MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdifltdiv Structured version   Visualization version   GIF version

Theorem ltdifltdiv 13874
Description: If the dividend of a division is less than the difference between a real number and the divisor, the floor function of the division plus 1 is less than the division of the real number by the divisor. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
Assertion
Ref Expression
ltdifltdiv ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 < (𝐶𝐵) → ((⌊‘(𝐴 / 𝐵)) + 1) < (𝐶 / 𝐵)))

Proof of Theorem ltdifltdiv
StepHypRef Expression
1 refldivcl 13863 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
2 peano2re 11434 . . . . . 6 ((⌊‘(𝐴 / 𝐵)) ∈ ℝ → ((⌊‘(𝐴 / 𝐵)) + 1) ∈ ℝ)
31, 2syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘(𝐴 / 𝐵)) + 1) ∈ ℝ)
433adant3 1133 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((⌊‘(𝐴 / 𝐵)) + 1) ∈ ℝ)
54adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((⌊‘(𝐴 / 𝐵)) + 1) ∈ ℝ)
6 rerpdivcl 13065 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
7 peano2re 11434 . . . . . 6 ((𝐴 / 𝐵) ∈ ℝ → ((𝐴 / 𝐵) + 1) ∈ ℝ)
86, 7syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) + 1) ∈ ℝ)
983adant3 1133 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐴 / 𝐵) + 1) ∈ ℝ)
109adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((𝐴 / 𝐵) + 1) ∈ ℝ)
11 rerpdivcl 13065 . . . . . 6 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐶 / 𝐵) ∈ ℝ)
1211ancoms 458 . . . . 5 ((𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐶 / 𝐵) ∈ ℝ)
13123adant1 1131 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐶 / 𝐵) ∈ ℝ)
1413adantr 480 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (𝐶 / 𝐵) ∈ ℝ)
1513adant3 1133 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
1615adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
1763adant3 1133 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 / 𝐵) ∈ ℝ)
1817adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (𝐴 / 𝐵) ∈ ℝ)
19 1red 11262 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → 1 ∈ ℝ)
20 3simpa 1149 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+))
2120adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+))
22 fldivle 13871 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
2321, 22syl 17 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
2416, 18, 19, 23leadd1dd 11877 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((⌊‘(𝐴 / 𝐵)) + 1) ≤ ((𝐴 / 𝐵) + 1))
25 rpre 13043 . . . . . . 7 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
26 ltaddsub 11737 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶𝐴 < (𝐶𝐵)))
2725, 26syl3an2 1165 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐴 + 𝐵) < 𝐶𝐴 < (𝐶𝐵)))
2827biimpar 477 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (𝐴 + 𝐵) < 𝐶)
29 recn 11245 . . . . . . . . . 10 ((𝐴 / 𝐵) ∈ ℝ → (𝐴 / 𝐵) ∈ ℂ)
306, 29syl 17 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℂ)
31303adant3 1133 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 / 𝐵) ∈ ℂ)
32 rpcn 13045 . . . . . . . . 9 (𝐵 ∈ ℝ+𝐵 ∈ ℂ)
33323ad2ant2 1135 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐵 ∈ ℂ)
34 1cnd 11256 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 1 ∈ ℂ)
35 recn 11245 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
36353ad2ant1 1134 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐴 ∈ ℂ)
37 rpne0 13051 . . . . . . . . . . 11 (𝐵 ∈ ℝ+𝐵 ≠ 0)
38373ad2ant2 1135 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐵 ≠ 0)
3936, 33, 38divcan1d 12044 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐴 / 𝐵) · 𝐵) = 𝐴)
4032mullidd 11279 . . . . . . . . . 10 (𝐵 ∈ ℝ+ → (1 · 𝐵) = 𝐵)
41403ad2ant2 1135 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (1 · 𝐵) = 𝐵)
4239, 41oveq12d 7449 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (((𝐴 / 𝐵) · 𝐵) + (1 · 𝐵)) = (𝐴 + 𝐵))
4331, 33, 34, 42joinlmuladdmuld 11288 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (((𝐴 / 𝐵) + 1) · 𝐵) = (𝐴 + 𝐵))
44 recn 11245 . . . . . . . . 9 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
45443ad2ant3 1136 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐶 ∈ ℂ)
4645, 33, 38divcan1d 12044 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐶 / 𝐵) · 𝐵) = 𝐶)
4743, 46breq12d 5156 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵) ↔ (𝐴 + 𝐵) < 𝐶))
4847adantr 480 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵) ↔ (𝐴 + 𝐵) < 𝐶))
4928, 48mpbird 257 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵))
5017, 7syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → ((𝐴 / 𝐵) + 1) ∈ ℝ)
51 simp2 1138 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → 𝐵 ∈ ℝ+)
5250, 13, 51ltmul1d 13118 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (((𝐴 / 𝐵) + 1) < (𝐶 / 𝐵) ↔ (((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵)))
5352adantr 480 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → (((𝐴 / 𝐵) + 1) < (𝐶 / 𝐵) ↔ (((𝐴 / 𝐵) + 1) · 𝐵) < ((𝐶 / 𝐵) · 𝐵)))
5449, 53mpbird 257 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((𝐴 / 𝐵) + 1) < (𝐶 / 𝐵))
555, 10, 14, 24, 54lelttrd 11419 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) ∧ 𝐴 < (𝐶𝐵)) → ((⌊‘(𝐴 / 𝐵)) + 1) < (𝐶 / 𝐵))
5655ex 412 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+𝐶 ∈ ℝ) → (𝐴 < (𝐶𝐵) → ((⌊‘(𝐴 / 𝐵)) + 1) < (𝐶 / 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  +crp 13034  cfl 13830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fl 13832
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator