Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  arisum Structured version   Visualization version   GIF version

Theorem arisum 15207
 Description: Arithmetic series sum of the first 𝑁 positive integers. This is Metamath 100 proof #68. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
arisum (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
Distinct variable group:   𝑘,𝑁

Proof of Theorem arisum
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 elnn0 11891 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 1zzd 12005 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℤ)
3 nnz 11996 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
4 elfzelz 12900 . . . . . . . 8 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
54zcnd 12080 . . . . . . 7 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℂ)
65adantl 484 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℂ)
7 id 22 . . . . . 6 (𝑘 = (𝑗 + 1) → 𝑘 = (𝑗 + 1))
82, 2, 3, 6, 7fsumshftm 15128 . . . . 5 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝑗 + 1))
9 1m1e0 11701 . . . . . . 7 (1 − 1) = 0
109oveq1i 7158 . . . . . 6 ((1 − 1)...(𝑁 − 1)) = (0...(𝑁 − 1))
1110sumeq1i 15047 . . . . 5 Σ𝑗 ∈ ((1 − 1)...(𝑁 − 1))(𝑗 + 1) = Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1)
128, 11syl6eq 2870 . . . 4 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1))
13 elfznn0 12992 . . . . . . . . 9 (𝑗 ∈ (0...(𝑁 − 1)) → 𝑗 ∈ ℕ0)
1413adantl 484 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℕ0)
15 bcnp1n 13666 . . . . . . . 8 (𝑗 ∈ ℕ0 → ((𝑗 + 1)C𝑗) = (𝑗 + 1))
1614, 15syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1)C𝑗) = (𝑗 + 1))
1714nn0cnd 11949 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → 𝑗 ∈ ℂ)
18 ax-1cn 10587 . . . . . . . . 9 1 ∈ ℂ
19 addcom 10818 . . . . . . . . 9 ((𝑗 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑗 + 1) = (1 + 𝑗))
2017, 18, 19sylancl 588 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) = (1 + 𝑗))
2120oveq1d 7163 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → ((𝑗 + 1)C𝑗) = ((1 + 𝑗)C𝑗))
2216, 21eqtr3d 2856 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (0...(𝑁 − 1))) → (𝑗 + 1) = ((1 + 𝑗)C𝑗))
2322sumeq2dv 15052 . . . . 5 (𝑁 ∈ ℕ → Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1) = Σ𝑗 ∈ (0...(𝑁 − 1))((1 + 𝑗)C𝑗))
24 1nn0 11905 . . . . . 6 1 ∈ ℕ0
25 nnm1nn0 11930 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
26 bcxmas 15182 . . . . . 6 ((1 ∈ ℕ0 ∧ (𝑁 − 1) ∈ ℕ0) → (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)) = Σ𝑗 ∈ (0...(𝑁 − 1))((1 + 𝑗)C𝑗))
2724, 25, 26sylancr 589 . . . . 5 (𝑁 ∈ ℕ → (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)) = Σ𝑗 ∈ (0...(𝑁 − 1))((1 + 𝑗)C𝑗))
2823, 27eqtr4d 2857 . . . 4 (𝑁 ∈ ℕ → Σ𝑗 ∈ (0...(𝑁 − 1))(𝑗 + 1) = (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)))
29 1cnd 10628 . . . . . . 7 (𝑁 ∈ ℕ → 1 ∈ ℂ)
30 nncn 11638 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3129, 29, 30ppncand 11029 . . . . . . 7 (𝑁 ∈ ℕ → ((1 + 1) + (𝑁 − 1)) = (1 + 𝑁))
3229, 30, 31comraddd 10846 . . . . . 6 (𝑁 ∈ ℕ → ((1 + 1) + (𝑁 − 1)) = (𝑁 + 1))
3332oveq1d 7163 . . . . 5 (𝑁 ∈ ℕ → (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)) = ((𝑁 + 1)C(𝑁 − 1)))
34 nnnn0 11896 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
35 bcp1m1 13672 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2))
3634, 35syl 17 . . . . 5 (𝑁 ∈ ℕ → ((𝑁 + 1)C(𝑁 − 1)) = (((𝑁 + 1) · 𝑁) / 2))
37 sqval 13473 . . . . . . . . . 10 (𝑁 ∈ ℂ → (𝑁↑2) = (𝑁 · 𝑁))
3837eqcomd 2825 . . . . . . . . 9 (𝑁 ∈ ℂ → (𝑁 · 𝑁) = (𝑁↑2))
39 mulid2 10632 . . . . . . . . 9 (𝑁 ∈ ℂ → (1 · 𝑁) = 𝑁)
4038, 39oveq12d 7166 . . . . . . . 8 (𝑁 ∈ ℂ → ((𝑁 · 𝑁) + (1 · 𝑁)) = ((𝑁↑2) + 𝑁))
4130, 40syl 17 . . . . . . 7 (𝑁 ∈ ℕ → ((𝑁 · 𝑁) + (1 · 𝑁)) = ((𝑁↑2) + 𝑁))
4230, 30, 29, 41joinlmuladdmuld 10660 . . . . . 6 (𝑁 ∈ ℕ → ((𝑁 + 1) · 𝑁) = ((𝑁↑2) + 𝑁))
4342oveq1d 7163 . . . . 5 (𝑁 ∈ ℕ → (((𝑁 + 1) · 𝑁) / 2) = (((𝑁↑2) + 𝑁) / 2))
4433, 36, 433eqtrd 2858 . . . 4 (𝑁 ∈ ℕ → (((1 + 1) + (𝑁 − 1))C(𝑁 − 1)) = (((𝑁↑2) + 𝑁) / 2))
4512, 28, 443eqtrd 2858 . . 3 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
46 oveq2 7156 . . . . . . 7 (𝑁 = 0 → (1...𝑁) = (1...0))
47 fz10 12920 . . . . . . 7 (1...0) = ∅
4846, 47syl6eq 2870 . . . . . 6 (𝑁 = 0 → (1...𝑁) = ∅)
4948sumeq1d 15050 . . . . 5 (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = Σ𝑘 ∈ ∅ 𝑘)
50 sum0 15070 . . . . 5 Σ𝑘 ∈ ∅ 𝑘 = 0
5149, 50syl6eq 2870 . . . 4 (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = 0)
52 sq0i 13548 . . . . . . . 8 (𝑁 = 0 → (𝑁↑2) = 0)
53 id 22 . . . . . . . 8 (𝑁 = 0 → 𝑁 = 0)
5452, 53oveq12d 7166 . . . . . . 7 (𝑁 = 0 → ((𝑁↑2) + 𝑁) = (0 + 0))
55 00id 10807 . . . . . . 7 (0 + 0) = 0
5654, 55syl6eq 2870 . . . . . 6 (𝑁 = 0 → ((𝑁↑2) + 𝑁) = 0)
5756oveq1d 7163 . . . . 5 (𝑁 = 0 → (((𝑁↑2) + 𝑁) / 2) = (0 / 2))
58 2cn 11704 . . . . . 6 2 ∈ ℂ
59 2ne0 11733 . . . . . 6 2 ≠ 0
6058, 59div0i 11366 . . . . 5 (0 / 2) = 0
6157, 60syl6eq 2870 . . . 4 (𝑁 = 0 → (((𝑁↑2) + 𝑁) / 2) = 0)
6251, 61eqtr4d 2857 . . 3 (𝑁 = 0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
6345, 62jaoi 853 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
641, 63sylbi 219 1 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (1...𝑁)𝑘 = (((𝑁↑2) + 𝑁) / 2))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∨ wo 843   = wceq 1531   ∈ wcel 2108  ∅c0 4289  (class class class)co 7148  ℂcc 10527  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   − cmin 10862   / cdiv 11289  ℕcn 11630  2c2 11684  ℕ0cn0 11889  ...cfz 12884  ↑cexp 13421  Ccbc 13654  Σcsu 15034 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-fac 13626  df-bc 13655  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035 This theorem is referenced by:  arisum2  15208
 Copyright terms: Public domain W3C validator