Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > adddirp1d | Structured version Visualization version GIF version |
Description: Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
adddirp1d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
adddirp1d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
adddirp1d | ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adddirp1d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | 1cnd 11020 | . . 3 ⊢ (𝜑 → 1 ∈ ℂ) | |
3 | adddirp1d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | 1, 2, 3 | adddird 11050 | . 2 ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + (1 · 𝐵))) |
5 | 3 | mulid2d 11043 | . . 3 ⊢ (𝜑 → (1 · 𝐵) = 𝐵) |
6 | 5 | oveq2d 7323 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) + (1 · 𝐵)) = ((𝐴 · 𝐵) + 𝐵)) |
7 | 4, 6 | eqtrd 2776 | 1 ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 (class class class)co 7307 ℂcc 10919 1c1 10922 + caddc 10924 · cmul 10926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-mulcl 10983 ax-mulcom 10985 ax-mulass 10987 ax-distr 10988 ax-1rid 10991 ax-cnre 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 df-ov 7310 |
This theorem is referenced by: modvalp1 13660 pcexp 16609 mulgnnass 18787 cnfldmulg 20679 dgrcolem1 25483 abelthlem2 25640 2lgsoddprmlem3d 26610 chpdifbndlem1 26750 breprexplemc 32661 fltnltalem 40694 lt3addmuld 43068 lt4addmuld 43073 itgsinexp 43725 fourierdlem19 43896 fourierdlem35 43912 fourierdlem51 43927 |
Copyright terms: Public domain | W3C validator |