MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tangtx Structured version   Visualization version   GIF version

Theorem tangtx 25091
Description: The tangent function is greater than its argument on positive reals in its principal domain. (Contributed by Mario Carneiro, 29-Jul-2014.)
Assertion
Ref Expression
tangtx (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (tan‘𝐴))

Proof of Theorem tangtx
StepHypRef Expression
1 elioore 12769 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 ∈ ℝ)
21recoscld 15497 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → (cos‘𝐴) ∈ ℝ)
31, 2remulcld 10671 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (cos‘𝐴)) ∈ ℝ)
4 1re 10641 . . . . . . 7 1 ∈ ℝ
5 rehalfcl 11864 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
61, 5syl 17 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) ∈ ℝ)
76resqcld 13612 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑2) ∈ ℝ)
8 3nn 11717 . . . . . . . 8 3 ∈ ℕ
9 nndivre 11679 . . . . . . . 8 ((((𝐴 / 2)↑2) ∈ ℝ ∧ 3 ∈ ℕ) → (((𝐴 / 2)↑2) / 3) ∈ ℝ)
107, 8, 9sylancl 588 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2)↑2) / 3) ∈ ℝ)
11 resubcl 10950 . . . . . . 7 ((1 ∈ ℝ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℝ) → (1 − (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
124, 10, 11sylancr 589 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (1 − (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
131, 12remulcld 10671 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) ∈ ℝ)
14 2re 11712 . . . . . . 7 2 ∈ ℝ
15 remulcl 10622 . . . . . . 7 ((2 ∈ ℝ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℝ) → (2 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
1614, 10, 15sylancr 589 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (2 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
17 resubcl 10950 . . . . . 6 ((1 ∈ ℝ ∧ (2 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ) → (1 − (2 · (((𝐴 / 2)↑2) / 3))) ∈ ℝ)
184, 16, 17sylancr 589 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → (1 − (2 · (((𝐴 / 2)↑2) / 3))) ∈ ℝ)
1913, 18remulcld 10671 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) ∈ ℝ)
201resincld 15496 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → (sin‘𝐴) ∈ ℝ)
2112resqcld 13612 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3))↑2) ∈ ℝ)
22 remulcl 10622 . . . . . . . . 9 ((2 ∈ ℝ ∧ ((1 − (((𝐴 / 2)↑2) / 3))↑2) ∈ ℝ) → (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) ∈ ℝ)
2314, 21, 22sylancr 589 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) ∈ ℝ)
24 resubcl 10950 . . . . . . . 8 (((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1) ∈ ℝ)
2523, 4, 24sylancl 588 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1) ∈ ℝ)
2612, 18remulcld 10671 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) ∈ ℝ)
271recnd 10669 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 ∈ ℂ)
28 2cn 11713 . . . . . . . . . . . 12 2 ∈ ℂ
2928a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 2 ∈ ℂ)
30 2ne0 11742 . . . . . . . . . . . 12 2 ≠ 0
3130a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 2 ≠ 0)
3227, 29, 31divcan2d 11418 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (2 · (𝐴 / 2)) = 𝐴)
3332fveq2d 6674 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (cos‘(2 · (𝐴 / 2))) = (cos‘𝐴))
346recnd 10669 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) ∈ ℂ)
35 cos2t 15531 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
3634, 35syl 17 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
3733, 36eqtr3d 2858 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (cos‘𝐴) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
386recoscld 15497 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (cos‘(𝐴 / 2)) ∈ ℝ)
3938resqcld 13612 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((cos‘(𝐴 / 2))↑2) ∈ ℝ)
