MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  discr1 Structured version   Visualization version   GIF version

Theorem discr1 13319
Description: A nonnegative quadratic form has nonnegative leading coefficient. (Contributed by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
discr.1 (𝜑𝐴 ∈ ℝ)
discr.2 (𝜑𝐵 ∈ ℝ)
discr.3 (𝜑𝐶 ∈ ℝ)
discr.4 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
discr1.5 𝑋 = if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1)
Assertion
Ref Expression
discr1 (𝜑 → 0 ≤ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥

Proof of Theorem discr1
StepHypRef Expression
1 oveq1 6929 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥↑2) = (𝑋↑2))
21oveq2d 6938 . . . . . . 7 (𝑥 = 𝑋 → (𝐴 · (𝑥↑2)) = (𝐴 · (𝑋↑2)))
3 oveq2 6930 . . . . . . 7 (𝑥 = 𝑋 → (𝐵 · 𝑥) = (𝐵 · 𝑋))
42, 3oveq12d 6940 . . . . . 6 (𝑥 = 𝑋 → ((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) = ((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)))
54oveq1d 6937 . . . . 5 (𝑥 = 𝑋 → (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) = (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶))
65breq2d 4898 . . . 4 (𝑥 = 𝑋 → (0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) ↔ 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶)))
7 discr.4 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
87ralrimiva 3148 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
98adantr 474 . . . 4 ((𝜑𝐴 < 0) → ∀𝑥 ∈ ℝ 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
10 discr1.5 . . . . 5 𝑋 = if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1)
11 discr.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1211adantr 474 . . . . . . . . 9 ((𝜑𝐴 < 0) → 𝐵 ∈ ℝ)
13 discr.3 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
1413adantr 474 . . . . . . . . . 10 ((𝜑𝐴 < 0) → 𝐶 ∈ ℝ)
15 0re 10378 . . . . . . . . . 10 0 ∈ ℝ
16 ifcl 4351 . . . . . . . . . 10 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
1714, 15, 16sylancl 580 . . . . . . . . 9 ((𝜑𝐴 < 0) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
1812, 17readdcld 10406 . . . . . . . 8 ((𝜑𝐴 < 0) → (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ)
19 peano2re 10549 . . . . . . . 8 ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ → ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ∈ ℝ)
2018, 19syl 17 . . . . . . 7 ((𝜑𝐴 < 0) → ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ∈ ℝ)
21 discr.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
2221adantr 474 . . . . . . . 8 ((𝜑𝐴 < 0) → 𝐴 ∈ ℝ)
2322renegcld 10802 . . . . . . 7 ((𝜑𝐴 < 0) → -𝐴 ∈ ℝ)
2421lt0neg1d 10944 . . . . . . . . 9 (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴))
2524biimpa 470 . . . . . . . 8 ((𝜑𝐴 < 0) → 0 < -𝐴)
2625gt0ne0d 10939 . . . . . . 7 ((𝜑𝐴 < 0) → -𝐴 ≠ 0)
2720, 23, 26redivcld 11203 . . . . . 6 ((𝜑𝐴 < 0) → (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ∈ ℝ)
28 1re 10376 . . . . . 6 1 ∈ ℝ
29 ifcl 4351 . . . . . 6 (((((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1) ∈ ℝ)
3027, 28, 29sylancl 580 . . . . 5 ((𝜑𝐴 < 0) → if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1) ∈ ℝ)
3110, 30syl5eqel 2863 . . . 4 ((𝜑𝐴 < 0) → 𝑋 ∈ ℝ)
326, 9, 31rspcdva 3517 . . 3 ((𝜑𝐴 < 0) → 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶))
33 resqcl 13249 . . . . . . . . 9 (𝑋 ∈ ℝ → (𝑋↑2) ∈ ℝ)
3431, 33syl 17 . . . . . . . 8 ((𝜑𝐴 < 0) → (𝑋↑2) ∈ ℝ)
3522, 34remulcld 10407 . . . . . . 7 ((𝜑𝐴 < 0) → (𝐴 · (𝑋↑2)) ∈ ℝ)
3612, 31remulcld 10407 . . . . . . 7 ((𝜑𝐴 < 0) → (𝐵 · 𝑋) ∈ ℝ)
3735, 36readdcld 10406 . . . . . 6 ((𝜑𝐴 < 0) → ((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) ∈ ℝ)
3837, 14readdcld 10406 . . . . 5 ((𝜑𝐴 < 0) → (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) ∈ ℝ)
3922, 31remulcld 10407 . . . . . . 7 ((𝜑𝐴 < 0) → (𝐴 · 𝑋) ∈ ℝ)
4039, 18readdcld 10406 . . . . . 6 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) ∈ ℝ)
