MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdifltdiv Structured version   Visualization version   GIF version

Theorem ltdifltdiv 13738
Description: If the dividend of a division is less than the difference between a real number and the divisor, the floor function of the division plus 1 is less than the division of the real number by the divisor. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
Assertion
Ref Expression
ltdifltdiv ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 < (𝐶𝐵) → ((⌊‘(𝐴 / 𝐵)) + 1) < (𝐶 / 𝐵)))

Proof of Theorem ltdifltdiv
StepHypRef Expression
1 refldivcl 13727 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
2 peano2re 11289 . . . . . 6 ((⌊‘(𝐴 / 𝐵)) ∈ ℝ → ((⌊‘(𝐴 / 𝐵)) + 1) ∈ ℝ)
31, 2syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘(𝐴 / 𝐵)) + 1) ∈ ℝ)
433adant3 1132 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((⌊‘(𝐴 / 𝐵)) + 1) ∈ ℝ)
54adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((⌊‘(𝐴 / 𝐵)) + 1) ∈ ℝ)
6 rerpdivcl 12925 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
7 peano2re 11289 . . . . . 6 ((𝐴 / 𝐵) ∈ ℝ → ((𝐴 / 𝐵) + 1) ∈ ℝ)
86, 7syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) + 1) ∈ ℝ)
983adant3 1132 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐴 / 𝐵) + 1) ∈ ℝ)
109adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((𝐴 / 𝐵) + 1) ∈ ℝ)
11 rerpdivcl 12925 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐶 / 𝐵) ∈ ℝ)
1211ancoms 458 . . . . 5 ((𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐶 / 𝐵) ∈ ℝ)
13123adant1 1130 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐶 / 𝐵) ∈ ℝ)
1413adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (𝐶 / 𝐵) ∈ ℝ)
1513adant3 1132 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
1615adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
1763adant3 1132 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 / 𝐵) ∈ ℝ)
1817adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (𝐴 / 𝐵) ∈ ℝ)
19 1red 11116 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → 1 ∈ ℝ)
20 3simpa 1148 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+))
2120adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+))
22 fldivle 13735 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
2321, 22syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
2416, 18, 19, 23leadd1dd 11734 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((⌊‘(𝐴 / 𝐵)) + 1) ≤ ((𝐴 / 𝐵) + 1))
25 rpre 12902 . . . . . . 7 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
26 ltaddsub 11594 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶𝐴 < (𝐶𝐵)))
2725, 26syl3an2 1164 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶𝐴 < (𝐶𝐵)))
2827biimpar 477 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (𝐴 + 𝐵) < 𝐶)
29 recn 11099 . . . . . . . . . 10 ((𝐴 / 𝐵) ∈ ℝ → (𝐴 / 𝐵) ∈ ℂ)
306, 29syl 17 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℂ)
31303adant3 1132 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 / 𝐵) ∈ ℂ)
32 rpcn 12904 . . . . . . . . 9 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
33323ad2ant2 1134 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
34 1cnd 11110 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 1 ∈ ℂ)
35 recn 11099 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
36353ad2ant1 1133 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
37 rpne0 12910 . . . . . . . . . . 11 (𝐵 ∈ ℝ+𝐵 ≠ 0)
38373ad2ant2 1134 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐵 ≠ 0)
3936, 33, 38divcan1d 11901 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐴 / 𝐵) · 𝐵) = 𝐴)
4032mullidd 11133 . . . . . . . . . 10 (𝐵 ∈ ℝ+ → (1 · 𝐵) = 𝐵)
41403ad2ant2 1134 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (1 · 𝐵) = 𝐵)
4239, 41oveq12d 7367 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (((𝐴 / 𝐵) · 𝐵) + (1 · 𝐵)) = (𝐴 + 𝐵))
4331, 33, 34, 42joinlmuladdmuld 11142 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (((𝐴 / 𝐵) + 1) · 𝐵) = (𝐴 + 𝐵))
44 recn 11099 . . . . . . . . 9 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
45443ad2ant3 1135 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
4645, 33, 38divcan1d 11901 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐶 / 𝐵) · 𝐵) = 𝐶)
4743, 46breq12d 5105 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵) ↔ (𝐴 + 𝐵) < 𝐶))
4847adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵) ↔ (𝐴 + 𝐵) < 𝐶))
4928, 48mpbird 257 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵))
5017, 7syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐴 / 𝐵) + 1) ∈ ℝ)
51 simp2 1137 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐵 ∈ ℝ+)
5250, 13, 51ltmul1d 12978 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (((𝐴 / 𝐵) + 1) < (𝐶 / 𝐵) ↔ (((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵)))
5352adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (((𝐴 / 𝐵) + 1) < (𝐶 / 𝐵) ↔ (((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵)))
5449, 53mpbird 257 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((𝐴 / 𝐵) + 1) < (𝐶 / 𝐵))
555, 10, 14, 24, 54lelttrd 11274 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((⌊‘(𝐴 / 𝐵)) + 1) < (𝐶 / 𝐵))
5655ex 412 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 < (𝐶𝐵) → ((⌊‘(𝐴 / 𝐵)) + 1) < (𝐶 / 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  +crp 12893  cfl 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fl 13696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator