MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tangtx Structured version   Visualization version   GIF version

Theorem tangtx 25567
Description: The tangent function is greater than its argument on positive reals in its principal domain. (Contributed by Mario Carneiro, 29-Jul-2014.)
Assertion
Ref Expression
tangtx (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (tan‘𝐴))

Proof of Theorem tangtx
StepHypRef Expression
1 elioore 13038 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 ∈ ℝ)
21recoscld 15781 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → (cos‘𝐴) ∈ ℝ)
31, 2remulcld 10936 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (cos‘𝐴)) ∈ ℝ)
4 1re 10906 . . . . . . 7 1 ∈ ℝ
5 rehalfcl 12129 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
61, 5syl 17 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) ∈ ℝ)
76resqcld 13893 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑2) ∈ ℝ)
8 3nn 11982 . . . . . . . 8 3 ∈ ℕ
9 nndivre 11944 . . . . . . . 8 ((((𝐴 / 2)↑2) ∈ ℝ ∧ 3 ∈ ℕ) → (((𝐴 / 2)↑2) / 3) ∈ ℝ)
107, 8, 9sylancl 585 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2)↑2) / 3) ∈ ℝ)
11 resubcl 11215 . . . . . . 7 ((1 ∈ ℝ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℝ) → (1 − (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
124, 10, 11sylancr 586 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (1 − (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
131, 12remulcld 10936 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) ∈ ℝ)
14 2re 11977 . . . . . . 7 2 ∈ ℝ
15 remulcl 10887 . . . . . . 7 ((2 ∈ ℝ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℝ) → (2 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
1614, 10, 15sylancr 586 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (2 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
17 resubcl 11215 . . . . . 6 ((1 ∈ ℝ ∧ (2 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ) → (1 − (2 · (((𝐴 / 2)↑2) / 3))) ∈ ℝ)
184, 16, 17sylancr 586 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → (1 − (2 · (((𝐴 / 2)↑2) / 3))) ∈ ℝ)
1913, 18remulcld 10936 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) ∈ ℝ)
201resincld 15780 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → (sin‘𝐴) ∈ ℝ)
2112resqcld 13893 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3))↑2) ∈ ℝ)
22 remulcl 10887 . . . . . . . . 9 ((2 ∈ ℝ ∧ ((1 − (((𝐴 / 2)↑2) / 3))↑2) ∈ ℝ) → (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) ∈ ℝ)
2314, 21, 22sylancr 586 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) ∈ ℝ)
24 resubcl 11215 . . . . . . . 8 (((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1) ∈ ℝ)
2523, 4, 24sylancl 585 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1) ∈ ℝ)
2612, 18remulcld 10936 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) ∈ ℝ)
271recnd 10934 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 ∈ ℂ)
28 2cn 11978 . . . . . . . . . . . 12 2 ∈ ℂ
2928a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 2 ∈ ℂ)
30 2ne0 12007 . . . . . . . . . . . 12 2 ≠ 0
3130a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 2 ≠ 0)
3227, 29, 31divcan2d 11683 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (2 · (𝐴 / 2)) = 𝐴)
3332fveq2d 6760 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (cos‘(2 · (𝐴 / 2))) = (cos‘𝐴))
346recnd 10934 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) ∈ ℂ)
35 cos2t 15815 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
3634, 35syl 17 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
3733, 36eqtr3d 2780 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (cos‘𝐴) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
386recoscld 15781 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (cos‘(𝐴 / 2)) ∈ ℝ)
3938resqcld 13893 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((cos‘(𝐴 / 2))↑2) ∈ ℝ)
40 remulcl 10887 . . . . . . . . . 10 ((2 ∈ ℝ ∧ ((cos‘(𝐴 / 2))↑2) ∈ ℝ) → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℝ)
4114, 39, 40sylancr 586 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℝ)
424a1i 11 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → 1 ∈ ℝ)
4314a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → 2 ∈ ℝ)
44 eliooord 13067 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → (0 < 𝐴𝐴 < (π / 2)))
4544simpld 494 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → 0 < 𝐴)
46 2pos 12006 . . . . . . . . . . . . . . . 16 0 < 2
4746a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → 0 < 2)
481, 43, 45, 47divgt0d 11840 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → 0 < (𝐴 / 2))
49 pire 25520 . . . . . . . . . . . . . . . . . . 19 π ∈ ℝ
50 rehalfcl 12129 . . . . . . . . . . . . . . . . . . 19 (π ∈ ℝ → (π / 2) ∈ ℝ)
5149, 50mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (0(,)(π / 2)) → (π / 2) ∈ ℝ)
5244simprd 495 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (π / 2))
53 pigt2lt4 25518 . . . . . . . . . . . . . . . . . . . . . 22 (2 < π ∧ π < 4)
5453simpri 485 . . . . . . . . . . . . . . . . . . . . 21 π < 4
55 2t2e4 12067 . . . . . . . . . . . . . . . . . . . . 21 (2 · 2) = 4
5654, 55breqtrri 5097 . . . . . . . . . . . . . . . . . . . 20 π < (2 · 2)
5714, 46pm3.2i 470 . . . . . . . . . . . . . . . . . . . . 21 (2 ∈ ℝ ∧ 0 < 2)
58 ltdivmul 11780 . . . . . . . . . . . . . . . . . . . . 21 ((π ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((π / 2) < 2 ↔ π < (2 · 2)))
5949, 14, 57, 58mp3an 1459 . . . . . . . . . . . . . . . . . . . 20 ((π / 2) < 2 ↔ π < (2 · 2))
6056, 59mpbir 230 . . . . . . . . . . . . . . . . . . 19 (π / 2) < 2
6160a1i 11 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (0(,)(π / 2)) → (π / 2) < 2)
621, 51, 43, 52, 61lttrd 11066 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < 2)
6328mulid2i 10911 . . . . . . . . . . . . . . . . 17 (1 · 2) = 2
6462, 63breqtrrdi 5112 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (1 · 2))
65 ltdivmul2 11782 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝐴 / 2) < 1 ↔ 𝐴 < (1 · 2)))
661, 42, 43, 47, 65syl112anc 1372 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) < 1 ↔ 𝐴 < (1 · 2)))
6764, 66mpbird 256 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) < 1)
686, 42, 67ltled 11053 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) ≤ 1)
69 0xr 10953 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
70 elioc2 13071 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((𝐴 / 2) ∈ (0(,]1) ↔ ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1)))
7169, 4, 70mp2an 688 . . . . . . . . . . . . . 14 ((𝐴 / 2) ∈ (0(,]1) ↔ ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1))
726, 48, 68, 71syl3anbrc 1341 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) ∈ (0(,]1))
73 cos01bnd 15823 . . . . . . . . . . . . 13 ((𝐴 / 2) ∈ (0(,]1) → ((1 − (2 · (((𝐴 / 2)↑2) / 3))) < (cos‘(𝐴 / 2)) ∧ (cos‘(𝐴 / 2)) < (1 − (((𝐴 / 2)↑2) / 3))))
7472, 73syl 17 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (2 · (((𝐴 / 2)↑2) / 3))) < (cos‘(𝐴 / 2)) ∧ (cos‘(𝐴 / 2)) < (1 − (((𝐴 / 2)↑2) / 3))))
7574simprd 495 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (cos‘(𝐴 / 2)) < (1 − (((𝐴 / 2)↑2) / 3)))
76 cos01gt0 15828 . . . . . . . . . . . . . 14 ((𝐴 / 2) ∈ (0(,]1) → 0 < (cos‘(𝐴 / 2)))
7772, 76syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → 0 < (cos‘(𝐴 / 2)))
78 0re 10908 . . . . . . . . . . . . . 14 0 ∈ ℝ
79 ltle 10994 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) → (0 < (cos‘(𝐴 / 2)) → 0 ≤ (cos‘(𝐴 / 2))))
8078, 38, 79sylancr 586 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (0 < (cos‘(𝐴 / 2)) → 0 ≤ (cos‘(𝐴 / 2))))
