| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adddirp1d | Structured version Visualization version GIF version | ||
| Description: Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| adddirp1d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| adddirp1d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| adddirp1d | ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adddirp1d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | 1cnd 11169 | . . 3 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 3 | adddirp1d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | 1, 2, 3 | adddird 11199 | . 2 ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + (1 · 𝐵))) |
| 5 | 3 | mullidd 11192 | . . 3 ⊢ (𝜑 → (1 · 𝐵) = 𝐵) |
| 6 | 5 | oveq2d 7403 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) + (1 · 𝐵)) = ((𝐴 · 𝐵) + 𝐵)) |
| 7 | 4, 6 | eqtrd 2764 | 1 ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 1c1 11069 + caddc 11071 · cmul 11073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-mulcom 11132 ax-mulass 11134 ax-distr 11135 ax-1rid 11138 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 |
| This theorem is referenced by: modvalp1 13852 pcexp 16830 mulgnnass 19041 cnfldmulg 21315 dgrcolem1 26179 abelthlem2 26342 2lgsoddprmlem3d 27324 chpdifbndlem1 27464 breprexplemc 34623 deg1pow 42129 fltnltalem 42650 lt3addmuld 45299 lt4addmuld 45304 itgsinexp 45953 fourierdlem19 46124 fourierdlem35 46140 fourierdlem51 46155 minusmodnep2tmod 47354 gpg3kgrtriexlem2 48075 |
| Copyright terms: Public domain | W3C validator |