40 remulcl 10622 . . . . . . . . . 10 ((2 ∈ ℝ ∧ ((cos‘(𝐴 / 2))↑2) ∈ ℝ) → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℝ)
4114, 39, 40sylancr 589 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℝ)
424a1i 11 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → 1 ∈ ℝ)
4314a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → 2 ∈ ℝ)
44 eliooord 12797 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → (0 < 𝐴𝐴 < (π / 2)))
4544simpld 497 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → 0 < 𝐴)
46 2pos 11741 . . . . . . . . . . . . . . . 16 0 < 2
4746a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → 0 < 2)
481, 43, 45, 47divgt0d 11575 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → 0 < (𝐴 / 2))
49 pire 25044 . . . . . . . . . . . . . . . . . . 19 π ∈ ℝ
50 rehalfcl 11864 . . . . . . . . . . . . . . . . . . 19 (π ∈ ℝ → (π / 2) ∈ ℝ)
5149, 50mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (0(,)(π / 2)) → (π / 2) ∈ ℝ)
5244simprd 498 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (π / 2))
53 pigt2lt4 25042 . . . . . . . . . . . . . . . . . . . . . 22 (2 < π ∧ π < 4)
5453simpri 488 . . . . . . . . . . . . . . . . . . . . 21 π < 4
55 2t2e4 11802 . . . . . . . . . . . . . . . . . . . . 21 (2 · 2) = 4
5654, 55breqtrri 5093 . . . . . . . . . . . . . . . . . . . 20 π < (2 · 2)
5714, 46pm3.2i 473 . . . . . . . . . . . . . . . . . . . . 21 (2 ∈ ℝ ∧ 0 < 2)
58 ltdivmul 11515 . . . . . . . . . . . . . . . . . . . . 21 ((π ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((π / 2) < 2 ↔ π < (2 · 2)))
5949, 14, 57, 58mp3an 1457 . . . . . . . . . . . . . . . . . . . 20 ((π / 2) < 2 ↔ π < (2 · 2))
6056, 59mpbir 233 . . . . . . . . . . . . . . . . . . 19 (π / 2) < 2
6160a1i 11 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (0(,)(π / 2)) → (π / 2) < 2)
621, 51, 43, 52, 61lttrd 10801 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < 2)
6328mulid2i 10646 . . . . . . . . . . . . . . . . 17 (1 · 2) = 2
6462, 63breqtrrdi 5108 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (1 · 2))
65 ltdivmul2 11517 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝐴 / 2) < 1 ↔ 𝐴 < (1 · 2)))
661, 42, 43, 47, 65syl112anc 1370 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) < 1 ↔ 𝐴 < (1 · 2)))
6764, 66mpbird 259 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) < 1)
686, 42, 67ltled 10788 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) ≤ 1)
69 0xr 10688 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
70 elioc2 12800 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((𝐴 / 2) ∈ (0(,]1) ↔ ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1)))
7169, 4, 70mp2an 690 . . . . . . . . . . . . . 14 ((𝐴 / 2) ∈ (0(,]1) ↔ ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1))
726, 48, 68, 71syl3anbrc 1339 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) ∈ (0(,]1))
73 cos01bnd 15539 . . . . . . . . . . . . 13 ((𝐴 / 2) ∈ (0(,]1) → ((1 − (2 · (((𝐴 / 2)↑2) / 3))) < (cos‘(𝐴 / 2)) ∧ (cos‘(𝐴 / 2)) < (1 − (((𝐴 / 2)↑2) / 3))))
7472, 73syl 17 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (2 · (((𝐴 / 2)↑2) / 3))) < (cos‘(𝐴 / 2)) ∧ (cos‘(𝐴 / 2)) < (1 − (((𝐴 / 2)↑2) / 3))))
7574simprd 498 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (cos‘(𝐴 / 2)) < (1 − (((𝐴 / 2)↑2) / 3)))
76 cos01gt0 15544 . . . . . . . . . . . . . 14 ((𝐴 / 2) ∈ (0(,]1) → 0 < (cos‘(𝐴 / 2)))
7772, 76syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → 0 < (cos‘(𝐴 / 2)))
78 0re 10643 . . . . . . . . . . . . . 14 0 ∈ ℝ
79 ltle 10729 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) → (0 < (cos‘(𝐴 / 2)) → 0 ≤ (cos‘(𝐴 / 2))))
8078, 38, 79sylancr 589 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (0 < (cos‘(𝐴 / 2)) → 0 ≤ (cos‘(𝐴 / 2))))
8177, 80mpd 15 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → 0 ≤ (cos‘(𝐴 / 2)))
8278a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → 0 ∈ ℝ)
8382, 38, 12, 77, 75lttrd 10801 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → 0 < (1 − (((𝐴 / 2)↑2) / 3)))
8482, 12, 83ltled 10788 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → 0 ≤ (1 − (((𝐴 / 2)↑2) / 3)))
8538, 12, 81, 84lt2sqd 13620 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((cos‘(𝐴 / 2)) < (1 − (((𝐴 / 2)↑2) / 3)) ↔ ((cos‘(𝐴 / 2))↑2) < ((1 − (((𝐴 / 2)↑2) / 3))↑2)))
8675, 85mpbid 234 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((cos‘(𝐴 / 2))↑2) < ((1 − (((𝐴 / 2)↑2) / 3))↑2))
87 ltmul2 11491 . . . . . . . . . . 11 ((((cos‘(𝐴 / 2))↑2) ∈ ℝ ∧ ((1 − (((𝐴 / 2)↑2) / 3))↑2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((cos‘(𝐴 / 2))↑2) < ((1 − (((𝐴 / 2)↑2) / 3))↑2) ↔ (2 · ((cos‘(𝐴 / 2))↑2)) < (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2))))
8839, 21, 43, 47, 87syl112anc 1370 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (((cos‘(𝐴 / 2))↑2) < ((1 − (((𝐴 / 2)↑2) / 3))↑2) ↔ (2 · ((cos‘(𝐴 / 2))↑2)) < (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2))))
8986, 88mpbid 234 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((cos‘(𝐴 / 2))↑2)) < (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)))
9041, 23, 42, 89ltsub1dd 11252 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → ((2 · ((cos‘(𝐴 / 2))↑2)) − 1) < ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1))
9137, 90eqbrtrd 5088 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → (cos‘𝐴) < ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1))
92 3re 11718 . . . . . . . . . 10 3 ∈ ℝ
93 remulcl 10622 . . . . . . . . . 10 ((3 ∈ ℝ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℝ) → (3 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
9492, 10, 93sylancr 589 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (3 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
95 4re 11722 . . . . . . . . . 10 4 ∈ ℝ
96 remulcl 10622 . . . . . . . . . 10 ((4 ∈ ℝ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℝ) → (4 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
9795, 10, 96sylancr 589 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (4 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
9810resqcld 13612 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((((𝐴 / 2)↑2) / 3)↑2) ∈ ℝ)
99 remulcl 10622 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ ((((𝐴 / 2)↑2) / 3)↑2) ∈ ℝ) → (2 · ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℝ)
10014, 98, 99sylancr 589 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℝ)
101 readdcl 10620 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (2 · ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℝ) → (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) ∈ ℝ)
1024, 100, 101sylancr 589 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) ∈ ℝ)
103 3lt4 11812 . . . . . . . . . 10 3 < 4
10492a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 3 ∈ ℝ)
10595a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 4 ∈ ℝ)
10648gt0ne0d 11204 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) ≠ 0)
1076, 106sqgt0d 13614 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → 0 < ((𝐴 / 2)↑2))
108 3pos 11743 . . . . . . . . . . . . 13 0 < 3
109108a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → 0 < 3)
1107, 104, 107, 109divgt0d 11575 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 0 < (((𝐴 / 2)↑2) / 3))
111 ltmul1 11490 . . . . . . . . . . 11 ((3 ∈ ℝ ∧ 4 ∈ ℝ ∧ ((((𝐴 / 2)↑2) / 3) ∈ ℝ ∧ 0 < (((𝐴 / 2)↑2) / 3))) → (3 < 4 ↔ (3 · (((𝐴 / 2)↑2) / 3)) < (4 · (((𝐴 / 2)↑2) / 3))))
112104, 105, 10, 110, 111syl112anc 1370 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (3 < 4 ↔ (3 · (((𝐴 / 2)↑2) / 3)) < (4 · (((𝐴 / 2)↑2) / 3))))
