MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adddirp1d Structured version   Visualization version   GIF version

Theorem adddirp1d 10985
Description: Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
adddirp1d.a (𝜑𝐴 ∈ ℂ)
adddirp1d.b (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
adddirp1d (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵))

Proof of Theorem adddirp1d
StepHypRef Expression
1 adddirp1d.a . . 3 (𝜑𝐴 ∈ ℂ)
2 1cnd 10954 . . 3 (𝜑 → 1 ∈ ℂ)
3 adddirp1d.b . . 3 (𝜑𝐵 ∈ ℂ)
41, 2, 3adddird 10984 . 2 (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + (1 · 𝐵)))
53mulid2d 10977 . . 3 (𝜑 → (1 · 𝐵) = 𝐵)
65oveq2d 7284 . 2 (𝜑 → ((𝐴 · 𝐵) + (1 · 𝐵)) = ((𝐴 · 𝐵) + 𝐵))
74, 6eqtrd 2779 1 (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  (class class class)co 7268  cc 10853  1c1 10856   + caddc 10858   · cmul 10860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-mulcl 10917  ax-mulcom 10919  ax-mulass 10921  ax-distr 10922  ax-1rid 10925  ax-cnre 10928
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-iota 6388  df-fv 6438  df-ov 7271
This theorem is referenced by:  modvalp1  13591  pcexp  16541  mulgnnass  18719  cnfldmulg  20611  dgrcolem1  25415  abelthlem2  25572  2lgsoddprmlem3d  26542  chpdifbndlem1  26682  breprexplemc  32591  fltnltalem  40479  lt3addmuld  42794  lt4addmuld  42799  itgsinexp  43450  fourierdlem19  43621  fourierdlem35  43637  fourierdlem51  43652
  Copyright terms: Public domain W3C validator