MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tangtx Structured version   Visualization version   GIF version

Theorem tangtx 26414
Description: The tangent function is greater than its argument on positive reals in its principal domain. (Contributed by Mario Carneiro, 29-Jul-2014.)
Assertion
Ref Expression
tangtx (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (tan‘𝐴))

Proof of Theorem tangtx
StepHypRef Expression
1 elioore 13336 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 ∈ ℝ)
21recoscld 16112 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → (cos‘𝐴) ∈ ℝ)
31, 2remulcld 11204 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (cos‘𝐴)) ∈ ℝ)
4 1re 11174 . . . . . . 7 1 ∈ ℝ
5 rehalfcl 12409 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 / 2) ∈ ℝ)
61, 5syl 17 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) ∈ ℝ)
76resqcld 14090 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑2) ∈ ℝ)
8 3nn 12265 . . . . . . . 8 3 ∈ ℕ
9 nndivre 12227 . . . . . . . 8 ((((𝐴 / 2)↑2) ∈ ℝ ∧ 3 ∈ ℕ) → (((𝐴 / 2)↑2) / 3) ∈ ℝ)
107, 8, 9sylancl 586 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2)↑2) / 3) ∈ ℝ)
11 resubcl 11486 . . . . . . 7 ((1 ∈ ℝ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℝ) → (1 − (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
124, 10, 11sylancr 587 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (1 − (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
131, 12remulcld 11204 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) ∈ ℝ)
14 2re 12260 . . . . . . 7 2 ∈ ℝ
15 remulcl 11153 . . . . . . 7 ((2 ∈ ℝ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℝ) → (2 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
1614, 10, 15sylancr 587 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (2 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
17 resubcl 11486 . . . . . 6 ((1 ∈ ℝ ∧ (2 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ) → (1 − (2 · (((𝐴 / 2)↑2) / 3))) ∈ ℝ)
184, 16, 17sylancr 587 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → (1 − (2 · (((𝐴 / 2)↑2) / 3))) ∈ ℝ)
1913, 18remulcld 11204 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) ∈ ℝ)
201resincld 16111 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → (sin‘𝐴) ∈ ℝ)
2112resqcld 14090 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3))↑2) ∈ ℝ)
22 remulcl 11153 . . . . . . . . 9 ((2 ∈ ℝ ∧ ((1 − (((𝐴 / 2)↑2) / 3))↑2) ∈ ℝ) → (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) ∈ ℝ)
2314, 21, 22sylancr 587 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) ∈ ℝ)
24 resubcl 11486 . . . . . . . 8 (((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) ∈ ℝ ∧ 1 ∈ ℝ) → ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1) ∈ ℝ)
2523, 4, 24sylancl 586 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1) ∈ ℝ)
2612, 18remulcld 11204 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) ∈ ℝ)
271recnd 11202 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 ∈ ℂ)
28 2cn 12261 . . . . . . . . . . . 12 2 ∈ ℂ
2928a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 2 ∈ ℂ)
30 2ne0 12290 . . . . . . . . . . . 12 2 ≠ 0
3130a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 2 ≠ 0)
3227, 29, 31divcan2d 11960 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (2 · (𝐴 / 2)) = 𝐴)
3332fveq2d 6862 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (cos‘(2 · (𝐴 / 2))) = (cos‘𝐴))
346recnd 11202 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) ∈ ℂ)
35 cos2t 16146 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℂ → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
3634, 35syl 17 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (cos‘(2 · (𝐴 / 2))) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
3733, 36eqtr3d 2766 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (cos‘𝐴) = ((2 · ((cos‘(𝐴 / 2))↑2)) − 1))
