| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adddirp1d | Structured version Visualization version GIF version | ||
| Description: Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| adddirp1d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| adddirp1d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| adddirp1d | ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adddirp1d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | 1cnd 11114 | . . 3 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 3 | adddirp1d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | 1, 2, 3 | adddird 11144 | . 2 ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + (1 · 𝐵))) |
| 5 | 3 | mullidd 11137 | . . 3 ⊢ (𝜑 → (1 · 𝐵) = 𝐵) |
| 6 | 5 | oveq2d 7368 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) + (1 · 𝐵)) = ((𝐴 · 𝐵) + 𝐵)) |
| 7 | 4, 6 | eqtrd 2768 | 1 ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 1c1 11014 + caddc 11016 · cmul 11018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-mulcl 11075 ax-mulcom 11077 ax-mulass 11079 ax-distr 11080 ax-1rid 11083 ax-cnre 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-iota 6442 df-fv 6494 df-ov 7355 |
| This theorem is referenced by: modvalp1 13796 pcexp 16773 mulgnnass 19024 cnfldmulg 21342 dgrcolem1 26207 abelthlem2 26370 2lgsoddprmlem3d 27352 chpdifbndlem1 27492 breprexplemc 34666 deg1pow 42255 fltnltalem 42781 lt3addmuld 45427 lt4addmuld 45432 itgsinexp 46078 fourierdlem19 46249 fourierdlem35 46265 fourierdlem51 46280 minusmodnep2tmod 47478 gpg3kgrtriexlem2 48209 |
| Copyright terms: Public domain | W3C validator |