MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adddirp1d Structured version   Visualization version   GIF version

Theorem adddirp1d 11269
Description: Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
adddirp1d.a (𝜑𝐴 ∈ ℂ)
adddirp1d.b (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
adddirp1d (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵))

Proof of Theorem adddirp1d
StepHypRef Expression
1 adddirp1d.a . . 3 (𝜑𝐴 ∈ ℂ)
2 1cnd 11238 . . 3 (𝜑 → 1 ∈ ℂ)
3 adddirp1d.b . . 3 (𝜑𝐵 ∈ ℂ)
41, 2, 3adddird 11268 . 2 (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + (1 · 𝐵)))
53mullidd 11261 . . 3 (𝜑 → (1 · 𝐵) = 𝐵)
65oveq2d 7429 . 2 (𝜑 → ((𝐴 · 𝐵) + (1 · 𝐵)) = ((𝐴 · 𝐵) + 𝐵))
74, 6eqtrd 2769 1 (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  (class class class)co 7413  cc 11135  1c1 11138   + caddc 11140   · cmul 11142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-mulcl 11199  ax-mulcom 11201  ax-mulass 11203  ax-distr 11204  ax-1rid 11207  ax-cnre 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6494  df-fv 6549  df-ov 7416
This theorem is referenced by:  modvalp1  13912  pcexp  16879  mulgnnass  19096  cnfldmulg  21378  dgrcolem1  26249  abelthlem2  26412  2lgsoddprmlem3d  27393  chpdifbndlem1  27533  breprexplemc  34606  deg1pow  42101  fltnltalem  42635  lt3addmuld  45270  lt4addmuld  45275  itgsinexp  45927  fourierdlem19  46098  fourierdlem35  46114  fourierdlem51  46129  minusmodnep2tmod  47313  gpg3kgrtriexlem2  47998
  Copyright terms: Public domain W3C validator