MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdifltdiv Structured version   Visualization version   GIF version

Theorem ltdifltdiv 13554
Description: If the dividend of a division is less than the difference between a real number and the divisor, the floor function of the division plus 1 is less than the division of the real number by the divisor. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
Assertion
Ref Expression
ltdifltdiv ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 < (𝐶𝐵) → ((⌊‘(𝐴 / 𝐵)) + 1) < (𝐶 / 𝐵)))

Proof of Theorem ltdifltdiv
StepHypRef Expression
1 refldivcl 13543 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
2 peano2re 11148 . . . . . 6 ((⌊‘(𝐴 / 𝐵)) ∈ ℝ → ((⌊‘(𝐴 / 𝐵)) + 1) ∈ ℝ)
31, 2syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘(𝐴 / 𝐵)) + 1) ∈ ℝ)
433adant3 1131 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((⌊‘(𝐴 / 𝐵)) + 1) ∈ ℝ)
54adantr 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((⌊‘(𝐴 / 𝐵)) + 1) ∈ ℝ)
6 rerpdivcl 12760 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
7 peano2re 11148 . . . . . 6 ((𝐴 / 𝐵) ∈ ℝ → ((𝐴 / 𝐵) + 1) ∈ ℝ)
86, 7syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) + 1) ∈ ℝ)
983adant3 1131 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐴 / 𝐵) + 1) ∈ ℝ)
109adantr 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((𝐴 / 𝐵) + 1) ∈ ℝ)
11 rerpdivcl 12760 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐶 / 𝐵) ∈ ℝ)
1211ancoms 459 . . . . 5 ((𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐶 / 𝐵) ∈ ℝ)
13123adant1 1129 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐶 / 𝐵) ∈ ℝ)
1413adantr 481 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (𝐶 / 𝐵) ∈ ℝ)
1513adant3 1131 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
1615adantr 481 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
1763adant3 1131 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 / 𝐵) ∈ ℝ)
1817adantr 481 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (𝐴 / 𝐵) ∈ ℝ)
19 1red 10976 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → 1 ∈ ℝ)
20 3simpa 1147 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+))
2120adantr 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+))
22 fldivle 13551 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
2321, 22syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
2416, 18, 19, 23leadd1dd 11589 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((⌊‘(𝐴 / 𝐵)) + 1) ≤ ((𝐴 / 𝐵) + 1))
25 rpre 12738 . . . . . . 7 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
26 ltaddsub 11449 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶𝐴 < (𝐶𝐵)))
2725, 26syl3an2 1163 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶𝐴 < (𝐶𝐵)))
2827biimpar 478 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (𝐴 + 𝐵) < 𝐶)
29 recn 10961 . . . . . . . . . 10 ((𝐴 / 𝐵) ∈ ℝ → (𝐴 / 𝐵) ∈ ℂ)
306, 29syl 17 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℂ)
31303adant3 1131 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 / 𝐵) ∈ ℂ)
32 rpcn 12740 . . . . . . . . 9 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
33323ad2ant2 1133 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
34 1cnd 10970 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 1 ∈ ℂ)
35 recn 10961 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
36353ad2ant1 1132 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
37 rpne0 12746 . . . . . . . . . . 11 (𝐵 ∈ ℝ+𝐵 ≠ 0)
38373ad2ant2 1133 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐵 ≠ 0)
3936, 33, 38divcan1d 11752 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐴 / 𝐵) · 𝐵) = 𝐴)
4032mulid2d 10993 . . . . . . . . . 10 (𝐵 ∈ ℝ+ → (1 · 𝐵) = 𝐵)
41403ad2ant2 1133 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (1 · 𝐵) = 𝐵)
4239, 41oveq12d 7293 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (((𝐴 / 𝐵) · 𝐵) + (1 · 𝐵)) = (𝐴 + 𝐵))
4331, 33, 34, 42joinlmuladdmuld 11002 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (((𝐴 / 𝐵) + 1) · 𝐵) = (𝐴 + 𝐵))
44 recn 10961 . . . . . . . . 9 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
45443ad2ant3 1134 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
4645, 33, 38divcan1d 11752 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐶 / 𝐵) · 𝐵) = 𝐶)
4743, 46breq12d 5087 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵) ↔ (𝐴 + 𝐵) < 𝐶))
4847adantr 481 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵) ↔ (𝐴 + 𝐵) < 𝐶))
4928, 48mpbird 256 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵))
5017, 7syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐴 / 𝐵) + 1) ∈ ℝ)
51 simp2 1136 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐵 ∈ ℝ+)
5250, 13, 51ltmul1d 12813 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (((𝐴 / 𝐵) + 1) < (𝐶 / 𝐵) ↔ (((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵)))
5352adantr 481 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (((𝐴 / 𝐵) + 1) < (𝐶 / 𝐵) ↔ (((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵)))
5449, 53mpbird 256 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((𝐴 / 𝐵) + 1) < (𝐶 / 𝐵))
555, 10, 14, 24, 54lelttrd 11133 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((⌊‘(𝐴 / 𝐵)) + 1) < (𝐶 / 𝐵))
5655ex 413 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 < (𝐶𝐵) → ((⌊‘(𝐴 / 𝐵)) + 1) < (𝐶 / 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  +crp 12730  cfl 13510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fl 13512
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator