MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arisum Structured version   Visualization version   GIF version

Theorem arisum 15572
Description: Arithmetic series sum of the first 𝑁 positive integers. This is Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
arisum (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
Distinct variable group:   𝑘,𝑁

Proof of Theorem arisum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 elnn0 12235 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 1zzd 12351 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℤ)
3 nnz 12342 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4 elfzelz 13256 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
54zcnd 12427 . . . . . . 7 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
65adantl 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
7 id 22 . . . . . 6 (𝑘 = (𝑗 + 1) → 𝑘 = (𝑗 + 1))
82, 2, 3, 6, 7fsumshftm 15493 . . . . 5 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝑗 + 1))
9 1m1e0 12045 . . . . . . 7 (1 − 1) = 0
109oveq1i 7285 . . . . . 6 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
1110sumeq1i 15410 . . . . 5 Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝑗 + 1) = Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1)
128, 11eqtrdi 2794 . . . 4 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1))
13 elfznn0 13349 . . . . . . . . 9 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0)
1413adantl 482 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0)
15 bcnp1n 14028 . . . . . . . 8 (𝑗 ∈ ℕ0 → ((𝑗 + 1)C𝑗) = (𝑗 + 1))
1614, 15syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1)C𝑗) = (𝑗 + 1))
1714nn0cnd 12295 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℂ)
18 ax-1cn 10929 . . . . . . . . 9 1 ∈ ℂ
19 addcom 11161 . . . . . . . . 9 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑗 + 1) = (1 + 𝑗))
2017, 18, 19sylancl 586 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) = (1 + 𝑗))
2120oveq1d 7290 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1)C𝑗) = ((1 + 𝑗)C𝑗))
2216, 21eqtr3d 2780 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) = ((1 + 𝑗)C𝑗))
2322sumeq2dv 15415 . . . . 5 (𝑁 ∈ ℕ → Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1) = Σ𝑗 ∈ (0...(𝑁 − 1))((1 + 𝑗)C𝑗))
24 1nn0 12249 . . . . . 6 1 ∈ ℕ0
25 nnm1nn0 12274 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
26 bcxmas 15547 . . . . . 6 ((1 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ0) → (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)) = Σ𝑗 ∈ (0...(𝑁 − 1))((1 + 𝑗)C𝑗))
2724, 25, 26sylancr 587 . . . . 5 (𝑁 ∈ ℕ → (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)) = Σ𝑗 ∈ (0...(𝑁 − 1))((1 + 𝑗)C𝑗))
2823, 27eqtr4d 2781 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1) = (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)))
29 1cnd 10970 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ ℂ)
30 nncn 11981 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3129, 29, 30ppncand 11372 . . . . . . 7 (𝑁 ∈ ℕ → ((1 + 1) + (𝑁 − 1)) = (1 + 𝑁))
3229, 30, 31comraddd 11189 . . . . . 6 (𝑁 ∈ ℕ → ((1 + 1) + (𝑁 − 1)) = (𝑁 + 1))
3332oveq1d 7290 . . . . 5 (𝑁 ∈ ℕ → (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)) = ((𝑁 + 1)C(𝑁 − 1)))
34 nnnn0 12240 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
35 bcp1m1 14034 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2))
3634, 35syl 17 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2))
37 sqval 13835 . . . . . . . . . 10 (𝑁 ∈ ℂ → (𝑁↑2) = (𝑁 · 𝑁))
3837eqcomd 2744 . . . . . . . . 9 (𝑁 ∈ ℂ → (𝑁 · 𝑁) = (𝑁↑2))
39 mulid2 10974 . . . . . . . . 9 (𝑁 ∈ ℂ → (1 · 𝑁) = 𝑁)
4038, 39oveq12d 7293 . . . . . . . 8 (𝑁 ∈ ℂ → ((𝑁 · 𝑁) + (1 · 𝑁)) = ((𝑁↑2) + 𝑁))
4130, 40syl 17 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 · 𝑁) + (1 · 𝑁)) = ((𝑁↑2) + 𝑁))
4230, 30, 29, 41joinlmuladdmuld 11002 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 + 1) · 𝑁) = ((𝑁↑2) + 𝑁))
4342oveq1d 7290 . . . . 5 (𝑁 ∈ ℕ → (((𝑁 + 1) · 𝑁) / 2) = (((𝑁↑2) + 𝑁) / 2))
4433, 36, 433eqtrd 2782 . . . 4 (𝑁 ∈ ℕ → (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)) = (((𝑁↑2) + 𝑁) / 2))
4512, 28, 443eqtrd 2782 . . 3 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
46 oveq2 7283 . . . . . . 7 (𝑁 = 0 → (1...𝑁) = (1...0))
47 fz10 13277 . . . . . . 7 (1...0) = ∅
4846, 47eqtrdi 2794 . . . . . 6 (𝑁 = 0 → (1...𝑁) = ∅)
4948sumeq1d 15413 . . . . 5 (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑘 ∈ ∅ 𝑘)
50 sum0 15433 . . . . 5 Σ𝑘 ∈ ∅ 𝑘 = 0
5149, 50eqtrdi 2794 . . . 4 (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = 0)
52 sq0i 13910 . . . . . . . 8 (𝑁 = 0 → (𝑁↑2) = 0)
53 id 22 . . . . . . . 8 (𝑁 = 0 → 𝑁 = 0)
5452, 53oveq12d 7293 . . . . . . 7 (𝑁 = 0 → ((𝑁↑2) + 𝑁) = (0 + 0))
55 00id 11150 . . . . . . 7 (0 + 0) = 0
5654, 55eqtrdi 2794 . . . . . 6 (𝑁 = 0 → ((𝑁↑2) + 𝑁) = 0)
5756oveq1d 7290 . . . . 5 (𝑁 = 0 → (((𝑁↑2) + 𝑁) / 2) = (0 / 2))
58 2cn 12048 . . . . . 6 2 ∈ ℂ
59 2ne0 12077 . . . . . 6 2 ≠ 0
6058, 59div0i 11709 . . . . 5 (0 / 2) = 0
6157, 60eqtrdi 2794 . . . 4 (𝑁 = 0 → (((𝑁↑2) + 𝑁) / 2) = 0)
6251, 61eqtr4d 2781 . . 3 (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
6345, 62jaoi 854 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
641, 63sylbi 216 1 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  c0 4256  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  ...cfz 13239  cexp 13782  Ccbc 14016  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by:  arisum2  15573  aks4d1p1p2  40078
  Copyright terms: Public domain W3C validator