MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adddirp1d Structured version   Visualization version   GIF version

Theorem adddirp1d 11051
Description: Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
adddirp1d.a (𝜑𝐴 ∈ ℂ)
adddirp1d.b (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
adddirp1d (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵))

Proof of Theorem adddirp1d
StepHypRef Expression
1 adddirp1d.a . . 3 (𝜑𝐴 ∈ ℂ)
2 1cnd 11020 . . 3 (𝜑 → 1 ∈ ℂ)
3 adddirp1d.b . . 3 (𝜑𝐵 ∈ ℂ)
41, 2, 3adddird 11050 . 2 (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + (1 · 𝐵)))
53mulid2d 11043 . . 3 (𝜑 → (1 · 𝐵) = 𝐵)
65oveq2d 7323 . 2 (𝜑 → ((𝐴 · 𝐵) + (1 · 𝐵)) = ((𝐴 · 𝐵) + 𝐵))
74, 6eqtrd 2776 1 (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  (class class class)co 7307  cc 10919  1c1 10922   + caddc 10924   · cmul 10926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-mulcl 10983  ax-mulcom 10985  ax-mulass 10987  ax-distr 10988  ax-1rid 10991  ax-cnre 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-rex 3072  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-iota 6410  df-fv 6466  df-ov 7310
This theorem is referenced by:  modvalp1  13660  pcexp  16609  mulgnnass  18787  cnfldmulg  20679  dgrcolem1  25483  abelthlem2  25640  2lgsoddprmlem3d  26610  chpdifbndlem1  26750  breprexplemc  32661  fltnltalem  40694  lt3addmuld  43068  lt4addmuld  43073  itgsinexp  43725  fourierdlem19  43896  fourierdlem35  43912  fourierdlem51  43927
  Copyright terms: Public domain W3C validator