MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  discr1 Structured version   Visualization version   GIF version

Theorem discr1 14275
Description: A nonnegative quadratic form has nonnegative leading coefficient. (Contributed by Mario Carneiro, 4-Jun-2014.)
Hypotheses
Ref Expression
discr.1 (𝜑𝐴 ∈ ℝ)
discr.2 (𝜑𝐵 ∈ ℝ)
discr.3 (𝜑𝐶 ∈ ℝ)
discr.4 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
discr1.5 𝑋 = if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1)
Assertion
Ref Expression
discr1 (𝜑 → 0 ≤ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑋   𝜑,𝑥

Proof of Theorem discr1
StepHypRef Expression
1 oveq1 7438 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥↑2) = (𝑋↑2))
21oveq2d 7447 . . . . . . 7 (𝑥 = 𝑋 → (𝐴 · (𝑥↑2)) = (𝐴 · (𝑋↑2)))
3 oveq2 7439 . . . . . . 7 (𝑥 = 𝑋 → (𝐵 · 𝑥) = (𝐵 · 𝑋))
42, 3oveq12d 7449 . . . . . 6 (𝑥 = 𝑋 → ((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) = ((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)))
54oveq1d 7446 . . . . 5 (𝑥 = 𝑋 → (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) = (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶))
65breq2d 5160 . . . 4 (𝑥 = 𝑋 → (0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶) ↔ 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶)))
7 discr.4 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
87ralrimiva 3144 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
98adantr 480 . . . 4 ((𝜑𝐴 < 0) → ∀𝑥 ∈ ℝ 0 ≤ (((𝐴 · (𝑥↑2)) + (𝐵 · 𝑥)) + 𝐶))
10 discr1.5 . . . . 5 𝑋 = if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1)
11 discr.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
1211adantr 480 . . . . . . . . 9 ((𝜑𝐴 < 0) → 𝐵 ∈ ℝ)
13 discr.3 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℝ)
1413adantr 480 . . . . . . . . . 10 ((𝜑𝐴 < 0) → 𝐶 ∈ ℝ)
15 0re 11261 . . . . . . . . . 10 0 ∈ ℝ
16 ifcl 4576 . . . . . . . . . 10 ((𝐶 ∈ ℝ ∧ 0 ∈ ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
1714, 15, 16sylancl 586 . . . . . . . . 9 ((𝜑𝐴 < 0) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ)
1812, 17readdcld 11288 . . . . . . . 8 ((𝜑𝐴 < 0) → (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ)
19 peano2re 11432 . . . . . . . 8 ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ → ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ∈ ℝ)
2018, 19syl 17 . . . . . . 7 ((𝜑𝐴 < 0) → ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ∈ ℝ)
21 discr.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
2221adantr 480 . . . . . . . 8 ((𝜑𝐴 < 0) → 𝐴 ∈ ℝ)
2322renegcld 11688 . . . . . . 7 ((𝜑𝐴 < 0) → -𝐴 ∈ ℝ)
2421lt0neg1d 11830 . . . . . . . . 9 (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴))
2524biimpa 476 . . . . . . . 8 ((𝜑𝐴 < 0) → 0 < -𝐴)
2625gt0ne0d 11825 . . . . . . 7 ((𝜑𝐴 < 0) → -𝐴 ≠ 0)
2720, 23, 26redivcld 12093 . . . . . 6 ((𝜑𝐴 < 0) → (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ∈ ℝ)
28 1re 11259 . . . . . 6 1 ∈ ℝ
29 ifcl 4576 . . . . . 6 (((((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1) ∈ ℝ)
3027, 28, 29sylancl 586 . . . . 5 ((𝜑𝐴 < 0) → if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1) ∈ ℝ)
3110, 30eqeltrid 2843 . . . 4 ((𝜑𝐴 < 0) → 𝑋 ∈ ℝ)
326, 9, 31rspcdva 3623 . . 3 ((𝜑𝐴 < 0) → 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶))
33 resqcl 14161 . . . . . . . . 9 (𝑋 ∈ ℝ → (𝑋↑2) ∈ ℝ)
3431, 33syl 17 . . . . . . . 8 ((𝜑𝐴 < 0) → (𝑋↑2) ∈ ℝ)
3522, 34remulcld 11289 . . . . . . 7 ((𝜑𝐴 < 0) → (𝐴 · (𝑋↑2)) ∈ ℝ)
3612, 31remulcld 11289 . . . . . . 7 ((𝜑𝐴 < 0) → (𝐵 · 𝑋) ∈ ℝ)
3735, 36readdcld 11288 . . . . . 6 ((𝜑𝐴 < 0) → ((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) ∈ ℝ)
3837, 14readdcld 11288 . . . . 5 ((𝜑𝐴 < 0) → (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) ∈ ℝ)
3922, 31remulcld 11289 . . . . . . 7 ((𝜑𝐴 < 0) → (𝐴 · 𝑋) ∈ ℝ)
4039, 18readdcld 11288 . . . . . 6 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) ∈ ℝ)
4140, 31remulcld 11289 . . . . 5 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) ∈ ℝ)
4215a1i 11 . . . . 5 ((𝜑𝐴 < 0) → 0 ∈ ℝ)
4317, 31remulcld 11289 . . . . . . 7 ((𝜑𝐴 < 0) → (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋) ∈ ℝ)
44 max2 13226 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
4515, 14, 44sylancr 587 . . . . . . . 8 ((𝜑𝐴 < 0) → 𝐶 ≤ if(0 ≤ 𝐶, 𝐶, 0))
46 max1 13224 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
4715, 14, 46sylancr 587 . . . . . . . . 9 ((𝜑𝐴 < 0) → 0 ≤ if(0 ≤ 𝐶, 𝐶, 0))
48 max1 13224 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ∈ ℝ) → 1 ≤ if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1))
4928, 27, 48sylancr 587 . . . . . . . . . 10 ((𝜑𝐴 < 0) → 1 ≤ if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1))
5049, 10breqtrrdi 5190 . . . . . . . . 9 ((𝜑𝐴 < 0) → 1 ≤ 𝑋)
5117, 31, 47, 50lemulge11d 12203 . . . . . . . 8 ((𝜑𝐴 < 0) → if(0 ≤ 𝐶, 𝐶, 0) ≤ (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋))
5214, 17, 43, 45, 51letrd 11416 . . . . . . 7 ((𝜑𝐴 < 0) → 𝐶 ≤ (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋))
5314, 43, 37, 52leadd2dd 11876 . . . . . 6 ((𝜑𝐴 < 0) → (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)))
5439, 12readdcld 11288 . . . . . . . . 9 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) + 𝐵) ∈ ℝ)
5554recnd 11287 . . . . . . . 8 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) + 𝐵) ∈ ℂ)
5617recnd 11287 . . . . . . . 8 ((𝜑𝐴 < 0) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℂ)
5731recnd 11287 . . . . . . . 8 ((𝜑𝐴 < 0) → 𝑋 ∈ ℂ)
5855, 56, 57adddird 11284 . . . . . . 7 ((𝜑𝐴 < 0) → ((((𝐴 · 𝑋) + 𝐵) + if(0 ≤ 𝐶, 𝐶, 0)) · 𝑋) = ((((𝐴 · 𝑋) + 𝐵) · 𝑋) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)))
5939recnd 11287 . . . . . . . . 9 ((𝜑𝐴 < 0) → (𝐴 · 𝑋) ∈ ℂ)
6012recnd 11287 . . . . . . . . 9 ((𝜑𝐴 < 0) → 𝐵 ∈ ℂ)
6159, 60, 56addassd 11281 . . . . . . . 8 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + 𝐵) + if(0 ≤ 𝐶, 𝐶, 0)) = ((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))))
6261oveq1d 7446 . . . . . . 7 ((𝜑𝐴 < 0) → ((((𝐴 · 𝑋) + 𝐵) + if(0 ≤ 𝐶, 𝐶, 0)) · 𝑋) = (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋))
6322recnd 11287 . . . . . . . . . . . 12 ((𝜑𝐴 < 0) → 𝐴 ∈ ℂ)
6463, 57, 57mulassd 11282 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) · 𝑋) = (𝐴 · (𝑋 · 𝑋)))
65 sqval 14152 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑋↑2) = (𝑋 · 𝑋))
6657, 65syl 17 . . . . . . . . . . . 12 ((𝜑𝐴 < 0) → (𝑋↑2) = (𝑋 · 𝑋))
6766oveq2d 7447 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → (𝐴 · (𝑋↑2)) = (𝐴 · (𝑋 · 𝑋)))
6864, 67eqtr4d 2778 . . . . . . . . . 10 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) · 𝑋) = (𝐴 · (𝑋↑2)))
6968oveq1d 7446 . . . . . . . . 9 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) · 𝑋) + (𝐵 · 𝑋)) = ((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)))
7059, 57, 60, 69joinlmuladdmuld 11286 . . . . . . . 8 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + 𝐵) · 𝑋) = ((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)))
7170oveq1d 7446 . . . . . . 7 ((𝜑𝐴 < 0) → ((((𝐴 · 𝑋) + 𝐵) · 𝑋) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)) = (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)))
7258, 62, 713eqtr3d 2783 . . . . . 6 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) = (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + (if(0 ≤ 𝐶, 𝐶, 0) · 𝑋)))
7353, 72breqtrrd 5176 . . . . 5 ((𝜑𝐴 < 0) → (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) ≤ (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋))
7423, 31remulcld 11289 . . . . . . . . . 10 ((𝜑𝐴 < 0) → (-𝐴 · 𝑋) ∈ ℝ)
7518ltp1d 12196 . . . . . . . . . 10 ((𝜑𝐴 < 0) → (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) < ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1))
76 max2 13226 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ∈ ℝ) → (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1))
7728, 27, 76sylancr 587 . . . . . . . . . . . 12 ((𝜑𝐴 < 0) → (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ if(1 ≤ (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴), 1))
7877, 10breqtrrdi 5190 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → (((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ 𝑋)
79 ledivmul 12142 . . . . . . . . . . . 12 ((((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ (-𝐴 ∈ ℝ ∧ 0 < -𝐴)) → ((((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ 𝑋 ↔ ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ≤ (-𝐴 · 𝑋)))
8020, 31, 23, 25, 79syl112anc 1373 . . . . . . . . . . 11 ((𝜑𝐴 < 0) → ((((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) / -𝐴) ≤ 𝑋 ↔ ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ≤ (-𝐴 · 𝑋)))
8178, 80mpbid 232 . . . . . . . . . 10 ((𝜑𝐴 < 0) → ((𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) + 1) ≤ (-𝐴 · 𝑋))
8218, 20, 74, 75, 81ltletrd 11419 . . . . . . . . 9 ((𝜑𝐴 < 0) → (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) < (-𝐴 · 𝑋))
8363, 57mulneg1d 11714 . . . . . . . . . 10 ((𝜑𝐴 < 0) → (-𝐴 · 𝑋) = -(𝐴 · 𝑋))
84 df-neg 11493 . . . . . . . . . 10 -(𝐴 · 𝑋) = (0 − (𝐴 · 𝑋))
8583, 84eqtrdi 2791 . . . . . . . . 9 ((𝜑𝐴 < 0) → (-𝐴 · 𝑋) = (0 − (𝐴 · 𝑋)))
8682, 85breqtrd 5174 . . . . . . . 8 ((𝜑𝐴 < 0) → (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) < (0 − (𝐴 · 𝑋)))
8739, 18, 42ltaddsub2d 11862 . . . . . . . 8 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) < 0 ↔ (𝐵 + if(0 ≤ 𝐶, 𝐶, 0)) < (0 − (𝐴 · 𝑋))))
8886, 87mpbird 257 . . . . . . 7 ((𝜑𝐴 < 0) → ((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) < 0)
8928a1i 11 . . . . . . . . 9 ((𝜑𝐴 < 0) → 1 ∈ ℝ)
90 0lt1 11783 . . . . . . . . . 10 0 < 1
9190a1i 11 . . . . . . . . 9 ((𝜑𝐴 < 0) → 0 < 1)
9242, 89, 31, 91, 50ltletrd 11419 . . . . . . . 8 ((𝜑𝐴 < 0) → 0 < 𝑋)
93 ltmul1 12115 . . . . . . . 8 ((((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) ∈ ℝ ∧ 0 ∈ ℝ ∧ (𝑋 ∈ ℝ ∧ 0 < 𝑋)) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) < 0 ↔ (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) < (0 · 𝑋)))
9440, 42, 31, 92, 93syl112anc 1373 . . . . . . 7 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) < 0 ↔ (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) < (0 · 𝑋)))
9588, 94mpbid 232 . . . . . 6 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) < (0 · 𝑋))
9657mul02d 11457 . . . . . 6 ((𝜑𝐴 < 0) → (0 · 𝑋) = 0)
9795, 96breqtrd 5174 . . . . 5 ((𝜑𝐴 < 0) → (((𝐴 · 𝑋) + (𝐵 + if(0 ≤ 𝐶, 𝐶, 0))) · 𝑋) < 0)
9838, 41, 42, 73, 97lelttrd 11417 . . . 4 ((𝜑𝐴 < 0) → (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) < 0)
99 ltnle 11338 . . . . 5 (((((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) ∈ ℝ ∧ 0 ∈ ℝ) → ((((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) < 0 ↔ ¬ 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶)))
10038, 15, 99sylancl 586 . . . 4 ((𝜑𝐴 < 0) → ((((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶) < 0 ↔ ¬ 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶)))
10198, 100mpbid 232 . . 3 ((𝜑𝐴 < 0) → ¬ 0 ≤ (((𝐴 · (𝑋↑2)) + (𝐵 · 𝑋)) + 𝐶))
10232, 101pm2.65da 817 . 2 (𝜑 → ¬ 𝐴 < 0)
103 lelttric 11366 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴𝐴 < 0))
10415, 21, 103sylancr 587 . . 3 (𝜑 → (0 ≤ 𝐴𝐴 < 0))
105104ord 864 . 2 (𝜑 → (¬ 0 ≤ 𝐴𝐴 < 0))
106102, 105mt3d 148 1 (𝜑 → 0 ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1537  wcel 2106  wral 3059  ifcif 4531   class class class wbr 5148  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490  -cneg 11491   / cdiv 11918  2c2 12319  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-exp 14100
This theorem is referenced by:  discr  14276
  Copyright terms: Public domain W3C validator