386recoscld 16112 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (cos‘(𝐴 / 2)) ∈ ℝ)
3938resqcld 14090 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((cos‘(𝐴 / 2))↑2) ∈ ℝ)
40 remulcl 11153 . . . . . . . . . 10 ((2 ∈ ℝ ∧ ((cos‘(𝐴 / 2))↑2) ∈ ℝ) → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℝ)
4114, 39, 40sylancr 587 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((cos‘(𝐴 / 2))↑2)) ∈ ℝ)
424a1i 11 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → 1 ∈ ℝ)
4314a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → 2 ∈ ℝ)
44 eliooord 13366 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → (0 < 𝐴𝐴 < (π / 2)))
4544simpld 494 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → 0 < 𝐴)
46 2pos 12289 . . . . . . . . . . . . . . . 16 0 < 2
4746a1i 11 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → 0 < 2)
481, 43, 45, 47divgt0d 12118 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → 0 < (𝐴 / 2))
49 pire 26366 . . . . . . . . . . . . . . . . . . 19 π ∈ ℝ
50 rehalfcl 12409 . . . . . . . . . . . . . . . . . . 19 (π ∈ ℝ → (π / 2) ∈ ℝ)
5149, 50mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (0(,)(π / 2)) → (π / 2) ∈ ℝ)
5244simprd 495 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (π / 2))
53 pigt2lt4 26364 . . . . . . . . . . . . . . . . . . . . . 22 (2 < π ∧ π < 4)
5453simpri 485 . . . . . . . . . . . . . . . . . . . . 21 π < 4
55 2t2e4 12345 . . . . . . . . . . . . . . . . . . . . 21 (2 · 2) = 4
5654, 55breqtrri 5134 . . . . . . . . . . . . . . . . . . . 20 π < (2 · 2)
5714, 46pm3.2i 470 . . . . . . . . . . . . . . . . . . . . 21 (2 ∈ ℝ ∧ 0 < 2)
58 ltdivmul 12058 . . . . . . . . . . . . . . . . . . . . 21 ((π ∈ ℝ ∧ 2 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((π / 2) < 2 ↔ π < (2 · 2)))
5949, 14, 57, 58mp3an 1463 . . . . . . . . . . . . . . . . . . . 20 ((π / 2) < 2 ↔ π < (2 · 2))
6056, 59mpbir 231 . . . . . . . . . . . . . . . . . . 19 (π / 2) < 2
6160a1i 11 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (0(,)(π / 2)) → (π / 2) < 2)
621, 51, 43, 52, 61lttrd 11335 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < 2)
6328mullidi 11179 . . . . . . . . . . . . . . . . 17 (1 · 2) = 2
6462, 63breqtrrdi 5149 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (1 · 2))
65 ltdivmul2 12060 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 1 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝐴 / 2) < 1 ↔ 𝐴 < (1 · 2)))
661, 42, 43, 47, 65syl112anc 1376 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) < 1 ↔ 𝐴 < (1 · 2)))
6764, 66mpbird 257 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) < 1)
686, 42, 67ltled 11322 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) ≤ 1)
69 0xr 11221 . . . . . . . . . . . . . . 15 0 ∈ ℝ*
70 elioc2 13370 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((𝐴 / 2) ∈ (0(,]1) ↔ ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1)))
7169, 4, 70mp2an 692 . . . . . . . . . . . . . 14 ((𝐴 / 2) ∈ (0(,]1) ↔ ((𝐴 / 2) ∈ ℝ ∧ 0 < (𝐴 / 2) ∧ (𝐴 / 2) ≤ 1))
726, 48, 68, 71syl3anbrc 1344 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) ∈ (0(,]1))
73 cos01bnd 16154 . . . . . . . . . . . . 13 ((𝐴 / 2) ∈ (0(,]1) → ((1 − (2 · (((𝐴 / 2)↑2) / 3))) < (cos‘(𝐴 / 2)) ∧ (cos‘(𝐴 / 2)) < (1 − (((𝐴 / 2)↑2) / 3))))
7472, 73syl 17 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (2 · (((𝐴 / 2)↑2) / 3))) < (cos‘(𝐴 / 2)) ∧ (cos‘(𝐴 / 2)) < (1 − (((𝐴 / 2)↑2) / 3))))
7574simprd 495 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (cos‘(𝐴 / 2)) < (1 − (((𝐴 / 2)↑2) / 3)))
76 cos01gt0 16159 . . . . . . . . . . . . . 14 ((𝐴 / 2) ∈ (0(,]1) → 0 < (cos‘(𝐴 / 2)))
7772, 76syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → 0 < (cos‘(𝐴 / 2)))
78 0re 11176 . . . . . . . . . . . . . 14 0 ∈ ℝ
79 ltle 11262 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ) → (0 < (cos‘(𝐴 / 2)) → 0 ≤ (cos‘(𝐴 / 2))))
8078, 38, 79sylancr 587 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (0 < (cos‘(𝐴 / 2)) → 0 ≤ (cos‘(𝐴 / 2))))
8177, 80mpd 15 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → 0 ≤ (cos‘(𝐴 / 2)))
8278a1i 11 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → 0 ∈ ℝ)
8382, 38, 12, 77, 75lttrd 11335 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → 0 < (1 − (((𝐴 / 2)↑2) / 3)))
8482, 12, 83ltled 11322 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → 0 ≤ (1 − (((𝐴 / 2)↑2) / 3)))
8538, 12, 81, 84lt2sqd 14221 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((cos‘(𝐴 / 2)) < (1 − (((𝐴 / 2)↑2) / 3)) ↔ ((cos‘(𝐴 / 2))↑2) < ((1 − (((𝐴 / 2)↑2) / 3))↑2)))
8675, 85mpbid 232 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((cos‘(𝐴 / 2))↑2) < ((1 − (((𝐴 / 2)↑2) / 3))↑2))
87 ltmul2 12033 . . . . . . . . . . 11 ((((cos‘(𝐴 / 2))↑2) ∈ ℝ ∧ ((1 − (((𝐴 / 2)↑2) / 3))↑2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((cos‘(𝐴 / 2))↑2) < ((1 − (((𝐴 / 2)↑2) / 3))↑2) ↔ (2 · ((cos‘(𝐴 / 2))↑2)) < (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2))))
8839, 21, 43, 47, 87syl112anc 1376 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (((cos‘(𝐴 / 2))↑2) < ((1 − (((𝐴 / 2)↑2) / 3))↑2) ↔ (2 · ((cos‘(𝐴 / 2))↑2)) < (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2))))
8986, 88mpbid 232 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((cos‘(𝐴 / 2))↑2)) < (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)))
9041, 23, 42, 89ltsub1dd 11790 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → ((2 · ((cos‘(𝐴 / 2))↑2)) − 1) < ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1))
9137, 90eqbrtrd 5129 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → (cos‘𝐴) < ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1))
92 3re 12266 . . . . . . . . . 10 3 ∈ ℝ
93 remulcl 11153 . . . . . . . . . 10 ((3 ∈ ℝ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℝ) → (3 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
9492, 10, 93sylancr 587 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (3 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
95 4re 12270 . . . . . . . . . 10 4 ∈ ℝ
96 remulcl 11153 . . . . . . . . . 10 ((4 ∈ ℝ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℝ) → (4 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
9795, 10, 96sylancr 587 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (4 · (((𝐴 / 2)↑2) / 3)) ∈ ℝ)
9810resqcld 14090 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((((𝐴 / 2)↑2) / 3)↑2) ∈ ℝ)
99 remulcl 11153 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ ((((𝐴 / 2)↑2) / 3)↑2) ∈ ℝ) → (2 · ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℝ)
10014, 98, 99sylancr 587 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℝ)
101 readdcl 11151 . . . . . . . . . 10 ((1 ∈ ℝ ∧ (2 · ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℝ) → (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) ∈ ℝ)
1024, 100, 101sylancr 587 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) ∈ ℝ)
103 3lt4 12355 . . . . . . . . . 10 3 < 4
10492a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 3 ∈ ℝ)
10595a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 4 ∈ ℝ)
10648gt0ne0d 11742 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 / 2) ≠ 0)
1076, 106sqgt0d 14215 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → 0 < ((𝐴 / 2)↑2))
108 3pos 12291 . . . . . . . . . . . . 13 0 < 3
109108a1i 11 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → 0 < 3)
1107, 104, 107, 109divgt0d 12118 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → 0 < (((𝐴 / 2)↑2) / 3))
111 ltmul1 12032 . . . . . . . . . . 11 ((3 ∈ ℝ ∧ 4 ∈ ℝ ∧ ((((𝐴 / 2)↑2) / 3) ∈ ℝ ∧ 0 < (((𝐴 / 2)↑2) / 3))) → (3 < 4 ↔ (3 · (((𝐴 / 2)↑2) / 3)) < (4 · (((𝐴 / 2)↑2) / 3))))