8177, 80mpd 15 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → 0 ≤ (cos‘(𝐴 / 2)))
8278a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → 0 ∈ ℝ)
8382, 38, 12, 77, 75lttrd 11066 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → 0 < (1 − (((𝐴 / 2)↑2) / 3)))
8482, 12, 83ltled 11053 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → 0 ≤ (1 − (((𝐴 / 2)↑2) / 3)))
8538, 12, 81, 84lt2sqd 13901 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((cos‘(𝐴 / 2)) < (1 − (((𝐴 / 2)↑2) / 3)) ↔ ((cos‘(𝐴 / 2))↑2) < ((1 − (((𝐴 / 2)↑2) / 3))↑2)))
8675, 85mpbid 231 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((cos‘(𝐴 / 2))↑2) < ((1 − (((𝐴 / 2)↑2) / 3))↑2))
87 ltmul2 11756 . . . . . . . . . . 11 ((((cos‘(𝐴 / 2))↑2) ∈ ℝ ∧ ((1 − (((𝐴 / 2)↑2) / 3))↑2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((cos‘(𝐴 / 2))↑2) < ((1 − (((𝐴 / 2)↑2) / 3))↑2) ↔ (2 · ((cos‘(𝐴 / 2))↑2)) < (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2))))
8839, 21, 43, 47, 87syl112anc 1372 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (((cos‘(𝐴 / 2))↑2) < ((1 − (((𝐴 / 2)↑2) / 3))↑2) ↔ (2 · ((cos‘(𝐴 / 2))↑2)) < (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2))))
8986, 88mpbid 231 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((cos‘(𝐴 / 2))↑2)) < (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)))
9041, 23, 42, 89ltsub1dd 11517 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → ((2 · ((cos‘(𝐴 / 2))↑2)) − 1) < ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1))
9137, 90eqbrtrd 5092 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → (cos‘𝐴) < ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1))
92 3re 11983 . . . . . . . . . 10 3 ∈ ℝ
93 remulcl 10887 . . . . . . . . . 10 ((3 ∈ ℝ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℝ) → (3 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
9492, 10, 93sylancr 586 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (3 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
95 4re 11987 . . . . . . . . . 10 4 ∈ ℝ
96 remulcl 10887 . . . . . . . . . 10 ((4 ∈ ℝ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℝ) → (4 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
9795, 10, 96sylancr 586 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (4 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
9810resqcld 13893 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((((𝐴 / 2)↑2) / 3)↑2) ∈ ℝ)
99 remulcl 10887 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ ((((𝐴 / 2)↑2) / 3)↑2) ∈ ℝ) → (2 · ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℝ)
10014, 98, 99sylancr 586 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℝ)
101 readdcl 10885 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (2 · ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℝ) → (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) ∈ ℝ)
1024, 100, 101sylancr 586 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) ∈ ℝ)
103 3lt4 12077 . . . . . . . . . 10 3 < 4
10492a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 3 ∈ ℝ)
10595a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 4 ∈ ℝ)
10648gt0ne0d 11469 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) ≠ 0)
1076, 106sqgt0d 13895 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → 0 < ((𝐴 / 2)↑2))
108 3pos 12008 . . . . . . . . . . . . 13 0 < 3
109108a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → 0 < 3)
1107, 104, 107, 109divgt0d 11840 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 0 < (((𝐴 / 2)↑2) / 3))
111 ltmul1 11755 . . . . . . . . . . 11 ((3 ∈ ℝ ∧ 4 ∈ ℝ ∧ ((((𝐴 / 2)↑2) / 3) ∈ ℝ ∧ 0 < (((𝐴 / 2)↑2) / 3))) → (3 < 4 ↔ (3 · (((𝐴 / 2)↑2) / 3)) < (4 · (((𝐴 / 2)↑2) / 3))))
112104, 105, 10, 110, 111syl112anc 1372 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (3 < 4 ↔ (3 · (((𝐴 / 2)↑2) / 3)) < (4 · (((𝐴 / 2)↑2) / 3))))
113103, 112mpbii 232 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (3 · (((𝐴 / 2)↑2) / 3)) < (4 · (((𝐴 / 2)↑2) / 3)))
11494, 97, 102, 113ltsub2dd 11518 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3))) < ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (3 · (((𝐴 / 2)↑2) / 3))))
11542recnd 10934 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → 1 ∈ ℂ)
116 ax-1cn 10860 . . . . . . . . . . 11 1 ∈ ℂ
117100recnd 10934 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℂ)
118 addcl 10884 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (2 · ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℂ) → (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) ∈ ℂ)
119116, 117, 118sylancr 586 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) ∈ ℂ)
12097recnd 10934 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (4 · (((𝐴 / 2)↑2) / 3)) ∈ ℂ)
121119, 120subcld 11262 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3))) ∈ ℂ)
122 sq1 13840 . . . . . . . . . . . . . . 15 (1↑2) = 1
123122a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → (1↑2) = 1)
12410recnd 10934 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2)↑2) / 3) ∈ ℂ)
125124mulid2d 10924 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → (1 · (((𝐴 / 2)↑2) / 3)) = (((𝐴 / 2)↑2) / 3))
126125oveq2d 7271 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → (2 · (1 · (((𝐴 / 2)↑2) / 3))) = (2 · (((𝐴 / 2)↑2) / 3)))
127123, 126oveq12d 7273 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((1↑2) − (2 · (1 · (((𝐴 / 2)↑2) / 3)))) = (1 − (2 · (((𝐴 / 2)↑2) / 3))))
128127oveq1d 7270 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → (((1↑2) − (2 · (1 · (((𝐴 / 2)↑2) / 3)))) + ((((𝐴 / 2)↑2) / 3)↑2)) = ((1 − (2 · (((𝐴 / 2)↑2) / 3))) + ((((𝐴 / 2)↑2) / 3)↑2)))
129 binom2sub 13863 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℂ) → ((1 − (((𝐴 / 2)↑2) / 3))↑2) = (((1↑2) − (2 · (1 · (((𝐴 / 2)↑2) / 3)))) + ((((𝐴 / 2)↑2) / 3)↑2)))
130116, 124, 129sylancr 586 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3))↑2) = (((1↑2) − (2 · (1 · (((𝐴 / 2)↑2) / 3)))) + ((((𝐴 / 2)↑2) / 3)↑2)))
13198recnd 10934 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((((𝐴 / 2)↑2) / 3)↑2) ∈ ℂ)
13216recnd 10934 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (2 · (((𝐴 / 2)↑2) / 3)) ∈ ℂ)
133115, 131, 132addsubd 11283 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((1 + ((((𝐴 / 2)↑2) / 3)↑2)) − (2 · (((𝐴 / 2)↑2) / 3))) = ((1 − (2 · (((𝐴 / 2)↑2) / 3))) + ((((𝐴 / 2)↑2) / 3)↑2)))
134128, 130, 1333eqtr4d 2788 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3))↑2) = ((1 + ((((𝐴 / 2)↑2) / 3)↑2)) − (2 · (((𝐴 / 2)↑2) / 3))))
135134oveq2d 7271 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) = (2 · ((1 + ((((𝐴 / 2)↑2) / 3)↑2)) − (2 · (((𝐴 / 2)↑2) / 3)))))
136 addcl 10884 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ ((((𝐴 / 2)↑2) / 3)↑2) ∈ ℂ) → (1 + ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℂ)
137116, 131, 136sylancr 586 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (1 + ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℂ)
13829, 137, 132subdid 11361 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((1 + ((((𝐴 / 2)↑2) / 3)↑2)) − (2 · (((𝐴 / 2)↑2) / 3)))) = ((2 · (1 + ((((𝐴 / 2)↑2) / 3)↑2))) − (2 · (2 · (((𝐴 / 2)↑2) / 3)))))
13929, 115, 131adddid 10930 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (2 · (1 + ((((𝐴 / 2)↑2) / 3)↑2))) = ((2 · 1) + (2 · ((((𝐴 / 2)↑2) / 3)↑2))))
1401162timesi 12041 . . . . . . . . . . . . . . 15 (2 · 1) = (1 + 1)
141140oveq1i 7265 . . . . . . . . . . . . . 14 ((2 · 1) + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) = ((1 + 1) + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))
142115, 115, 117addassd 10928 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → ((1 + 1) + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) = (1 + (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))))
143141, 142syl5eq 2791 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((2 · 1) + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) = (1 + (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))))
144139, 143eqtrd 2778 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → (2 · (1 + ((((𝐴 / 2)↑2) / 3)↑2))) = (1 + (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))))
14529, 29, 124mulassd 10929 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((2 · 2) · (((𝐴 / 2)↑2) / 3)) = (2 · (2 · (((𝐴 / 2)↑2) / 3))))
14655oveq1i 7265 . . . . . . . . . . . . 13 ((2 · 2) · (((𝐴 / 2)↑2) / 3)) = (4 · (((𝐴 / 2)↑2) / 3))
147145, 146eqtr3di 2794 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → (2 · (2 · (((𝐴 / 2)↑2) / 3))) = (4 · (((𝐴 / 2)↑2) / 3)))
148144, 147oveq12d 7273 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((2 · (1 + ((((𝐴 / 2)↑2) / 3)↑2))) − (2 · (2 · (((𝐴 / 2)↑2) / 3)))) = ((1 + (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))) − (4 · (((𝐴 / 2)↑2) / 3))))
149115, 119, 120, 148assraddsubd 11319 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((2 · (1 + ((((𝐴 / 2)↑2) / 3)↑2))) − (2 · (2 · (((𝐴 / 2)↑2) / 3)))) = (1 + ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3)))))
150135, 138, 1493eqtrd 2782 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) = (1 + ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3)))))
151115, 121, 150mvrladdd 11318 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3))))
152 subcl 11150 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℂ) → (1 − (((𝐴 / 2)↑2) / 3)) ∈ ℂ)
153116, 124, 152sylancr 586 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (1 − (((𝐴 / 2)↑2) / 3)) ∈ ℂ)
154153, 115, 132subdid 11361 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) = (((1 − (((𝐴 / 2)↑2) / 3)) · 1) − ((1 − (((𝐴 / 2)↑2) / 3)) · (2 · (((𝐴 / 2)↑2) / 3)))))
155153mulid1d 10923 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · 1) = (1 − (((𝐴 / 2)↑2) / 3)))
156115, 124, 132subdird 11362 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · (2 · (((𝐴 / 2)↑2) / 3))) = ((1 · (2 · (((𝐴 / 2)↑2) / 3))) − ((((𝐴 / 2)↑2) / 3) · (2 · (((𝐴 / 2)↑2) / 3)))))
157132mulid2d 10924 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → (1 · (2 · (((𝐴 / 2)↑2) / 3))) = (2 · (((𝐴 / 2)↑2) / 3)))
158124, 29, 124mul12d 11114 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((((𝐴 / 2)↑2) / 3) · (2 · (((𝐴 / 2)↑2) / 3))) = (2 · ((((𝐴 / 2)↑2) / 3) · (((𝐴 / 2)↑2) / 3))))
159124sqvald 13789 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → ((((𝐴 / 2)↑2) / 3)↑2) = ((((𝐴 / 2)↑2) / 3) · (((𝐴 / 2)↑2) / 3)))
160159oveq2d 7271 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((((𝐴 / 2)↑2) / 3)↑2)) = (2 · ((((𝐴 / 2)↑2) / 3) · (((𝐴 / 2)↑2) / 3))))
161158, 160eqtr4d 2781 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((((𝐴 / 2)↑2) / 3) · (2 · (((𝐴 / 2)↑2) / 3))) = (2 · ((((𝐴 / 2)↑2) / 3)↑2)))
162157, 161oveq12d 7273 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((1 · (2 · (((𝐴 / 2)↑2) / 3))) − ((((𝐴 / 2)↑2) / 3) · (2 · (((𝐴 / 2)↑2) / 3)))) = ((2 · (((𝐴 / 2)↑2) / 3)) − (2 · ((((𝐴 / 2)↑2) / 3)↑2))))
163156, 162eqtrd 2778 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · (2 · (((𝐴 / 2)↑2) / 3))) = ((2 · (((𝐴 / 2)↑2) / 3)) − (2 · ((((𝐴 / 2)↑2) / 3)↑2))))
164155, 163oveq12d 7273 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (((1 − (((𝐴 / 2)↑2) / 3)) · 1) − ((1 − (((𝐴 / 2)↑2) / 3)) · (2 · (((𝐴 / 2)↑2) / 3)))) = ((1 − (((𝐴 / 2)↑2) / 3)) − ((2 · (((𝐴 / 2)↑2) / 3)) − (2 · ((((𝐴 / 2)↑2) / 3)↑2)))))
