MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdifltdiv Structured version   Visualization version   GIF version

Theorem ltdifltdiv 13871
Description: If the dividend of a division is less than the difference between a real number and the divisor, the floor function of the division plus 1 is less than the division of the real number by the divisor. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
Assertion
Ref Expression
ltdifltdiv ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 < (𝐶𝐵) → ((⌊‘(𝐴 / 𝐵)) + 1) < (𝐶 / 𝐵)))

Proof of Theorem ltdifltdiv
StepHypRef Expression
1 refldivcl 13860 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
2 peano2re 11432 . . . . . 6 ((⌊‘(𝐴 / 𝐵)) ∈ ℝ → ((⌊‘(𝐴 / 𝐵)) + 1) ∈ ℝ)
31, 2syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘(𝐴 / 𝐵)) + 1) ∈ ℝ)
433adant3 1131 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((⌊‘(𝐴 / 𝐵)) + 1) ∈ ℝ)
54adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((⌊‘(𝐴 / 𝐵)) + 1) ∈ ℝ)
6 rerpdivcl 13063 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
7 peano2re 11432 . . . . . 6 ((𝐴 / 𝐵) ∈ ℝ → ((𝐴 / 𝐵) + 1) ∈ ℝ)
86, 7syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) + 1) ∈ ℝ)
983adant3 1131 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐴 / 𝐵) + 1) ∈ ℝ)
109adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((𝐴 / 𝐵) + 1) ∈ ℝ)
11 rerpdivcl 13063 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐶 / 𝐵) ∈ ℝ)
1211ancoms 458 . . . . 5 ((𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐶 / 𝐵) ∈ ℝ)
13123adant1 1129 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐶 / 𝐵) ∈ ℝ)
1413adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (𝐶 / 𝐵) ∈ ℝ)
1513adant3 1131 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
1615adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
1763adant3 1131 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 / 𝐵) ∈ ℝ)
1817adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (𝐴 / 𝐵) ∈ ℝ)
19 1red 11260 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → 1 ∈ ℝ)
20 3simpa 1147 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+))
2120adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+))
22 fldivle 13868 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
2321, 22syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
2416, 18, 19, 23leadd1dd 11875 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((⌊‘(𝐴 / 𝐵)) + 1) ≤ ((𝐴 / 𝐵) + 1))
25 rpre 13041 . . . . . . 7 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
26 ltaddsub 11735 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶𝐴 < (𝐶𝐵)))
2725, 26syl3an2 1163 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶𝐴 < (𝐶𝐵)))
2827biimpar 477 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (𝐴 + 𝐵) < 𝐶)
29 recn 11243 . . . . . . . . . 10 ((𝐴 / 𝐵) ∈ ℝ → (𝐴 / 𝐵) ∈ ℂ)
306, 29syl 17 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℂ)
31303adant3 1131 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 / 𝐵) ∈ ℂ)
32 rpcn 13043 . . . . . . . . 9 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
33323ad2ant2 1133 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
34 1cnd 11254 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 1 ∈ ℂ)
35 recn 11243 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
36353ad2ant1 1132 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
37 rpne0 13049 . . . . . . . . . . 11 (𝐵 ∈ ℝ+𝐵 ≠ 0)
38373ad2ant2 1133 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐵 ≠ 0)
3936, 33, 38divcan1d 12042 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐴 / 𝐵) · 𝐵) = 𝐴)
4032mullidd 11277 . . . . . . . . . 10 (𝐵 ∈ ℝ+ → (1 · 𝐵) = 𝐵)
41403ad2ant2 1133 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (1 · 𝐵) = 𝐵)
4239, 41oveq12d 7449 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (((𝐴 / 𝐵) · 𝐵) + (1 · 𝐵)) = (𝐴 + 𝐵))
4331, 33, 34, 42joinlmuladdmuld 11286 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (((𝐴 / 𝐵) + 1) · 𝐵) = (𝐴 + 𝐵))
44 recn 11243 . . . . . . . . 9 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
45443ad2ant3 1134 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
4645, 33, 38divcan1d 12042 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐶 / 𝐵) · 𝐵) = 𝐶)
4743, 46breq12d 5161 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵) ↔ (𝐴 + 𝐵) < 𝐶))
4847adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵) ↔ (𝐴 + 𝐵) < 𝐶))
4928, 48mpbird 257 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵))
5017, 7syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐴 / 𝐵) + 1) ∈ ℝ)
51 simp2 1136 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐵 ∈ ℝ+)
5250, 13, 51ltmul1d 13116 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (((𝐴 / 𝐵) + 1) < (𝐶 / 𝐵) ↔ (((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵)))
5352adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (((𝐴 / 𝐵) + 1) < (𝐶 / 𝐵) ↔ (((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵)))
5449, 53mpbird 257 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((𝐴 / 𝐵) + 1) < (𝐶 / 𝐵))
555, 10, 14, 24, 54lelttrd 11417 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((⌊‘(𝐴 / 𝐵)) + 1) < (𝐶 / 𝐵))
5655ex 412 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 < (𝐶𝐵) → ((⌊‘(𝐴 / 𝐵)) + 1) < (𝐶 / 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  +crp 13032  cfl 13827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator