MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arisum Structured version   Visualization version   GIF version

Theorem arisum 15896
Description: Arithmetic series sum of the first 𝑁 positive integers. This is Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
arisum (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
Distinct variable group:   𝑘,𝑁

Proof of Theorem arisum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 elnn0 12528 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 1zzd 12648 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℤ)
3 nnz 12634 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4 elfzelz 13564 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
54zcnd 12723 . . . . . . 7 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
65adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
7 id 22 . . . . . 6 (𝑘 = (𝑗 + 1) → 𝑘 = (𝑗 + 1))
82, 2, 3, 6, 7fsumshftm 15817 . . . . 5 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝑗 + 1))
9 1m1e0 12338 . . . . . . 7 (1 − 1) = 0
109oveq1i 7441 . . . . . 6 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
1110sumeq1i 15733 . . . . 5 Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝑗 + 1) = Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1)
128, 11eqtrdi 2793 . . . 4 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1))
13 elfznn0 13660 . . . . . . . . 9 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0)
1413adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0)
15 bcnp1n 14353 . . . . . . . 8 (𝑗 ∈ ℕ0 → ((𝑗 + 1)C𝑗) = (𝑗 + 1))
1614, 15syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1)C𝑗) = (𝑗 + 1))
1714nn0cnd 12589 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℂ)
18 ax-1cn 11213 . . . . . . . . 9 1 ∈ ℂ
19 addcom 11447 . . . . . . . . 9 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑗 + 1) = (1 + 𝑗))
2017, 18, 19sylancl 586 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) = (1 + 𝑗))
2120oveq1d 7446 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1)C𝑗) = ((1 + 𝑗)C𝑗))
2216, 21eqtr3d 2779 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) = ((1 + 𝑗)C𝑗))
2322sumeq2dv 15738 . . . . 5 (𝑁 ∈ ℕ → Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1) = Σ𝑗 ∈ (0...(𝑁 − 1))((1 + 𝑗)C𝑗))
24 1nn0 12542 . . . . . 6 1 ∈ ℕ0
25 nnm1nn0 12567 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
26 bcxmas 15871 . . . . . 6 ((1 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ0) → (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)) = Σ𝑗 ∈ (0...(𝑁 − 1))((1 + 𝑗)C𝑗))
2724, 25, 26sylancr 587 . . . . 5 (𝑁 ∈ ℕ → (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)) = Σ𝑗 ∈ (0...(𝑁 − 1))((1 + 𝑗)C𝑗))
2823, 27eqtr4d 2780 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1) = (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)))
29 1cnd 11256 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ ℂ)
30 nncn 12274 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3129, 29, 30ppncand 11660 . . . . . . 7 (𝑁 ∈ ℕ → ((1 + 1) + (𝑁 − 1)) = (1 + 𝑁))
3229, 30, 31comraddd 11475 . . . . . 6 (𝑁 ∈ ℕ → ((1 + 1) + (𝑁 − 1)) = (𝑁 + 1))
3332oveq1d 7446 . . . . 5 (𝑁 ∈ ℕ → (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)) = ((𝑁 + 1)C(𝑁 − 1)))
34 nnnn0 12533 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
35 bcp1m1 14359 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2))
3634, 35syl 17 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2))
37 sqval 14155 . . . . . . . . . 10 (𝑁 ∈ ℂ → (𝑁↑2) = (𝑁 · 𝑁))
3837eqcomd 2743 . . . . . . . . 9 (𝑁 ∈ ℂ → (𝑁 · 𝑁) = (𝑁↑2))
39 mullid 11260 . . . . . . . . 9 (𝑁 ∈ ℂ → (1 · 𝑁) = 𝑁)
4038, 39oveq12d 7449 . . . . . . . 8 (𝑁 ∈ ℂ → ((𝑁 · 𝑁) + (1 · 𝑁)) = ((𝑁↑2) + 𝑁))
4130, 40syl 17 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 · 𝑁) + (1 · 𝑁)) = ((𝑁↑2) + 𝑁))
4230, 30, 29, 41joinlmuladdmuld 11288 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 + 1) · 𝑁) = ((𝑁↑2) + 𝑁))
4342oveq1d 7446 . . . . 5 (𝑁 ∈ ℕ → (((𝑁 + 1) · 𝑁) / 2) = (((𝑁↑2) + 𝑁) / 2))
4433, 36, 433eqtrd 2781 . . . 4 (𝑁 ∈ ℕ → (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)) = (((𝑁↑2) + 𝑁) / 2))
4512, 28, 443eqtrd 2781 . . 3 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
46 oveq2 7439 . . . . . . 7 (𝑁 = 0 → (1...𝑁) = (1...0))
47 fz10 13585 . . . . . . 7 (1...0) = ∅
4846, 47eqtrdi 2793 . . . . . 6 (𝑁 = 0 → (1...𝑁) = ∅)
4948sumeq1d 15736 . . . . 5 (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑘 ∈ ∅ 𝑘)
50 sum0 15757 . . . . 5 Σ𝑘 ∈ ∅ 𝑘 = 0
5149, 50eqtrdi 2793 . . . 4 (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = 0)
52 sq0i 14232 . . . . . . . 8 (𝑁 = 0 → (𝑁↑2) = 0)
53 id 22 . . . . . . . 8 (𝑁 = 0 → 𝑁 = 0)
5452, 53oveq12d 7449 . . . . . . 7 (𝑁 = 0 → ((𝑁↑2) + 𝑁) = (0 + 0))
55 00id 11436 . . . . . . 7 (0 + 0) = 0
5654, 55eqtrdi 2793 . . . . . 6 (𝑁 = 0 → ((𝑁↑2) + 𝑁) = 0)
5756oveq1d 7446 . . . . 5 (𝑁 = 0 → (((𝑁↑2) + 𝑁) / 2) = (0 / 2))
58 2cn 12341 . . . . . 6 2 ∈ ℂ
59 2ne0 12370 . . . . . 6 2 ≠ 0
6058, 59div0i 12001 . . . . 5 (0 / 2) = 0
6157, 60eqtrdi 2793 . . . 4 (𝑁 = 0 → (((𝑁↑2) + 𝑁) / 2) = 0)
6251, 61eqtr4d 2780 . . 3 (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
6345, 62jaoi 858 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
641, 63sylbi 217 1 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 848   = wceq 1540  wcel 2108  c0 4333  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  ...cfz 13547  cexp 14102  Ccbc 14341  Σcsu 15722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723
This theorem is referenced by:  arisum2  15897  aks4d1p1p2  42071  oddnumth  42345  sumcubes  42347  sum9cubes  42682
  Copyright terms: Public domain W3C validator