165115, 124, 132, 117subadd4d 11310 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) − ((2 · (((𝐴 / 2)↑2) / 3)) − (2 · ((((𝐴 / 2)↑2) / 3)↑2)))) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − ((((𝐴 / 2)↑2) / 3) + (2 · (((𝐴 / 2)↑2) / 3)))))
166 df-3 11967 . . . . . . . . . . . . . 14 3 = (2 + 1)
16728, 116addcomi 11096 . . . . . . . . . . . . . 14 (2 + 1) = (1 + 2)
168166, 167eqtri 2766 . . . . . . . . . . . . 13 3 = (1 + 2)
169168oveq1i 7265 . . . . . . . . . . . 12 (3 · (((𝐴 / 2)↑2) / 3)) = ((1 + 2) · (((𝐴 / 2)↑2) / 3))
170125oveq1d 7270 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((1 · (((𝐴 / 2)↑2) / 3)) + (2 · (((𝐴 / 2)↑2) / 3))) = ((((𝐴 / 2)↑2) / 3) + (2 · (((𝐴 / 2)↑2) / 3))))
171115, 124, 29, 170joinlmuladdmuld 10933 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((1 + 2) · (((𝐴 / 2)↑2) / 3)) = ((((𝐴 / 2)↑2) / 3) + (2 · (((𝐴 / 2)↑2) / 3))))
172169, 171syl5eq 2791 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (3 · (((𝐴 / 2)↑2) / 3)) = ((((𝐴 / 2)↑2) / 3) + (2 · (((𝐴 / 2)↑2) / 3))))
173172oveq2d 7271 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (3 · (((𝐴 / 2)↑2) / 3))) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − ((((𝐴 / 2)↑2) / 3) + (2 · (((𝐴 / 2)↑2) / 3)))))
174165, 173eqtr4d 2781 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) − ((2 · (((𝐴 / 2)↑2) / 3)) − (2 · ((((𝐴 / 2)↑2) / 3)↑2)))) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (3 · (((𝐴 / 2)↑2) / 3))))
175154, 164, 1743eqtrd 2782 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (3 · (((𝐴 / 2)↑2) / 3))))
176114, 151, 1753brtr4d 5102 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1) < ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))))
1772, 25, 26, 91, 176lttrd 11066 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (cos‘𝐴) < ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))))
178 ltmul2 11756 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((cos‘𝐴) < ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) ↔ (𝐴 · (cos‘𝐴)) < (𝐴 · ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))))))
1792, 26, 1, 45, 178syl112anc 1372 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → ((cos‘𝐴) < ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) ↔ (𝐴 · (cos‘𝐴)) < (𝐴 · ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))))))
180177, 179mpbid 231 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (cos‘𝐴)) < (𝐴 · ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3))))))
18118recnd 10934 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (1 − (2 · (((𝐴 / 2)↑2) / 3))) ∈ ℂ)
18227, 153, 181mulassd 10929 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) = (𝐴 · ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3))))))
183180, 182breqtrrd 5098 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (cos‘𝐴)) < ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))))
18413, 38remulcld 10936 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))) ∈ ℝ)
18574simpld 494 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (1 − (2 · (((𝐴 / 2)↑2) / 3))) < (cos‘(𝐴 / 2)))
1861, 12, 45, 83mulgt0d 11060 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → 0 < (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))))
187 ltmul2 11756 . . . . . . 7 (((1 − (2 · (((𝐴 / 2)↑2) / 3))) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ ∧ ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) ∈ ℝ ∧ 0 < (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))))) → ((1 − (2 · (((𝐴 / 2)↑2) / 3))) < (cos‘(𝐴 / 2)) ↔ ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) < ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2)))))
18818, 38, 13, 186, 187syl112anc 1372 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (2 · (((𝐴 / 2)↑2) / 3))) < (cos‘(𝐴 / 2)) ↔ ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) < ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2)))))
189185, 188mpbid 231 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) < ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))))
19029, 34, 153mulassd 10929 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((2 · (𝐴 / 2)) · (1 − (((𝐴 / 2)↑2) / 3))) = (2 · ((𝐴 / 2) · (1 − (((𝐴 / 2)↑2) / 3)))))
19132oveq1d 7270 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((2 · (𝐴 / 2)) · (1 − (((𝐴 / 2)↑2) / 3))) = (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))))
19234, 115, 124subdid 11361 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) · (1 − (((𝐴 / 2)↑2) / 3))) = (((𝐴 / 2) · 1) − ((𝐴 / 2) · (((𝐴 / 2)↑2) / 3))))
19334mulid1d 10923 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) · 1) = (𝐴 / 2))
194166oveq2i 7266 . . . . . . . . . . . . . . . 16 ((𝐴 / 2)↑3) = ((𝐴 / 2)↑(2 + 1))
195 2nn0 12180 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ0
196 expp1 13717 . . . . . . . . . . . . . . . . 17 (((𝐴 / 2) ∈ ℂ ∧ 2 ∈ ℕ0) → ((𝐴 / 2)↑(2 + 1)) = (((𝐴 / 2)↑2) · (𝐴 / 2)))
19734, 195, 196sylancl 585 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑(2 + 1)) = (((𝐴 / 2)↑2) · (𝐴 / 2)))
198194, 197syl5eq 2791 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑3) = (((𝐴 / 2)↑2) · (𝐴 / 2)))
1997recnd 10934 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑2) ∈ ℂ)
200199, 34mulcomd 10927 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2)↑2) · (𝐴 / 2)) = ((𝐴 / 2) · ((𝐴 / 2)↑2)))
201198, 200eqtrd 2778 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑3) = ((𝐴 / 2) · ((𝐴 / 2)↑2)))
202201oveq1d 7270 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2)↑3) / 3) = (((𝐴 / 2) · ((𝐴 / 2)↑2)) / 3))
203 3cn 11984 . . . . . . . . . . . . . . 15 3 ∈ ℂ
204203a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → 3 ∈ ℂ)
205 3ne0 12009 . . . . . . . . . . . . . . 15 3 ≠ 0
206205a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → 3 ≠ 0)
20734, 199, 204, 206divassd 11716 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2) · ((𝐴 / 2)↑2)) / 3) = ((𝐴 / 2) · (((𝐴 / 2)↑2) / 3)))
208202, 207eqtr2d 2779 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) · (((𝐴 / 2)↑2) / 3)) = (((𝐴 / 2)↑3) / 3))
209193, 208oveq12d 7273 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2) · 1) − ((𝐴 / 2) · (((𝐴 / 2)↑2) / 3))) = ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)))
210192, 209eqtrd 2778 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) · (1 − (((𝐴 / 2)↑2) / 3))) = ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)))
211210oveq2d 7271 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((𝐴 / 2) · (1 − (((𝐴 / 2)↑2) / 3)))) = (2 · ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3))))
212190, 191, 2113eqtr3d 2786 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) = (2 · ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3))))
213 sin01bnd 15822 . . . . . . . . . . 11 ((𝐴 / 2) ∈ (0(,]1) → (((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) < (sin‘(𝐴 / 2)) ∧ (sin‘(𝐴 / 2)) < (𝐴 / 2)))
21472, 213syl 17 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) < (sin‘(𝐴 / 2)) ∧ (sin‘(𝐴 / 2)) < (𝐴 / 2)))
215214simpld 494 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) < (sin‘(𝐴 / 2)))
216 3nn0 12181 . . . . . . . . . . . . 13 3 ∈ ℕ0
217 reexpcl 13727 . . . . . . . . . . . . 13 (((𝐴 / 2) ∈ ℝ ∧ 3 ∈ ℕ0) → ((𝐴 / 2)↑3) ∈ ℝ)
2186, 216, 217sylancl 585 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑3) ∈ ℝ)
219 nndivre 11944 . . . . . . . . . . . 12 ((((𝐴 / 2)↑3) ∈ ℝ ∧ 3 ∈ ℕ) → (((𝐴 / 2)↑3) / 3) ∈ ℝ)
220218, 8, 219sylancl 585 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2)↑3) / 3) ∈ ℝ)
2216, 220resubcld 11333 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) ∈ ℝ)
2226resincld 15780 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (sin‘(𝐴 / 2)) ∈ ℝ)
223 ltmul2 11756 . . . . . . . . . 10 ((((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) ∈ ℝ ∧ (sin‘(𝐴 / 2)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) < (sin‘(𝐴 / 2)) ↔ (2 · ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3))) < (2 · (sin‘(𝐴 / 2)))))
224221, 222, 43, 47, 223syl112anc 1372 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) < (sin‘(𝐴 / 2)) ↔ (2 · ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3))) < (2 · (sin‘(𝐴 / 2)))))
225215, 224mpbid 231 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3))) < (2 · (sin‘(𝐴 / 2))))
226212, 225eqbrtrd 5092 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) < (2 · (sin‘(𝐴 / 2))))
227 remulcl 10887 . . . . . . . . 9 ((2 ∈ ℝ ∧ (sin‘(𝐴 / 2)) ∈ ℝ) → (2 · (sin‘(𝐴 / 2))) ∈ ℝ)
22814, 222, 227sylancr 586 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (2 · (sin‘(𝐴 / 2))) ∈ ℝ)
229 ltmul1 11755 . . . . . . . 8 (((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) ∈ ℝ ∧ (2 · (sin‘(𝐴 / 2))) ∈ ℝ ∧ ((cos‘(𝐴 / 2)) ∈ ℝ ∧ 0 < (cos‘(𝐴 / 2)))) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) < (2 · (sin‘(𝐴 / 2))) ↔ ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))) < ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2)))))
23013, 228, 38, 77, 229syl112anc 1372 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) < (2 · (sin‘(𝐴 / 2))) ↔ ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))) < ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2)))))
231226, 230mpbid 231 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))) < ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2))))
232222recnd 10934 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (sin‘(𝐴 / 2)) ∈ ℂ)
23338recnd 10934 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (cos‘(𝐴 / 2)) ∈ ℂ)
23429, 232, 233mulassd 10929 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
235 sin2t 15814 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
23634, 235syl 17 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
23732fveq2d 6760 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → (sin‘(2 · (𝐴 / 2))) = (sin‘𝐴))
238234, 236, 2373eqtr2rd 2785 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (sin‘𝐴) = ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2))))
239231, 238breqtrrd 5098 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))) < (sin‘𝐴))
24019, 184, 20, 189, 239lttrd 11066 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) < (sin‘𝐴))
2413, 19, 20, 183, 240lttrd 11066 . . 3 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (cos‘𝐴)) < (sin‘𝐴))
242 sincosq1sgn 25560 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
243242simprd 495 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → 0 < (cos‘𝐴))
244 ltmuldiv 11778 . . . 4 ((𝐴 ∈ ℝ ∧ (sin‘𝐴) ∈ ℝ ∧ ((cos‘𝐴) ∈ ℝ ∧ 0 < (cos‘𝐴))) → ((𝐴 · (cos‘𝐴)) < (sin‘𝐴) ↔ 𝐴 < ((sin‘𝐴) / (cos‘𝐴))))
2451, 20, 2, 243, 244syl112anc 1372 . . 3 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (cos‘𝐴)) < (sin‘𝐴) ↔ 𝐴 < ((sin‘𝐴) / (cos‘𝐴))))
246241, 245mpbid 231 . 2 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < ((sin‘𝐴) / (cos‘𝐴)))
247243gt0ne0d 11469 . . 3 (𝐴 ∈ (0(,)(π / 2)) → (cos‘𝐴) ≠ 0)
248 tanval 15765 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
24927, 247, 248syl2anc 583 . 2 (𝐴 ∈ (0(,)(π / 2)) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
250246, 249breqtrrd 5098 1 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (tan‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  4c4 11960  0cn0 12163  (,)cioo 13008  (,]cioc 13009  cexp 13710  sincsin 15701  cosccos 15702  tanctan 15703  πcpi 15704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-tan 15709  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  tanabsge  25568  basellem8  26142
  Copyright terms: Public domain W3C validator