4140, 31remulcld 10407 . . . . 5 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) ∈ ℝ)
4215a1i 11 . . . . 5 ((𝜑𝐴 < 0) → 0 ∈ ℝ)
4317, 31remulcld 10407 . . . . . . 7 ((𝜑𝐴 < 0) → (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋) ∈ ℝ)
44 max2 12330 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
4515, 14, 44sylancr 581 . . . . . . . 8 ((𝜑𝐴 < 0) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
46 max1 12328 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
4715, 14, 46sylancr 581 . . . . . . . . 9 ((𝜑𝐴 < 0) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
48 max1 12328 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ∈ ℝ) → 1 ≤ if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1))
4928, 27, 48sylancr 581 . . . . . . . . . 10 ((𝜑𝐴 < 0) → 1 ≤ if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1))
5049, 10syl6breqr 4928 . . . . . . . . 9 ((𝜑𝐴 < 0) → 1 ≤ 𝑋)
5117, 31, 47, 50lemulge11d 11315 . . . . . . . 8 ((𝜑𝐴 < 0) → if(0 ≤ 𝐶, 𝐶, 0) ≤ (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋))
5214, 17, 43, 45, 51letrd 10533 . . . . . . 7 ((𝜑𝐴 < 0) → 𝐶 ≤ (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋))
5314, 43, 37, 52leadd2dd 10990 . . . . . 6 ((𝜑𝐴 < 0) → (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)))
5439, 12readdcld 10406 . . . . . . . . 9 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) + 𝐵) ∈ ℝ)
5554recnd 10405 . . . . . . . 8 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) + 𝐵) ∈ ℂ)
5617recnd 10405 . . . . . . . 8 ((𝜑𝐴 < 0) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℂ)
5731recnd 10405 . . . . . . . 8 ((𝜑𝐴 < 0) → 𝑋 ∈ ℂ)
5855, 56, 57adddird 10402 . . . . . . 7 ((𝜑𝐴 < 0) → ((((𝐴 · 𝑋) + 𝐵) + if(0 ≤ 𝐶, 𝐶, 0)) · 𝑋) = ((((𝐴 · 𝑋) + 𝐵) · 𝑋) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)))
5939recnd 10405 . . . . . . . . 9 ((𝜑𝐴 < 0) → (𝐴 · 𝑋) ∈ ℂ)
6012recnd 10405 . . . . . . . . 9 ((𝜑𝐴 < 0) → 𝐵 ∈ ℂ)
6159, 60, 56addassd 10399 . . . . . . . 8 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + 𝐵) + if(0 ≤ 𝐶, 𝐶, 0)) = ((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))))
6261oveq1d 6937 . . . . . . 7 ((𝜑𝐴 < 0) → ((((𝐴 · 𝑋) + 𝐵) + if(0 ≤ 𝐶, 𝐶, 0)) · 𝑋) = (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋))
6322recnd 10405 . . . . . . . . . . . 12 ((𝜑𝐴 < 0) → 𝐴 ∈ ℂ)
6463, 57, 57mulassd 10400 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) · 𝑋) = (𝐴 · (𝑋 · 𝑋)))
65 sqval 13240 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑋↑2) = (𝑋 · 𝑋))
6657, 65syl 17 . . . . . . . . . . . 12 ((𝜑𝐴 < 0) → (𝑋↑2) = (𝑋 · 𝑋))
6766oveq2d 6938 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → (𝐴 · (𝑋↑2)) = (𝐴 · (𝑋 · 𝑋)))
6864, 67eqtr4d 2817 . . . . . . . . . 10 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) · 𝑋) = (𝐴 · (𝑋↑2)))
6968oveq1d 6937 . . . . . . . . 9 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) · 𝑋) + (𝐵 · 𝑋)) = ((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)))
7059, 57, 60, 69joinlmuladdmuld 10404 . . . . . . . 8 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + 𝐵) · 𝑋) = ((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)))
7170oveq1d 6937 . . . . . . 7 ((𝜑𝐴 < 0) → ((((𝐴 · 𝑋) + 𝐵) · 𝑋) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)) = (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)))
7258, 62, 713eqtr3d 2822 . . . . . 6 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) = (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)))
7353, 72breqtrrd 4914 . . . . 5 ((𝜑𝐴 < 0) → (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) ≤ (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋))
7423, 31remulcld 10407 . . . . . . . . . 10 ((𝜑𝐴 < 0) → (-𝐴 · 𝑋) ∈ ℝ)
7518ltp1d 11308 . . . . . . . . . 10 ((𝜑𝐴 < 0) → (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) < ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1))
76 max2 12330 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ∈ ℝ) → (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1))
7728, 27, 76sylancr 581 . . . . . . . . . . . 12 ((𝜑𝐴 < 0) → (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1))
7877, 10syl6breqr 4928 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ 𝑋)
79 ledivmul 11253 . . . . . . . . . . . 12 ((((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (-𝐴 ∈ ℝ ∧ 0 < -𝐴)) → ((((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ 𝑋 ↔ ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ≤ (-𝐴 · 𝑋)))
8020, 31, 23, 25, 79syl112anc 1442 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → ((((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ 𝑋 ↔ ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ≤ (-𝐴 · 𝑋)))
8178, 80mpbid 224 . . . . . . . . . 10 ((𝜑𝐴 < 0) → ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ≤ (-𝐴 · 𝑋))
8218, 20, 74, 75, 81ltletrd 10536 . . . . . . . . 9 ((𝜑𝐴 < 0) → (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) < (-𝐴 · 𝑋))
8363, 57mulneg1d 10828 . . . . . . . . . 10 ((𝜑𝐴 < 0) → (-𝐴 · 𝑋) = -(𝐴 · 𝑋))
84 df-neg 10609 . . . . . . . . . 10 -(𝐴 · 𝑋) = (0 − (𝐴 · 𝑋))
8583, 84syl6eq 2830 . . . . . . . . 9 ((𝜑𝐴 < 0) → (-𝐴 · 𝑋) = (0 − (𝐴 · 𝑋)))
8682, 85breqtrd 4912 . . . . . . . 8 ((𝜑𝐴 < 0) → (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) < (0 − (𝐴 · 𝑋)))
8739, 18, 42ltaddsub2d 10976 . . . . . . . 8 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) < 0 ↔ (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) < (0 − (𝐴 · 𝑋))))
8886, 87mpbird 249 . . . . . . 7 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) < 0)
8928a1i 11 . . . . . . . . 9 ((𝜑𝐴 < 0) → 1 ∈ ℝ)
90 0lt1 10897 . . . . . . . . . 10 0 < 1
9190a1i 11 . . . . . . . . 9 ((𝜑𝐴 < 0) → 0 < 1)
9242, 89, 31, 91, 50ltletrd 10536 . . . . . . . 8 ((𝜑𝐴 < 0) → 0 < 𝑋)
93 ltmul1 11227 . . . . . . . 8 ((((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) ∈ ℝ ∧ 0 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 0 < 𝑋)) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) < 0 ↔ (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) < (0 · 𝑋)))
9440, 42, 31, 92, 93syl112anc 1442 . . . . . . 7 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) < 0 ↔ (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) < (0 · 𝑋)))
9588, 94mpbid 224 . . . . . 6 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) < (0 · 𝑋))
9657mul02d 10574 . . . . . 6 ((𝜑𝐴 < 0) → (0 · 𝑋) = 0)
9795, 96breqtrd 4912 . . . . 5 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) < 0)
9838, 41, 42, 73, 97lelttrd 10534 . . . 4 ((𝜑𝐴 < 0) → (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) < 0)
99 ltnle 10456 . . . . 5 (((((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) ∈ ℝ ∧ 0 ∈ ℝ) → ((((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) < 0 ↔ ¬ 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶)))
10038, 15, 99sylancl 580 . . . 4 ((𝜑𝐴 < 0) → ((((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) < 0 ↔ ¬ 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶)))
10198, 100mpbid 224 . . 3 ((𝜑𝐴 < 0) → ¬ 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶))
10232, 101pm2.65da 807 . 2 (𝜑 → ¬ 𝐴 < 0)
103 lelttric 10483 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴𝐴 < 0))
10415, 21, 103sylancr 581 . . 3 (𝜑 → (0 ≤ 𝐴𝐴 < 0))
105104ord 853 . 2 (𝜑 → (¬ 0 ≤ 𝐴𝐴 < 0))
106102, 105mt3d 143 1 (𝜑 → 0 ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 836   = wceq 1601  wcel 2107  wral 3090  ifcif 4307   class class class wbr 4886  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277   < clt 10411  cle 10412  cmin 10606  -cneg 10607   / cdiv 11032  2c2 11430  cexp 13178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-n0 11643  df-z 11729  df-uz 11993  df-seq 13120  df-exp 13179
This theorem is referenced by:  discr  13320
  Copyright terms: Public domain W3C validator