112104, 105, 10, 110, 111syl112anc 1376 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (3 < 4 ↔ (3 · (((𝐴 / 2)↑2) / 3)) < (4 · (((𝐴 / 2)↑2) / 3))))
113103, 112mpbii 233 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (3 · (((𝐴 / 2)↑2) / 3)) < (4 · (((𝐴 / 2)↑2) / 3)))
11494, 97, 102, 113ltsub2dd 11791 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3))) < ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (3 · (((𝐴 / 2)↑2) / 3))))
11542recnd 11202 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → 1 ∈ ℂ)
116 ax-1cn 11126 . . . . . . . . . . 11 1 ∈ ℂ
117100recnd 11202 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℂ)
118 addcl 11150 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (2 · ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℂ) → (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) ∈ ℂ)
119116, 117, 118sylancr 587 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) ∈ ℂ)
12097recnd 11202 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (4 · (((𝐴 / 2)↑2) / 3)) ∈ ℂ)
121119, 120subcld 11533 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3))) ∈ ℂ)
122 sq1 14160 . . . . . . . . . . . . . . 15 (1↑2) = 1
123122a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → (1↑2) = 1)
12410recnd 11202 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2)↑2) / 3) ∈ ℂ)
125124mullidd 11192 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → (1 · (((𝐴 / 2)↑2) / 3)) = (((𝐴 / 2)↑2) / 3))
126125oveq2d 7403 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → (2 · (1 · (((𝐴 / 2)↑2) / 3))) = (2 · (((𝐴 / 2)↑2) / 3)))
127123, 126oveq12d 7405 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((1↑2) − (2 · (1 · (((𝐴 / 2)↑2) / 3)))) = (1 − (2 · (((𝐴 / 2)↑2) / 3))))
128127oveq1d 7402 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → (((1↑2) − (2 · (1 · (((𝐴 / 2)↑2) / 3)))) + ((((𝐴 / 2)↑2) / 3)↑2)) = ((1 − (2 · (((𝐴 / 2)↑2) / 3))) + ((((𝐴 / 2)↑2) / 3)↑2)))
129 binom2sub 14185 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℂ) → ((1 − (((𝐴 / 2)↑2) / 3))↑2) = (((1↑2) − (2 · (1 · (((𝐴 / 2)↑2) / 3)))) + ((((𝐴 / 2)↑2) / 3)↑2)))
130116, 124, 129sylancr 587 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3))↑2) = (((1↑2) − (2 · (1 · (((𝐴 / 2)↑2) / 3)))) + ((((𝐴 / 2)↑2) / 3)↑2)))
13198recnd 11202 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((((𝐴 / 2)↑2) / 3)↑2) ∈ ℂ)
13216recnd 11202 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (2 · (((𝐴 / 2)↑2) / 3)) ∈ ℂ)
133115, 131, 132addsubd 11554 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((1 + ((((𝐴 / 2)↑2) / 3)↑2)) − (2 · (((𝐴 / 2)↑2) / 3))) = ((1 − (2 · (((𝐴 / 2)↑2) / 3))) + ((((𝐴 / 2)↑2) / 3)↑2)))
134128, 130, 1333eqtr4d 2774 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3))↑2) = ((1 + ((((𝐴 / 2)↑2) / 3)↑2)) − (2 · (((𝐴 / 2)↑2) / 3))))
135134oveq2d 7403 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) = (2 · ((1 + ((((𝐴 / 2)↑2) / 3)↑2)) − (2 · (((𝐴 / 2)↑2) / 3)))))
136 addcl 11150 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ ((((𝐴 / 2)↑2) / 3)↑2) ∈ ℂ) → (1 + ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℂ)
137116, 131, 136sylancr 587 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (1 + ((((𝐴 / 2)↑2) / 3)↑2)) ∈ ℂ)
13829, 137, 132subdid 11634 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((1 + ((((𝐴 / 2)↑2) / 3)↑2)) − (2 · (((𝐴 / 2)↑2) / 3)))) = ((2 · (1 + ((((𝐴 / 2)↑2) / 3)↑2))) − (2 · (2 · (((𝐴 / 2)↑2) / 3)))))
13929, 115, 131adddid 11198 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (2 · (1 + ((((𝐴 / 2)↑2) / 3)↑2))) = ((2 · 1) + (2 · ((((𝐴 / 2)↑2) / 3)↑2))))
1401162timesi 12319 . . . . . . . . . . . . . . 15 (2 · 1) = (1 + 1)
141140oveq1i 7397 . . . . . . . . . . . . . 14 ((2 · 1) + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) = ((1 + 1) + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))
142115, 115, 117addassd 11196 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → ((1 + 1) + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) = (1 + (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))))
143141, 142eqtrid 2776 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((2 · 1) + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) = (1 + (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))))
144139, 143eqtrd 2764 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → (2 · (1 + ((((𝐴 / 2)↑2) / 3)↑2))) = (1 + (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))))
14529, 29, 124mulassd 11197 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((2 · 2) · (((𝐴 / 2)↑2) / 3)) = (2 · (2 · (((𝐴 / 2)↑2) / 3))))
14655oveq1i 7397 . . . . . . . . . . . . 13 ((2 · 2) · (((𝐴 / 2)↑2) / 3)) = (4 · (((𝐴 / 2)↑2) / 3))
147145, 146eqtr3di 2779 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → (2 · (2 · (((𝐴 / 2)↑2) / 3))) = (4 · (((𝐴 / 2)↑2) / 3)))
148144, 147oveq12d 7405 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((2 · (1 + ((((𝐴 / 2)↑2) / 3)↑2))) − (2 · (2 · (((𝐴 / 2)↑2) / 3)))) = ((1 + (1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2)))) − (4 · (((𝐴 / 2)↑2) / 3))))
149115, 119, 120, 148assraddsubd 11592 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((2 · (1 + ((((𝐴 / 2)↑2) / 3)↑2))) − (2 · (2 · (((𝐴 / 2)↑2) / 3)))) = (1 + ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3)))))
150135, 138, 1493eqtrd 2768 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) = (1 + ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3)))))
151115, 121, 150mvrladdd 11591 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (4 · (((𝐴 / 2)↑2) / 3))))
152 subcl 11420 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (((𝐴 / 2)↑2) / 3) ∈ ℂ) → (1 − (((𝐴 / 2)↑2) / 3)) ∈ ℂ)
153116, 124, 152sylancr 587 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (1 − (((𝐴 / 2)↑2) / 3)) ∈ ℂ)
154153, 115, 132subdid 11634 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) = (((1 − (((𝐴 / 2)↑2) / 3)) · 1) − ((1 − (((𝐴 / 2)↑2) / 3)) · (2 · (((𝐴 / 2)↑2) / 3)))))
155153mulridd 11191 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · 1) = (1 − (((𝐴 / 2)↑2) / 3)))
156115, 124, 132subdird 11635 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · (2 · (((𝐴 / 2)↑2) / 3))) = ((1 · (2 · (((𝐴 / 2)↑2) / 3))) − ((((𝐴 / 2)↑2) / 3) · (2 · (((𝐴 / 2)↑2) / 3)))))
157132mullidd 11192 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → (1 · (2 · (((𝐴 / 2)↑2) / 3))) = (2 · (((𝐴 / 2)↑2) / 3)))
158124, 29, 124mul12d 11383 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((((𝐴 / 2)↑2) / 3) · (2 · (((𝐴 / 2)↑2) / 3))) = (2 · ((((𝐴 / 2)↑2) / 3) · (((𝐴 / 2)↑2) / 3))))
159124sqvald 14108 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → ((((𝐴 / 2)↑2) / 3)↑2) = ((((𝐴 / 2)↑2) / 3) · (((𝐴 / 2)↑2) / 3)))
160159oveq2d 7403 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((((𝐴 / 2)↑2) / 3)↑2)) = (2 · ((((𝐴 / 2)↑2) / 3) · (((𝐴 / 2)↑2) / 3))))
161158, 160eqtr4d 2767 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((((𝐴 / 2)↑2) / 3) · (2 · (((𝐴 / 2)↑2) / 3))) = (2 · ((((𝐴 / 2)↑2) / 3)↑2)))
162157, 161oveq12d 7405 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((1 · (2 · (((𝐴 / 2)↑2) / 3))) − ((((𝐴 / 2)↑2) / 3) · (2 · (((𝐴 / 2)↑2) / 3)))) = ((2 · (((𝐴 / 2)↑2) / 3)) − (2 · ((((𝐴 / 2)↑2) / 3)↑2))))
163156, 162eqtrd 2764 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · (2 · (((𝐴 / 2)↑2) / 3))) = ((2 · (((𝐴 / 2)↑2) / 3)) − (2 · ((((𝐴 / 2)↑2) / 3)↑2))))
164155, 163oveq12d 7405 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (((1 − (((𝐴 / 2)↑2) / 3)) · 1) − ((1 − (((𝐴 / 2)↑2) / 3)) · (2 · (((𝐴 / 2)↑2) / 3)))) = ((1 − (((𝐴 / 2)↑2) / 3)) − ((2 · (((𝐴 / 2)↑2) / 3)) − (2 · ((((𝐴 / 2)↑2) / 3)↑2)))))
165115, 124, 132, 117subadd4d 11581 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) − ((2 · (((𝐴 / 2)↑2) / 3)) − (2 · ((((𝐴 / 2)↑2) / 3)↑2)))) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − ((((𝐴 / 2)↑2) / 3) + (2 · (((𝐴 / 2)↑2) / 3)))))
166 df-3 12250 . . . . . . . . . . . . . 14 3 = (2 + 1)
16728, 116addcomi 11365 . . . . . . . . . . . . . 14 (2 + 1) = (1 + 2)
168166, 167eqtri 2752 . . . . . . . . . . . . 13 3 = (1 + 2)
169168oveq1i 7397 . . . . . . . . . . . 12 (3 · (((𝐴 / 2)↑2) / 3)) = ((1 + 2) · (((𝐴 / 2)↑2) / 3))
170125oveq1d 7402 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → ((1 · (((𝐴 / 2)↑2) / 3)) + (2 · (((𝐴 / 2)↑2) / 3))) = ((((𝐴 / 2)↑2) / 3) + (2 · (((𝐴 / 2)↑2) / 3))))
171115, 124, 29, 170joinlmuladdmuld 11201 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((1 + 2) · (((𝐴 / 2)↑2) / 3)) = ((((𝐴 / 2)↑2) / 3) + (2 · (((𝐴 / 2)↑2) / 3))))
172169, 171eqtrid 2776 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (3 · (((𝐴 / 2)↑2) / 3)) = ((((𝐴 / 2)↑2) / 3) + (2 · (((𝐴 / 2)↑2) / 3))))
173172oveq2d 7403 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (3 · (((𝐴 / 2)↑2) / 3))) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − ((((𝐴 / 2)↑2) / 3) + (2 · (((𝐴 / 2)↑2) / 3)))))
174165, 173eqtr4d 2767 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) − ((2 · (((𝐴 / 2)↑2) / 3)) − (2 · ((((𝐴 / 2)↑2) / 3)↑2)))) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (3 · (((𝐴 / 2)↑2) / 3))))
175154, 164, 1743eqtrd 2768 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) = ((1 + (2 · ((((𝐴 / 2)↑2) / 3)↑2))) − (3 · (((𝐴 / 2)↑2) / 3))))
176114, 151, 1753brtr4d 5139 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → ((2 · ((1 − (((𝐴 / 2)↑2) / 3))↑2)) − 1) < ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))))
1772, 25, 26, 91, 176lttrd 11335 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (cos‘𝐴) < ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))))
178 ltmul2 12033 . . . . . . 7 (((cos‘𝐴) ∈ ℝ ∧ ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((cos‘𝐴) < ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) ↔ (𝐴 · (cos‘𝐴)) < (𝐴 · ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))))))
1792, 26, 1, 45, 178syl112anc 1376 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → ((cos‘𝐴) < ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) ↔ (𝐴 · (cos‘𝐴)) < (𝐴 · ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))))))
180177, 179mpbid 232 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (cos‘𝐴)) < (𝐴 · ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3))))))
18118recnd 11202 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (1 − (2 · (((𝐴 / 2)↑2) / 3))) ∈ ℂ)
18227, 153, 181mulassd 11197 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) = (𝐴 · ((1 − (((𝐴 / 2)↑2) / 3)) · (1 − (2 · (((𝐴 / 2)↑2) / 3))))))
183180, 182breqtrrd 5135 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (cos‘𝐴)) < ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))))
18413, 38remulcld 11204 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))) ∈ ℝ)
18574simpld 494 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (1 − (2 · (((𝐴 / 2)↑2) / 3))) < (cos‘(𝐴 / 2)))
1861, 12, 45, 83mulgt0d 11329 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → 0 < (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))))
187 ltmul2 12033 . . . . . . 7 (((1 − (2 · (((𝐴 / 2)↑2) / 3))) ∈ ℝ ∧ (cos‘(𝐴 / 2)) ∈ ℝ ∧ ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) ∈ ℝ ∧ 0 < (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))))) → ((1 − (2 · (((𝐴 / 2)↑2) / 3))) < (cos‘(𝐴 / 2)) ↔ ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) < ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2)))))
18818, 38, 13, 186, 187syl112anc 1376 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → ((1 − (2 · (((𝐴 / 2)↑2) / 3))) < (cos‘(𝐴 / 2)) ↔ ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) < ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2)))))
189185, 188mpbid 232 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) < ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))))
19029, 34, 153mulassd 11197 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((2 · (𝐴 / 2)) · (1 − (((𝐴 / 2)↑2) / 3))) = (2 · ((𝐴 / 2) · (1 − (((𝐴 / 2)↑2) / 3)))))
19132oveq1d 7402 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((2 · (𝐴 / 2)) · (1 − (((𝐴 / 2)↑2) / 3))) = (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))))
19234, 115, 124subdid 11634 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) · (1 − (((𝐴 / 2)↑2) / 3))) = (((𝐴 / 2) · 1) − ((𝐴 / 2) · (((𝐴 / 2)↑2) / 3))))
19334mulridd 11191 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) · 1) = (𝐴 / 2))
194166oveq2i 7398 . . . . . . . . . . . . . . . 16 ((𝐴 / 2)↑3) = ((𝐴 / 2)↑(2 + 1))
195 2nn0 12459 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ0
196 expp1 14033 . . . . . . . . . . . . . . . . 17 (((𝐴 / 2) ∈ ℂ ∧ 2 ∈ ℕ0) → ((𝐴 / 2)↑(2 + 1)) = (((𝐴 / 2)↑2) · (𝐴 / 2)))
19734, 195, 196sylancl 586 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑(2 + 1)) = (((𝐴 / 2)↑2) · (𝐴 / 2)))
198194, 197eqtrid 2776 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑3) = (((𝐴 / 2)↑2) · (𝐴 / 2)))
1997recnd 11202 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑2) ∈ ℂ)
200199, 34mulcomd 11195 . . . . . . . . . . . . . . 15 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2)↑2) · (𝐴 / 2)) = ((𝐴 / 2) · ((𝐴 / 2)↑2)))
201198, 200eqtrd 2764 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑3) = ((𝐴 / 2) · ((𝐴 / 2)↑2)))
202201oveq1d 7402 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2)↑3) / 3) = (((𝐴 / 2) · ((𝐴 / 2)↑2)) / 3))
203 3cn 12267 . . . . . . . . . . . . . . 15 3 ∈ ℂ
204203a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → 3 ∈ ℂ)
205 3ne0 12292 . . . . . . . . . . . . . . 15 3 ≠ 0
206205a1i 11 . . . . . . . . . . . . . 14 (𝐴 ∈ (0(,)(π / 2)) → 3 ≠ 0)
20734, 199, 204, 206divassd 11993 . . . . . . . . . . . . 13 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2) · ((𝐴 / 2)↑2)) / 3) = ((𝐴 / 2) · (((𝐴 / 2)↑2) / 3)))
208202, 207eqtr2d 2765 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) · (((𝐴 / 2)↑2) / 3)) = (((𝐴 / 2)↑3) / 3))
209193, 208oveq12d 7405 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2) · 1) − ((𝐴 / 2) · (((𝐴 / 2)↑2) / 3))) = ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)))
210192, 209eqtrd 2764 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) · (1 − (((𝐴 / 2)↑2) / 3))) = ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)))
211210oveq2d 7403 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((𝐴 / 2) · (1 − (((𝐴 / 2)↑2) / 3)))) = (2 · ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3))))
212190, 191, 2113eqtr3d 2772 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) = (2 · ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3))))
213 sin01bnd 16153 . . . . . . . . . . 11 ((𝐴 / 2) ∈ (0(,]1) → (((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) < (sin‘(𝐴 / 2)) ∧ (sin‘(𝐴 / 2)) < (𝐴 / 2)))
21472, 213syl 17 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) < (sin‘(𝐴 / 2)) ∧ (sin‘(𝐴 / 2)) < (𝐴 / 2)))
215214simpld 494 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) < (sin‘(𝐴 / 2)))
216 3nn0 12460 . . . . . . . . . . . . 13 3 ∈ ℕ0
217 reexpcl 14043 . . . . . . . . . . . . 13 (((𝐴 / 2) ∈ ℝ ∧ 3 ∈ ℕ0) → ((𝐴 / 2)↑3) ∈ ℝ)
2186, 216, 217sylancl 586 . . . . . . . . . . . 12 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2)↑3) ∈ ℝ)
219 nndivre 12227 . . . . . . . . . . . 12 ((((𝐴 / 2)↑3) ∈ ℝ ∧ 3 ∈ ℕ) → (((𝐴 / 2)↑3) / 3) ∈ ℝ)
220218, 8, 219sylancl 586 . . . . . . . . . . 11 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2)↑3) / 3) ∈ ℝ)
2216, 220resubcld 11606 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) ∈ ℝ)
2226resincld 16111 . . . . . . . . . 10 (𝐴 ∈ (0(,)(π / 2)) → (sin‘(𝐴 / 2)) ∈ ℝ)