113103, 112mpbii 235 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (3 · (((𝐴 / 2)↑2) / 3)) < (4 · (((𝐴 / 2)↑2) / 3)))
11494, 97, 102, 113ltsub2dd 11253 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3))) < ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (3 · (((𝐴 / 2)↑2) / 3))))
11542recnd 10669 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → 1 ∈ ℂ)
116 ax-1cn 10595 . . . . . . . . . . 11 1 ∈ ℂ
117100recnd 10669 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℂ)
118 addcl 10619 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (2 · ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℂ) → (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) ∈ ℂ)
119116, 117, 118sylancr 589 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) ∈ ℂ)
12097recnd 10669 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (4 · (((𝐴 / 2)↑2) / 3)) ∈ ℂ)
121119, 120subcld 10997 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3))) ∈ ℂ)
122 sq1 13559 . . . . . . . . . . . . . . 15 (1↑2) = 1
123122a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → (1↑2) = 1)
12410recnd 10669 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2)↑2) / 3) ∈ ℂ)
125124mulid2d 10659 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → (1 · (((𝐴 / 2)↑2) / 3)) = (((𝐴 / 2)↑2) / 3))
126125oveq2d 7172 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → (2 · (1 · (((𝐴 / 2)↑2) / 3))) = (2 · (((𝐴 / 2)↑2) / 3)))
127123, 126oveq12d 7174 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((1↑2) − (2 · (1 · (((𝐴 / 2)↑2) / 3)))) = (1 − (2 · (((𝐴 / 2)↑2) / 3))))
128127oveq1d 7171 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → (((1↑2) − (2 · (1 · (((𝐴 / 2)↑2) / 3)))) + ((((𝐴 / 2)↑2) / 3)↑2)) = ((1 − (2 · (((𝐴 / 2)↑2) / 3))) + ((((𝐴 / 2)↑2) / 3)↑2)))
129 binom2sub 13582 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℂ) → ((1 − (((𝐴 / 2)↑2) / 3))↑2) = (((1↑2) − (2 · (1 · (((𝐴 / 2)↑2) / 3)))) + ((((𝐴 / 2)↑2) / 3)↑2)))
130116, 124, 129sylancr 589 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3))↑2) = (((1↑2) − (2 · (1 · (((𝐴 / 2)↑2) / 3)))) + ((((𝐴 / 2)↑2) / 3)↑2)))
13198recnd 10669 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((((𝐴 / 2)↑2) / 3)↑2) ∈ ℂ)
13216recnd 10669 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (2 · (((𝐴 / 2)↑2) / 3)) ∈ ℂ)
133115, 131, 132addsubd 11018 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((1 + ((((𝐴 / 2)↑2) / 3)↑2)) − (2 · (((𝐴 / 2)↑2) / 3))) = ((1 − (2 · (((𝐴 / 2)↑2) / 3))) + ((((𝐴 / 2)↑2) / 3)↑2)))
134128, 130, 1333eqtr4d 2866 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3))↑2) = ((1 + ((((𝐴 / 2)↑2) / 3)↑2)) − (2 · (((𝐴 / 2)↑2) / 3))))
135134oveq2d 7172 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) = (2 · ((1 + ((((𝐴 / 2)↑2) / 3)↑2)) − (2 · (((𝐴 / 2)↑2) / 3)))))
136 addcl 10619 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ ((((𝐴 / 2)↑2) / 3)↑2) ∈ ℂ) → (1 + ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℂ)
137116, 131, 136sylancr 589 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (1 + ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℂ)
13829, 137, 132subdid 11096 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((1 + ((((𝐴 / 2)↑2) / 3)↑2)) − (2 · (((𝐴 / 2)↑2) / 3)))) = ((2 · (1 + ((((𝐴 / 2)↑2) / 3)↑2))) − (2 · (2 · (((𝐴 / 2)↑2) / 3)))))
13929, 115, 131adddid 10665 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (2 · (1 + ((((𝐴 / 2)↑2) / 3)↑2))) = ((2 · 1) + (2 · ((((𝐴 / 2)↑2) / 3)↑2))))
1401162timesi 11776 . . . . . . . . . . . . . . 15 (2 · 1) = (1 + 1)
141140oveq1i 7166 . . . . . . . . . . . . . 14 ((2 · 1) + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) = ((1 + 1) + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))
142115, 115, 117addassd 10663 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → ((1 + 1) + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) = (1 + (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))))
143141, 142syl5eq 2868 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((2 · 1) + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) = (1 + (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))))
144139, 143eqtrd 2856 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → (2 · (1 + ((((𝐴 / 2)↑2) / 3)↑2))) = (1 + (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))))
14555oveq1i 7166 . . . . . . . . . . . . 13 ((2 · 2) · (((𝐴 / 2)↑2) / 3)) = (4 · (((𝐴 / 2)↑2) / 3))
14629, 29, 124mulassd 10664 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((2 · 2) · (((𝐴 / 2)↑2) / 3)) = (2 · (2 · (((𝐴 / 2)↑2) / 3))))
147145, 146syl5reqr 2871 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → (2 · (2 · (((𝐴 / 2)↑2) / 3))) = (4 · (((𝐴 / 2)↑2) / 3)))
148144, 147oveq12d 7174 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((2 · (1 + ((((𝐴 / 2)↑2) / 3)↑2))) − (2 · (2 · (((𝐴 / 2)↑2) / 3)))) = ((1 + (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))) − (4 · (((𝐴 / 2)↑2) / 3))))
149115, 119, 120, 148assraddsubd 11054 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((2 · (1 + ((((𝐴 / 2)↑2) / 3)↑2))) − (2 · (2 · (((𝐴 / 2)↑2) / 3)))) = (1 + ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3)))))
150135, 138, 1493eqtrd 2860 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) = (1 + ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3)))))
151115, 121, 150mvrladdd 11053 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3))))
152 subcl 10885 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℂ) → (1 − (((𝐴 / 2)↑2) / 3)) ∈ ℂ)
153116, 124, 152sylancr 589 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (1 − (((𝐴 / 2)↑2) / 3)) ∈ ℂ)
154153, 115, 132subdid 11096 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) = (((1 − (((𝐴 / 2)↑2) / 3)) · 1) − ((1 − (((𝐴 / 2)↑2) / 3)) · (2 · (((𝐴 / 2)↑2) / 3)))))
155153mulid1d 10658 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · 1) = (1 − (((𝐴 / 2)↑2) / 3)))
156115, 124, 132subdird 11097 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · (2 · (((𝐴 / 2)↑2) / 3))) = ((1 · (2 · (((𝐴 / 2)↑2) / 3))) − ((((𝐴 / 2)↑2) / 3) · (2 · (((𝐴 / 2)↑2) / 3)))))
157132mulid2d 10659 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → (1 · (2 · (((𝐴 / 2)↑2) / 3))) = (2 · (((𝐴 / 2)↑2) / 3)))
158124, 29, 124mul12d 10849 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((((𝐴 / 2)↑2) / 3) · (2 · (((𝐴 / 2)↑2) / 3))) = (2 · ((((𝐴 / 2)↑2) / 3) · (((𝐴 / 2)↑2) / 3))))
159124sqvald 13508 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → ((((𝐴 / 2)↑2) / 3)↑2) = ((((𝐴 / 2)↑2) / 3) · (((𝐴 / 2)↑2) / 3)))
160159oveq2d 7172 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((((𝐴 / 2)↑2) / 3)↑2)) = (2 · ((((𝐴 / 2)↑2) / 3) · (((𝐴 / 2)↑2) / 3))))
161158, 160eqtr4d 2859 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((((𝐴 / 2)↑2) / 3) · (2 · (((𝐴 / 2)↑2) / 3))) = (2 · ((((𝐴 / 2)↑2) / 3)↑2)))
162157, 161oveq12d 7174 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((1 · (2 · (((𝐴 / 2)↑2) / 3))) − ((((𝐴 / 2)↑2) / 3) · (2 · (((𝐴 / 2)↑2) / 3)))) = ((2 · (((𝐴 / 2)↑2) / 3)) − (2 · ((((𝐴 / 2)↑2) / 3)↑2))))
163156, 162eqtrd 2856 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · (2 · (((𝐴 / 2)↑2) / 3))) = ((2 · (((𝐴 / 2)↑2) / 3)) − (2 · ((((𝐴 / 2)↑2) / 3)↑2))))
164155, 163oveq12d 7174 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (((1 − (((𝐴 / 2)↑2) / 3)) · 1) − ((1 − (((𝐴 / 2)↑2) / 3)) · (2 · (((𝐴 / 2)↑2) / 3)))) = ((1 − (((𝐴 / 2)↑2) / 3)) − ((2 · (((𝐴 / 2)↑2) / 3)) − (2 · ((((𝐴 / 2)↑2) / 3)↑2)))))
165115, 124, 132, 117subadd4d 11045 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) − ((2 · (((𝐴 / 2)↑2) / 3)) − (2 · ((((𝐴 / 2)↑2) / 3)↑2)))) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − ((((𝐴 / 2)↑2) / 3) + (2 · (((𝐴 / 2)↑2) / 3)))))
