8 ((𝜑𝐴 < 0) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℂ)
5731recnd 11229 . . . . . . . 8 ((𝜑𝐴 < 0) → 𝑋 ∈ ℂ)
5855, 56, 57adddird 11226 . . . . . . 7 ((𝜑𝐴 < 0) → ((((𝐴 · 𝑋) + 𝐵) + if(0 ≤ 𝐶, 𝐶, 0)) · 𝑋) = ((((𝐴 · 𝑋) + 𝐵) · 𝑋) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)))
5939recnd 11229 . . . . . . . . 9 ((𝜑𝐴 < 0) → (𝐴 · 𝑋) ∈ ℂ)
6012recnd 11229 . . . . . . . . 9 ((𝜑𝐴 < 0) → 𝐵 ∈ ℂ)
6159, 60, 56addassd 11223 . . . . . . . 8 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + 𝐵) + if(0 ≤ 𝐶, 𝐶, 0)) = ((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))))
6261oveq1d 7411 . . . . . . 7 ((𝜑𝐴 < 0) → ((((𝐴 · 𝑋) + 𝐵) + if(0 ≤ 𝐶, 𝐶, 0)) · 𝑋) = (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋))
6322recnd 11229 . . . . . . . . . . . 12 ((𝜑𝐴 < 0) → 𝐴 ∈ ℂ)
6463, 57, 57mulassd 11224 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) · 𝑋) = (𝐴 · (𝑋 · 𝑋)))
65 sqval 14067 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑋↑2) = (𝑋 · 𝑋))
6657, 65syl 17 . . . . . . . . . . . 12 ((𝜑𝐴 < 0) → (𝑋↑2) = (𝑋 · 𝑋))
6766oveq2d 7412 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → (𝐴 · (𝑋↑2)) = (𝐴 · (𝑋 · 𝑋)))
6864, 67eqtr4d 2776 . . . . . . . . . 10 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) · 𝑋) = (𝐴 · (𝑋↑2)))
6968oveq1d 7411 . . . . . . . . 9 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) · 𝑋) + (𝐵 · 𝑋)) = ((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)))
7059, 57, 60, 69joinlmuladdmuld 11228 . . . . . . . 8 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + 𝐵) · 𝑋) = ((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)))
7170oveq1d 7411 . . . . . . 7 ((𝜑𝐴 < 0) → ((((𝐴 · 𝑋) + 𝐵) · 𝑋) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)) = (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)))
7258, 62, 713eqtr3d 2781 . . . . . 6 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) = (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)))
7353, 72breqtrrd 5172 . . . . 5 ((𝜑𝐴 < 0) → (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) ≤ (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋))
7423, 31remulcld 11231 . . . . . . . . . 10 ((𝜑𝐴 < 0) → (-𝐴 · 𝑋) ∈ ℝ)
7518ltp1d 12131 . . . . . . . . . 10 ((𝜑𝐴 < 0) → (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) < ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1))
76 max2 13153 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ∈ ℝ) → (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1))
7728, 27, 76sylancr 588 . . . . . . . . . . . 12 ((𝜑𝐴 < 0) → (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1))
7877, 10breqtrrdi 5186 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ 𝑋)
79 ledivmul 12077 . . . . . . . . . . . 12 ((((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (-𝐴 ∈ ℝ ∧ 0 < -𝐴)) → ((((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ 𝑋 ↔ ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ≤ (-𝐴 · 𝑋)))
8020, 31, 23, 25, 79syl112anc 1375 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → ((((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ 𝑋 ↔ ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ≤ (-𝐴 · 𝑋)))
8178, 80mpbid 231 . . . . . . . . . 10 ((𝜑𝐴 < 0) → ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ≤ (-𝐴 · 𝑋))
8218, 20, 74, 75, 81ltletrd 11361 . . . . . . . . 9 ((𝜑𝐴 < 0) → (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) < (-𝐴 · 𝑋))
8363, 57mulneg1d 11654 . . . . . . . . . 10 ((𝜑𝐴 < 0) → (-𝐴 · 𝑋) = -(𝐴 · 𝑋))
84 df-neg 11434 . . . . . . . . . 10 -(𝐴 · 𝑋) = (0 − (𝐴 · 𝑋))
8583, 84eqtrdi 2789 . . . . . . . . 9 ((𝜑𝐴 < 0) → (-𝐴 · 𝑋) = (0 − (𝐴 · 𝑋)))
8682, 85breqtrd 5170 . . . . . . . 8 ((𝜑𝐴 < 0) → (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) < (0 − (𝐴 · 𝑋)))
8739, 18, 42ltaddsub2d 11802 . . . . . . . 8 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) < 0 ↔ (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) < (0 − (𝐴 · 𝑋))))
8886, 87mpbird 257 . . . . . . 7 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) < 0)
8928a1i 11 . . . . . . . . 9 ((𝜑𝐴 < 0) → 1 ∈ ℝ)
90 0lt1 11723 . . . . . . . . . 10 0 < 1
9190a1i 11 . . . . . . . . 9 ((𝜑𝐴 < 0) → 0 < 1)
9242, 89, 31, 91, 50ltletrd 11361 . . . . . . . 8 ((𝜑𝐴 < 0) → 0 < 𝑋)
93 ltmul1 12051 . . . . . . . 8 ((((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) ∈ ℝ ∧ 0 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 0 < 𝑋)) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) < 0 ↔ (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) < (0 · 𝑋)))
9440, 42, 31, 92, 93syl112anc 1375 . . . . . . 7 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) < 0 ↔ (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) < (0 · 𝑋)))
9588, 94mpbid 231 . . . . . 6 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) < (0 · 𝑋))
9657mul02d 11399 . . . . . 6 ((𝜑𝐴 < 0) → (0 · 𝑋) = 0)
9795, 96breqtrd 5170 . . . . 5 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) < 0)
9838, 41, 42, 73, 97lelttrd 11359 . . . 4 ((𝜑𝐴 < 0) → (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) < 0)
99 ltnle 11280 . . . . 5 (((((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) ∈ ℝ ∧ 0 ∈ ℝ) → ((((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) < 0 ↔ ¬ 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶)))
10038, 15, 99sylancl 587 . . . 4 ((𝜑𝐴 < 0) → ((((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) < 0 ↔ ¬ 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶)))
10198, 100mpbid 231 . . 3 ((𝜑𝐴 < 0) → ¬ 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶))
10232, 101pm2.65da 816 . 2 (𝜑 → ¬ 𝐴 < 0)
103 lelttric 11308 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴𝐴 < 0))
10415, 21, 103sylancr 588 . . 3 (𝜑 → (0 ≤ 𝐴𝐴 < 0))
105104ord 863 . 2 (𝜑 → (¬ 0 ≤ 𝐴𝐴 < 0))
106102, 105mt3d 148 1 (𝜑 → 0 ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wral 3062  ifcif 4524   class class class wbr 5144  (class class class)co 7396  cc 11095  cr 11096  0cc0 11097  1c1 11098   + caddc 11100   · cmul 11102   < clt 11235  cle 11236  cmin 11431  -cneg 11432   / cdiv 11858  2c2 12254  cexp 14014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pow 5359  ax-pr 5423  ax-un 7712  ax-cnex 11153  ax-resscn 11154  ax-1cn 11155  ax-icn 11156  ax-addcl 11157  ax-addrcl 11158  ax-mulcl 11159  ax-mulrcl 11160  ax-mulcom 11161  ax-addass 11162  ax-mulass 11163  ax-distr 11164  ax-i2m1 11165  ax-1ne0 11166  ax-1rid 11167  ax-rnegex 11168  ax-rrecex 11169  ax-cnre 11170  ax-pre-lttri 11171  ax-pre-lttrn 11172  ax-pre-ltadd 11173  ax-pre-mulgt0 11174
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6292  df-ord 6359  df-on 6360  df-lim 6361  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-riota 7352  df-ov 7399  df-oprab 7400  df-mpo 7401  df-om 7843  df-2nd 7963  df-frecs 8253  df-wrecs 8284  df-recs 8358  df-rdg 8397  df-er 8691  df-en 8928  df-dom 8929  df-sdom 8930  df-pnf 11237  df-mnf 11238  df-xr 11239  df-ltxr 11240  df-le 11241  df-sub 11433  df-neg 11434  df-div 11859  df-nn 12200  df-2 12262  df-n0 12460  df-z 12546  df-uz 12810  df-seq 13954  df-exp 14015
This theorem is referenced by:  discr  14190
  Copyright terms: Public domain W3C validator