223 ltmul2 12033 . . . . . . . . . 10 ((((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) ∈ ℝ ∧ (sin‘(𝐴 / 2)) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) < (sin‘(𝐴 / 2)) ↔ (2 · ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3))) < (2 · (sin‘(𝐴 / 2)))))
224221, 222, 43, 47, 223syl112anc 1376 . . . . . . . . 9 (𝐴 ∈ (0(,)(π / 2)) → (((𝐴 / 2) − (((𝐴 / 2)↑3) / 3)) < (sin‘(𝐴 / 2)) ↔ (2 · ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3))) < (2 · (sin‘(𝐴 / 2)))))
225215, 224mpbid 232 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (2 · ((𝐴 / 2) − (((𝐴 / 2)↑3) / 3))) < (2 · (sin‘(𝐴 / 2))))
226212, 225eqbrtrd 5129 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) < (2 · (sin‘(𝐴 / 2))))
227 remulcl 11153 . . . . . . . . 9 ((2 ∈ ℝ ∧ (sin‘(𝐴 / 2)) ∈ ℝ) → (2 · (sin‘(𝐴 / 2))) ∈ ℝ)
22814, 222, 227sylancr 587 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (2 · (sin‘(𝐴 / 2))) ∈ ℝ)
229 ltmul1 12032 . . . . . . . 8 (((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) ∈ ℝ ∧ (2 · (sin‘(𝐴 / 2))) ∈ ℝ ∧ ((cos‘(𝐴 / 2)) ∈ ℝ ∧ 0 < (cos‘(𝐴 / 2)))) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) < (2 · (sin‘(𝐴 / 2))) ↔ ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))) < ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2)))))
23013, 228, 38, 77, 229syl112anc 1376 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) < (2 · (sin‘(𝐴 / 2))) ↔ ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))) < ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2)))))
231226, 230mpbid 232 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))) < ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2))))
232222recnd 11202 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (sin‘(𝐴 / 2)) ∈ ℂ)
23338recnd 11202 . . . . . . . 8 (𝐴 ∈ (0(,)(π / 2)) → (cos‘(𝐴 / 2)) ∈ ℂ)
23429, 232, 233mulassd 11197 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
235 sin2t 16145 . . . . . . . 8 ((𝐴 / 2) ∈ ℂ → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
23634, 235syl 17 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → (sin‘(2 · (𝐴 / 2))) = (2 · ((sin‘(𝐴 / 2)) · (cos‘(𝐴 / 2)))))
23732fveq2d 6862 . . . . . . 7 (𝐴 ∈ (0(,)(π / 2)) → (sin‘(2 · (𝐴 / 2))) = (sin‘𝐴))
238234, 236, 2373eqtr2rd 2771 . . . . . 6 (𝐴 ∈ (0(,)(π / 2)) → (sin‘𝐴) = ((2 · (sin‘(𝐴 / 2))) · (cos‘(𝐴 / 2))))
239231, 238breqtrrd 5135 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (cos‘(𝐴 / 2))) < (sin‘𝐴))
24019, 184, 20, 189, 239lttrd 11335 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (1 − (((𝐴 / 2)↑2) / 3))) · (1 − (2 · (((𝐴 / 2)↑2) / 3)))) < (sin‘𝐴))
2413, 19, 20, 183, 240lttrd 11335 . . 3 (𝐴 ∈ (0(,)(π / 2)) → (𝐴 · (cos‘𝐴)) < (sin‘𝐴))
242 sincosq1sgn 26407 . . . . 5 (𝐴 ∈ (0(,)(π / 2)) → (0 < (sin‘𝐴) ∧ 0 < (cos‘𝐴)))
243242simprd 495 . . . 4 (𝐴 ∈ (0(,)(π / 2)) → 0 < (cos‘𝐴))
244 ltmuldiv 12056 . . . 4 ((𝐴 ∈ ℝ ∧ (sin‘𝐴) ∈ ℝ ∧ ((cos‘𝐴) ∈ ℝ ∧ 0 < (cos‘𝐴))) → ((𝐴 · (cos‘𝐴)) < (sin‘𝐴) ↔ 𝐴 < ((sin‘𝐴) / (cos‘𝐴))))
2451, 20, 2, 243, 244syl112anc 1376 . . 3 (𝐴 ∈ (0(,)(π / 2)) → ((𝐴 · (cos‘𝐴)) < (sin‘𝐴) ↔ 𝐴 < ((sin‘𝐴) / (cos‘𝐴))))
246241, 245mpbid 232 . 2 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < ((sin‘𝐴) / (cos‘𝐴)))
247243gt0ne0d 11742 . . 3 (𝐴 ∈ (0(,)(π / 2)) → (cos‘𝐴) ≠ 0)
248 tanval 16096 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
24927, 247, 248syl2anc 584 . 2 (𝐴 ∈ (0(,)(π / 2)) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
250246, 249breqtrrd 5135 1 (𝐴 ∈ (0(,)(π / 2)) → 𝐴 < (tan‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  2c2 12241  3c3 12242  4c4 12243  0cn0 12442  (,)cioo 13306  (,]cioc 13307  cexp 14026  sincsin 16029  cosccos 16030  tanctan 16031  πcpi 16032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-tan 16037  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  tanabsge  26415  basellem8  26998
  Copyright terms: Public domain W3C validator