166 df-3 11702 . . . . . . . . . . . . . 14 3 = (2 + 1)
16728, 116addcomi 10831 . . . . . . . . . . . . . 14 (2 + 1) = (1 + 2)
168166, 167eqtri 2844 . . . . . . . . . . . . 13 3 = (1 + 2)
169168oveq1i 7166 . . . . . . . . . . . 12 (3 · (((𝐴 / 2)↑2) / 3)) = ((1 + 2) · (((𝐴 / 2)↑2) / 3))
170125oveq1d 7171 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((1 · (((𝐴 / 2)↑2) / 3)) + (2 · (((𝐴 / 2)↑2) / 3))) = ((((𝐴 / 2)↑2) / 3) + (2 · (((𝐴 / 2)↑2) / 3))))
171115, 124, 29, 170joinlmuladdmuld 10668 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((1 + 2) · (((𝐴 / 2)↑2) / 3)) = ((((𝐴 / 2)↑2) / 3) + (2 · (((𝐴 / 2)↑2) / 3))))
172169, 171syl5eq 2868 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (3 · (((𝐴 / 2)↑2) / 3)) = ((((𝐴 / 2)↑2) / 3) + (2 · (((𝐴 / 2)↑2) / 3))))
173172oveq2d 7172 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (3 · (((𝐴 / 2)↑2) / 3))) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − ((((𝐴 / 2)↑2) / 3) + (2 · (((𝐴 / 2)↑2) / 3)))))
174165, 173eqtr4d 2859 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) − ((2 · (((𝐴 / 2)↑2) / 3)) − (2 · ((((𝐴 / 2)↑2) / 3)↑2)))) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (3 · (((𝐴 / 2)↑2) / 3))))
175154, 164, 1743eqtrd 2860 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (3 · (((𝐴 / 2)↑2) / 3))))
176114, 151, 1753brtr4d 5098 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1) < ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))))
1772, 25, 26, 91, 176lttrd 10801 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (cos‘𝐴) < ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))))
178 ltmul2 11491 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((cos‘𝐴) < ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) ↔ (𝐴 · (cos‘𝐴)) < (𝐴 · ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))))))
1792, 26, 1, 45, 178syl112anc 1370 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → ((cos‘𝐴) < ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) ↔ (𝐴 · (cos‘𝐴)) < (𝐴 · ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))))))
180177, 179mpbid 234 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (cos‘𝐴)) < (𝐴 · ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3))))))
18118recnd 10669 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (1 − (2 · (((𝐴 / 2)↑2) / 3))) ∈ ℂ)
18227, 153, 181mulassd 10664 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) = (𝐴 · ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3))))))
183180, 182breqtrrd 5094 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (cos‘𝐴)) < ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))))
18413, 38remulcld 10671 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))) ∈ ℝ)
18574simpld 497 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (1 − (2 · (((𝐴 / 2)↑2) / 3))) < (cos‘(𝐴 / 2)))
1861, 12, 45, 83mulgt0d 10795 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → 0 < (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))))
187 ltmul2 11491 . . . . . . 7 (((1 − (2 · (((𝐴 / 2)↑2) / 3))) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ ∧ ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) ∈ ℝ ∧ 0 < (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))))) → ((1 − (2 · (((𝐴 / 2)↑2) / 3))) < (cos‘(𝐴 / 2)) ↔ ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) < ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2)))))
18818, 38, 13, 186, 187syl112anc 1370 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (2 · (((𝐴 / 2)↑2) / 3))) < (cos‘(𝐴 / 2)) ↔ ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) < ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2)))))
189185, 188mpbid 234 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) < ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))))
19029, 34, 153mulassd 10664 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((2 · (𝐴 / 2)) · (1 − (((𝐴 / 2)↑2) / 3))) = (2 · ((𝐴 / 2) · (1 − (((𝐴 / 2)↑2) / 3)))))
19132oveq1d 7171 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((2 · (𝐴 / 2)) · (1 − (((𝐴 / 2)↑2) / 3))) = (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))))
19234, 115, 124subdid 11096 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) · (1 − (((𝐴 / 2)↑2) / 3))) = (((𝐴 / 2) · 1) − ((𝐴 / 2) · (((𝐴 / 2)↑2) / 3))))
19334mulid1d 10658 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) · 1) = (𝐴 / 2))
194166oveq2i 7167 . . . . . . . . . . . . . . . 16 ((𝐴 / 2)↑3) = ((𝐴 / 2)↑(2 + 1))
195 2nn0 11915 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ0
196 expp1 13437 . . . . . . . . . . . . . . . . 17 (((𝐴 / 2) ∈ ℂ ∧ 2 ∈ ℕ0) → ((𝐴 / 2)↑(2 + 1)) = (((𝐴 / 2)↑2) · (𝐴 / 2)))
19734, 195, 196sylancl 588 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑(2 + 1)) = (((𝐴 / 2)↑2) · (𝐴 / 2)))
198194, 197syl5eq 2868 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑3) = (((𝐴 / 2)↑2) · (𝐴 / 2)))
1997recnd 10669 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑2) ∈ ℂ)
200199, 34mulcomd 10662 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2)↑2) · (𝐴 / 2)) = ((𝐴 / 2) · ((𝐴 / 2)↑2)))
201198, 200eqtrd 2856 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑3) = ((𝐴 / 2) · ((𝐴 / 2)↑2)))
202201oveq1d 7171 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2)↑3) / 3) = (((𝐴 / 2) · ((𝐴 / 2)↑2)) / 3))
203 3cn 11719 . . . . . . . . . . . . . . 15 3 ∈ ℂ
204203a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → 3 ∈ ℂ)
205 3ne0 11744 . . . . . . . . . . . . . . 15 3 ≠ 0
206205a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → 3 ≠ 0)
20734, 199, 204, 206divassd 11451 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2) · ((𝐴 / 2)↑2)) / 3) = ((𝐴 / 2) · (((𝐴 / 2)↑2) / 3)))
208202, 207eqtr2d 2857 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) · (((𝐴 / 2)↑2) / 3)) = (((𝐴 / 2)↑3) / 3))
209193, 208oveq12d 7174 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2) · 1) − ((𝐴 / 2) · (((𝐴 / 2)↑2) / 3))) = ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)))
210192, 209eqtrd 2856 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) · (1 − (((𝐴 / 2)↑2) / 3))) = ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)))
211210oveq2d 7172 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((𝐴 / 2) · (1 − (((𝐴 / 2)↑2) / 3)))) = (2 · ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3))))
212190, 191, 2113eqtr3d 2864 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) = (2 · ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3))))
213 sin01bnd 15538 . . . . . . . . . . 11 ((𝐴 / 2) ∈ (0(,]1) → (((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) < (sin‘(𝐴 / 2)) ∧ (sin‘(𝐴 / 2)) < (𝐴 / 2)))
21472, 213syl 17 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) < (sin‘(𝐴 / 2)) ∧ (sin‘(𝐴 / 2)) < (𝐴 / 2)))
215214simpld 497 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) < (sin‘(𝐴 / 2)))
216 3nn0 11916 . . . . . . . . . . . . 13 3 ∈ ℕ0
217 reexpcl 13447 . . . . . . . . . . . . 13 (((𝐴 / 2) ∈ ℝ ∧ 3 ∈ ℕ0) → ((𝐴 / 2)↑3) ∈ ℝ)
2186, 216, 217sylancl 588 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑3) ∈ ℝ)
219 nndivre 11679 . . . . . . . . . . . 12 ((((𝐴 / 2)↑3) ∈ ℝ ∧ 3 ∈ ℕ) → (((𝐴 / 2)↑3) / 3) ∈ ℝ)
220218, 8, 219sylancl 588 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2)↑3) / 3) ∈ ℝ)
2216, 220resubcld 11068 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) ∈ ℝ)
2226resincld 15496 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (sin‘(𝐴 / 2)) ∈ ℝ)
