MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arisum Structured version   Visualization version   GIF version

Theorem arisum 14965
Description: Arithmetic series sum of the first 𝑁 positive integers. This is Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
arisum (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
Distinct variable group:   𝑘,𝑁

Proof of Theorem arisum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 elnn0 11619 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 1zzd 11735 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℤ)
3 nnz 11726 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4 elfzelz 12634 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
54zcnd 11810 . . . . . . 7 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
65adantl 475 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
7 id 22 . . . . . 6 (𝑘 = (𝑗 + 1) → 𝑘 = (𝑗 + 1))
82, 2, 3, 6, 7fsumshftm 14886 . . . . 5 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝑗 + 1))
9 1m1e0 11422 . . . . . . 7 (1 − 1) = 0
109oveq1i 6914 . . . . . 6 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
1110sumeq1i 14804 . . . . 5 Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝑗 + 1) = Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1)
128, 11syl6eq 2876 . . . 4 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1))
13 elfznn0 12726 . . . . . . . . 9 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0)
1413adantl 475 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0)
15 bcnp1n 13393 . . . . . . . 8 (𝑗 ∈ ℕ0 → ((𝑗 + 1)C𝑗) = (𝑗 + 1))
1614, 15syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1)C𝑗) = (𝑗 + 1))
1714nn0cnd 11679 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℂ)
18 ax-1cn 10309 . . . . . . . . 9 1 ∈ ℂ
19 addcom 10540 . . . . . . . . 9 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑗 + 1) = (1 + 𝑗))
2017, 18, 19sylancl 582 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) = (1 + 𝑗))
2120oveq1d 6919 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1)C𝑗) = ((1 + 𝑗)C𝑗))
2216, 21eqtr3d 2862 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) = ((1 + 𝑗)C𝑗))
2322sumeq2dv 14809 . . . . 5 (𝑁 ∈ ℕ → Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1) = Σ𝑗 ∈ (0...(𝑁 − 1))((1 + 𝑗)C𝑗))
24 1nn0 11635 . . . . . 6 1 ∈ ℕ0
25 nnm1nn0 11660 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
26 bcxmas 14940 . . . . . 6 ((1 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ0) → (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)) = Σ𝑗 ∈ (0...(𝑁 − 1))((1 + 𝑗)C𝑗))
2724, 25, 26sylancr 583 . . . . 5 (𝑁 ∈ ℕ → (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)) = Σ𝑗 ∈ (0...(𝑁 − 1))((1 + 𝑗)C𝑗))
2823, 27eqtr4d 2863 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1) = (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)))
29 1cnd 10350 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ ℂ)
30 nncn 11358 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3129, 29, 30ppncand 10752 . . . . . . 7 (𝑁 ∈ ℕ → ((1 + 1) + (𝑁 − 1)) = (1 + 𝑁))
3229, 30, 31comraddd 10568 . . . . . 6 (𝑁 ∈ ℕ → ((1 + 1) + (𝑁 − 1)) = (𝑁 + 1))
3332oveq1d 6919 . . . . 5 (𝑁 ∈ ℕ → (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)) = ((𝑁 + 1)C(𝑁 − 1)))
34 nnnn0 11625 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
35 bcp1m1 13399 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2))
3634, 35syl 17 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2))
37 sqval 13215 . . . . . . . . . 10 (𝑁 ∈ ℂ → (𝑁↑2) = (𝑁 · 𝑁))
3837eqcomd 2830 . . . . . . . . 9 (𝑁 ∈ ℂ → (𝑁 · 𝑁) = (𝑁↑2))
39 mulid2 10354 . . . . . . . . 9 (𝑁 ∈ ℂ → (1 · 𝑁) = 𝑁)
4038, 39oveq12d 6922 . . . . . . . 8 (𝑁 ∈ ℂ → ((𝑁 · 𝑁) + (1 · 𝑁)) = ((𝑁↑2) + 𝑁))
4130, 40syl 17 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 · 𝑁) + (1 · 𝑁)) = ((𝑁↑2) + 𝑁))
4230, 30, 29, 41joinlmuladdmuld 10383 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 + 1) · 𝑁) = ((𝑁↑2) + 𝑁))
4342oveq1d 6919 . . . . 5 (𝑁 ∈ ℕ → (((𝑁 + 1) · 𝑁) / 2) = (((𝑁↑2) + 𝑁) / 2))
4433, 36, 433eqtrd 2864 . . . 4 (𝑁 ∈ ℕ → (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)) = (((𝑁↑2) + 𝑁) / 2))
4512, 28, 443eqtrd 2864 . . 3 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
46 oveq2 6912 . . . . . . 7 (𝑁 = 0 → (1...𝑁) = (1...0))
47 fz10 12654 . . . . . . 7 (1...0) = ∅
4846, 47syl6eq 2876 . . . . . 6 (𝑁 = 0 → (1...𝑁) = ∅)
4948sumeq1d 14807 . . . . 5 (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑘 ∈ ∅ 𝑘)
50 sum0 14828 . . . . 5 Σ𝑘 ∈ ∅ 𝑘 = 0
5149, 50syl6eq 2876 . . . 4 (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = 0)
52 sq0i 13249 . . . . . . . 8 (𝑁 = 0 → (𝑁↑2) = 0)
53 id 22 . . . . . . . 8 (𝑁 = 0 → 𝑁 = 0)
5452, 53oveq12d 6922 . . . . . . 7 (𝑁 = 0 → ((𝑁↑2) + 𝑁) = (0 + 0))
55 00id 10529 . . . . . . 7 (0 + 0) = 0
5654, 55syl6eq 2876 . . . . . 6 (𝑁 = 0 → ((𝑁↑2) + 𝑁) = 0)
5756oveq1d 6919 . . . . 5 (𝑁 = 0 → (((𝑁↑2) + 𝑁) / 2) = (0 / 2))
58 2cn 11425 . . . . . 6 2 ∈ ℂ
59 2ne0 11461 . . . . . 6 2 ≠ 0
6058, 59div0i 11084 . . . . 5 (0 / 2) = 0
6157, 60syl6eq 2876 . . . 4 (𝑁 = 0 → (((𝑁↑2) + 𝑁) / 2) = 0)
6251, 61eqtr4d 2863 . . 3 (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
6345, 62jaoi 890 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
641, 63sylbi 209 1 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wo 880   = wceq 1658  wcel 2166  c0 4143  (class class class)co 6904  cc 10249  0cc0 10251  1c1 10252   + caddc 10254   · cmul 10256  cmin 10584   / cdiv 11008  cn 11349  2c2 11405  0cn0 11617  ...cfz 12618  cexp 13153  Ccbc 13381  Σcsu 14792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-inf2 8814  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328  ax-pre-sup 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-se 5301  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-isom 6131  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-1st 7427  df-2nd 7428  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-1o 7825  df-oadd 7829  df-er 8008  df-en 8222  df-dom 8223  df-sdom 8224  df-fin 8225  df-sup 8616  df-oi 8683  df-card 9077  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-div 11009  df-nn 11350  df-2 11413  df-3 11414  df-n0 11618  df-z 11704  df-uz 11968  df-rp 12112  df-fz 12619  df-fzo 12760  df-seq 13095  df-exp 13154  df-fac 13353  df-bc 13382  df-hash 13410  df-cj 14215  df-re 14216  df-im 14217  df-sqrt 14351  df-abs 14352  df-clim 14595  df-sum 14793
This theorem is referenced by:  arisum2  14966
  Copyright terms: Public domain W3C validator