MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  discr1 Structured version   Visualization version   GIF version

Theorem discr1 13771
Description: A nonnegative quadratic form has nonnegative leading coefficient. (Contributed by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
discr.1 (𝜑𝐴 ∈ ℝ)
discr.2 (𝜑𝐵 ∈ ℝ)
discr.3 (𝜑𝐶 ∈ ℝ)
discr.4 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
discr1.5 𝑋 = if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1)
Assertion
Ref Expression
discr1 (𝜑 → 0 ≤ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥

Proof of Theorem discr1
StepHypRef Expression
1 oveq1 7198 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥↑2) = (𝑋↑2))
21oveq2d 7207 . . . . . . 7 (𝑥 = 𝑋 → (𝐴 · (𝑥↑2)) = (𝐴 · (𝑋↑2)))
3 oveq2 7199 . . . . . . 7 (𝑥 = 𝑋 → (𝐵 · 𝑥) = (𝐵 · 𝑋))
42, 3oveq12d 7209 . . . . . 6 (𝑥 = 𝑋 → ((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) = ((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)))
54oveq1d 7206 . . . . 5 (𝑥 = 𝑋 → (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) = (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶))
65breq2d 5051 . . . 4 (𝑥 = 𝑋 → (0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) ↔ 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶)))
7 discr.4 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
87ralrimiva 3095 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
98adantr 484 . . . 4 ((𝜑𝐴 < 0) → ∀𝑥 ∈ ℝ 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
10 discr1.5 . . . . 5 𝑋 = if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1)
11 discr.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1211adantr 484 . . . . . . . . 9 ((𝜑𝐴 < 0) → 𝐵 ∈ ℝ)
13 discr.3 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
1413adantr 484 . . . . . . . . . 10 ((𝜑𝐴 < 0) → 𝐶 ∈ ℝ)
15 0re 10800 . . . . . . . . . 10 0 ∈ ℝ
16 ifcl 4470 . . . . . . . . . 10 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
1714, 15, 16sylancl 589 . . . . . . . . 9 ((𝜑𝐴 < 0) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
1812, 17readdcld 10827 . . . . . . . 8 ((𝜑𝐴 < 0) → (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ)
19 peano2re 10970 . . . . . . . 8 ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ → ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ∈ ℝ)
2018, 19syl 17 . . . . . . 7 ((𝜑𝐴 < 0) → ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ∈ ℝ)
21 discr.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
2221adantr 484 . . . . . . . 8 ((𝜑𝐴 < 0) → 𝐴 ∈ ℝ)
2322renegcld 11224 . . . . . . 7 ((𝜑𝐴 < 0) → -𝐴 ∈ ℝ)
2421lt0neg1d 11366 . . . . . . . . 9 (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴))
2524biimpa 480 . . . . . . . 8 ((𝜑𝐴 < 0) → 0 < -𝐴)
2625gt0ne0d 11361 . . . . . . 7 ((𝜑𝐴 < 0) → -𝐴 ≠ 0)
2720, 23, 26redivcld 11625 . . . . . 6 ((𝜑𝐴 < 0) → (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ∈ ℝ)
28 1re 10798 . . . . . 6 1 ∈ ℝ
29 ifcl 4470 . . . . . 6 (((((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1) ∈ ℝ)
3027, 28, 29sylancl 589 . . . . 5 ((𝜑𝐴 < 0) → if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1) ∈ ℝ)
3110, 30eqeltrid 2835 . . . 4 ((𝜑𝐴 < 0) → 𝑋 ∈ ℝ)
326, 9, 31rspcdva 3529 . . 3 ((𝜑𝐴 < 0) → 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶))
33 resqcl 13661 . . . . . . . . 9 (𝑋 ∈ ℝ → (𝑋↑2) ∈ ℝ)
3431, 33syl 17 . . . . . . . 8 ((𝜑𝐴 < 0) → (𝑋↑2) ∈ ℝ)
3522, 34remulcld 10828 . . . . . . 7 ((𝜑𝐴 < 0) → (𝐴 · (𝑋↑2)) ∈ ℝ)
3612, 31remulcld 10828 . . . . . . 7 ((𝜑𝐴 < 0) → (𝐵 · 𝑋) ∈ ℝ)
3735, 36readdcld 10827 . . . . . 6 ((𝜑𝐴 < 0) → ((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) ∈ ℝ)
3837, 14readdcld 10827 . . . . 5 ((𝜑𝐴 < 0) → (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) ∈ ℝ)
3922, 31remulcld 10828 . . . . . . 7 ((𝜑𝐴 < 0) → (𝐴 · 𝑋) ∈ ℝ)
4039, 18readdcld 10827 . . . . . 6 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) ∈ ℝ)
4140, 31remulcld 10828 . . . . 5 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) ∈ ℝ)
4215a1i 11 . . . . 5 ((𝜑𝐴 < 0) → 0 ∈ ℝ)
4317, 31remulcld 10828 . . . . . . 7 ((𝜑𝐴 < 0) → (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋) ∈ ℝ)
44 max2 12742 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
4515, 14, 44sylancr 590 . . . . . . . 8 ((𝜑𝐴 < 0) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
46 max1 12740 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
4715, 14, 46sylancr 590 . . . . . . . . 9 ((𝜑𝐴 < 0) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
48 max1 12740 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ∈ ℝ) → 1 ≤ if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1))
4928, 27, 48sylancr 590 . . . . . . . . . 10 ((𝜑𝐴 < 0) → 1 ≤ if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1))
5049, 10breqtrrdi 5081 . . . . . . . . 9 ((𝜑𝐴 < 0) → 1 ≤ 𝑋)
5117, 31, 47, 50lemulge11d 11734 . . . . . . . 8 ((𝜑𝐴 < 0) → if(0 ≤ 𝐶, 𝐶, 0) ≤ (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋))
5214, 17, 43, 45, 51letrd 10954 . . . . . . 7 ((𝜑𝐴 < 0) → 𝐶 ≤ (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋))
5314, 43, 37, 52leadd2dd 11412 . . . . . 6 ((𝜑𝐴 < 0) → (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)))
5439, 12readdcld 10827 . . . . . . . . 9 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) + 𝐵) ∈ ℝ)
5554recnd 10826 . . . . . . . 8 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) + 𝐵) ∈ ℂ)
5617recnd 10826 . . . . . . . 8 ((𝜑𝐴 < 0) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℂ)
5731recnd 10826 . . . . . . . 8 ((𝜑𝐴 < 0) → 𝑋 ∈ ℂ)
5855, 56, 57adddird 10823 . . . . . . 7 ((𝜑𝐴 < 0) → ((((𝐴 · 𝑋) + 𝐵) + if(0 ≤ 𝐶, 𝐶, 0)) · 𝑋) = ((((𝐴 · 𝑋) + 𝐵) · 𝑋) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)))
5939recnd 10826 . . . . . . . . 9 ((𝜑𝐴 < 0) → (𝐴 · 𝑋) ∈ ℂ)
6012recnd 10826 . . . . . . . . 9 ((𝜑𝐴 < 0) → 𝐵 ∈ ℂ)
6159, 60, 56addassd 10820 . . . . . . . 8 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + 𝐵) + if(0 ≤ 𝐶, 𝐶, 0)) = ((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))))
6261oveq1d 7206 . . . . . . 7 ((𝜑𝐴 < 0) → ((((𝐴 · 𝑋) + 𝐵) + if(0 ≤ 𝐶, 𝐶, 0)) · 𝑋) = (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋))
6322recnd 10826 . . . . . . . . . . . 12 ((𝜑𝐴 < 0) → 𝐴 ∈ ℂ)
6463, 57, 57mulassd 10821 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) · 𝑋) = (𝐴 · (𝑋 · 𝑋)))
65 sqval 13652 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑋↑2) = (𝑋 · 𝑋))
6657, 65syl 17 . . . . . . . . . . . 12 ((𝜑𝐴 < 0) → (𝑋↑2) = (𝑋 · 𝑋))
6766oveq2d 7207 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → (𝐴 · (𝑋↑2)) = (𝐴 · (𝑋 · 𝑋)))
6864, 67eqtr4d 2774 . . . . . . . . . 10 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) · 𝑋) = (𝐴 · (𝑋↑2)))
6968oveq1d 7206 . . . . . . . . 9 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) · 𝑋) + (𝐵 · 𝑋)) = ((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)))
7059, 57, 60, 69joinlmuladdmuld 10825 . . . . . . . 8 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + 𝐵) · 𝑋) = ((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)))
7170oveq1d 7206 . . . . . . 7 ((𝜑𝐴 < 0) → ((((𝐴 · 𝑋) + 𝐵) · 𝑋) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)) = (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)))
7258, 62, 713eqtr3d 2779 . . . . . 6 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) = (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)))
7353, 72breqtrrd 5067 . . . . 5 ((𝜑𝐴 < 0) → (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) ≤ (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋))
7423, 31remulcld 10828 . . . . . . . . . 10 ((𝜑𝐴 < 0) → (-𝐴 · 𝑋) ∈ ℝ)
7518ltp1d 11727 . . . . . . . . . 10 ((𝜑𝐴 < 0) → (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) < ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1))