223 ltmul2 11491 . . . . . . . . . 10 ((((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) ∈ ℝ ∧ (sin‘(𝐴 / 2)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) < (sin‘(𝐴 / 2)) ↔ (2 · ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3))) < (2 · (sin‘(𝐴 / 2)))))
224221, 222, 43, 47, 223syl112anc 1370 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) < (sin‘(𝐴 / 2)) ↔ (2 · ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3))) < (2 · (sin‘(𝐴 / 2)))))
225215, 224mpbid 234 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3))) < (2 · (sin‘(𝐴 / 2))))
226212, 225eqbrtrd 5088 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) < (2 · (sin‘(𝐴 / 2))))
227 remulcl 10622 . . . . . . . . 9 ((2 ∈ ℝ ∧ (sin‘(𝐴 / 2)) ∈ ℝ) → (2 · (sin‘(𝐴 / 2))) ∈ ℝ)
22814, 222, 227sylancr 589 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (2 · (sin‘(𝐴 / 2))) ∈ ℝ)
229 ltmul1 11490 . . . . . . . 8 (((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) ∈ ℝ ∧ (2 · (sin‘(𝐴 / 2))) ∈ ℝ ∧ ((cos‘(𝐴 / 2)) ∈ ℝ ∧ 0 < (cos‘(𝐴 / 2)))) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) < (2 · (sin‘(𝐴 / 2))) ↔ ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))) < ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2)))))
23013, 228, 38, 77, 229syl112anc 1370 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) < (2 · (sin‘(𝐴 / 2))) ↔ ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))) < ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2)))))
231226, 230mpbid 234 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))) < ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2))))
232222recnd 10669 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (sin‘(𝐴 / 2)) ∈ ℂ)
23338recnd 10669 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (cos‘(𝐴 / 2)) ∈ ℂ)
23429, 232, 233mulassd 10664 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
235 sin2t 15530 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
23634, 235syl 17 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
23732fveq2d 6674 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → (sin‘(2 · (𝐴 / 2))) = (sin‘𝐴))
238234, 236, 2373eqtr2rd 2863 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (sin‘𝐴) = ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2))))
239231, 238breqtrrd 5094 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))) < (sin‘𝐴))
24019, 184, 20, 189, 239lttrd 10801 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) < (sin‘𝐴))
2413, 19, 20, 183, 240lttrd 10801 . . 3 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (cos‘𝐴)) < (sin‘𝐴))
242 sincosq1sgn 25084 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
243242simprd 498 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → 0 < (cos‘𝐴))
244 ltmuldiv 11513 . . . 4 ((𝐴 ∈ ℝ ∧ (sin‘𝐴) ∈ ℝ ∧ ((cos‘𝐴) ∈ ℝ ∧ 0 < (cos‘𝐴))) → ((𝐴 · (cos‘𝐴)) < (sin‘𝐴) ↔ 𝐴 < ((sin‘𝐴) / (cos‘𝐴))))
2451, 20, 2, 243, 244syl112anc 1370 . . 3 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (cos‘𝐴)) < (sin‘𝐴) ↔ 𝐴 < ((sin‘𝐴) / (cos‘𝐴))))
246241, 245mpbid 234 . 2 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < ((sin‘𝐴) / (cos‘𝐴)))
247243gt0ne0d 11204 . . 3 (𝐴 ∈ (0(,)(π / 2)) → (cos‘𝐴) ≠ 0)
248 tanval 15481 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
24927, 247, 248syl2anc 586 . 2 (𝐴 ∈ (0(,)(π / 2)) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
250246, 249breqtrrd 5094 1 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (tan‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  *cxr 10674   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  cn 11638  2c2 11693  3c3 11694  4c4 11695  0cn0 11898  (,)cioo 12739  (,]cioc 12740  cexp 13430  sincsin 15417  cosccos 15418  tanctan 15419  πcpi 15420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-tan 15425  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465
This theorem is referenced by:  tanabsge  25092  basellem8  25665
  Copyright terms: Public domain W3C validator