76 max2 12742 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ∈ ℝ) → (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1))
7728, 27, 76sylancr 590 . . . . . . . . . . . 12 ((𝜑𝐴 < 0) → (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1))
7877, 10breqtrrdi 5081 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ 𝑋)
79 ledivmul 11673 . . . . . . . . . . . 12 ((((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (-𝐴 ∈ ℝ ∧ 0 < -𝐴)) → ((((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ 𝑋 ↔ ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ≤ (-𝐴 · 𝑋)))
8020, 31, 23, 25, 79syl112anc 1376 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → ((((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ 𝑋 ↔ ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ≤ (-𝐴 · 𝑋)))
8178, 80mpbid 235 . . . . . . . . . 10 ((𝜑𝐴 < 0) → ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ≤ (-𝐴 · 𝑋))
8218, 20, 74, 75, 81ltletrd 10957 . . . . . . . . 9 ((𝜑𝐴 < 0) → (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) < (-𝐴 · 𝑋))
8363, 57mulneg1d 11250 . . . . . . . . . 10 ((𝜑𝐴 < 0) → (-𝐴 · 𝑋) = -(𝐴 · 𝑋))
84 df-neg 11030 . . . . . . . . . 10 -(𝐴 · 𝑋) = (0 − (𝐴 · 𝑋))
8583, 84eqtrdi 2787 . . . . . . . . 9 ((𝜑𝐴 < 0) → (-𝐴 · 𝑋) = (0 − (𝐴 · 𝑋)))
8682, 85breqtrd 5065 . . . . . . . 8 ((𝜑𝐴 < 0) → (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) < (0 − (𝐴 · 𝑋)))
8739, 18, 42ltaddsub2d 11398 . . . . . . . 8 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) < 0 ↔ (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) < (0 − (𝐴 · 𝑋))))
8886, 87mpbird 260 . . . . . . 7 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) < 0)
8928a1i 11 . . . . . . . . 9 ((𝜑𝐴 < 0) → 1 ∈ ℝ)
90 0lt1 11319 . . . . . . . . . 10 0 < 1
9190a1i 11 . . . . . . . . 9 ((𝜑𝐴 < 0) → 0 < 1)
9242, 89, 31, 91, 50ltletrd 10957 . . . . . . . 8 ((𝜑𝐴 < 0) → 0 < 𝑋)
93 ltmul1 11647 . . . . . . . 8 ((((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) ∈ ℝ ∧ 0 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 0 < 𝑋)) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) < 0 ↔ (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) < (0 · 𝑋)))
9440, 42, 31, 92, 93syl112anc 1376 . . . . . . 7 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) < 0 ↔ (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) < (0 · 𝑋)))
9588, 94mpbid 235 . . . . . 6 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) < (0 · 𝑋))
9657mul02d 10995 . . . . . 6 ((𝜑𝐴 < 0) → (0 · 𝑋) = 0)
9795, 96breqtrd 5065 . . . . 5 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) < 0)
9838, 41, 42, 73, 97lelttrd 10955 . . . 4 ((𝜑𝐴 < 0) → (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) < 0)
99 ltnle 10877 . . . . 5 (((((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) ∈ ℝ ∧ 0 ∈ ℝ) → ((((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) < 0 ↔ ¬ 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶)))
10038, 15, 99sylancl 589 . . . 4 ((𝜑𝐴 < 0) → ((((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) < 0 ↔ ¬ 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶)))
10198, 100mpbid 235 . . 3 ((𝜑𝐴 < 0) → ¬ 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶))
10232, 101pm2.65da 817 . 2 (𝜑 → ¬ 𝐴 < 0)
103 lelttric 10904 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴𝐴 < 0))
10415, 21, 103sylancr 590 . . 3 (𝜑 → (0 ≤ 𝐴𝐴 < 0))
105104ord 864 . 2 (𝜑 → (¬ 0 ≤ 𝐴𝐴 < 0))
106102, 105mt3d 150 1 (𝜑 → 0 ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2112  wral 3051  ifcif 4425   class class class wbr 5039  (class class class)co 7191  cc 10692  cr 10693  0cc0 10694  1c1 10695   + caddc 10697   · cmul 10699   < clt 10832  cle 10833  cmin 11027  -cneg 11028   / cdiv 11454  2c2 11850  cexp 13600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-n0 12056  df-z 12142  df-uz 12404  df-seq 13540  df-exp 13601
This theorem is referenced by:  discr  13772
  Copyright terms: Public domain W3C validator