![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adddirp1d | Structured version Visualization version GIF version |
Description: Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
adddirp1d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
adddirp1d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
adddirp1d | ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adddirp1d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | 1cnd 11225 | . . 3 ⊢ (𝜑 → 1 ∈ ℂ) | |
3 | adddirp1d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | 1, 2, 3 | adddird 11255 | . 2 ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + (1 · 𝐵))) |
5 | 3 | mullidd 11248 | . . 3 ⊢ (𝜑 → (1 · 𝐵) = 𝐵) |
6 | 5 | oveq2d 7430 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) + (1 · 𝐵)) = ((𝐴 · 𝐵) + 𝐵)) |
7 | 4, 6 | eqtrd 2767 | 1 ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 (class class class)co 7414 ℂcc 11122 1c1 11125 + caddc 11127 · cmul 11129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-mulcl 11186 ax-mulcom 11188 ax-mulass 11190 ax-distr 11191 ax-1rid 11194 ax-cnre 11197 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-iota 6494 df-fv 6550 df-ov 7417 |
This theorem is referenced by: modvalp1 13873 pcexp 16813 mulgnnass 19048 cnfldmulg 21311 dgrcolem1 26182 abelthlem2 26343 2lgsoddprmlem3d 27320 chpdifbndlem1 27460 breprexplemc 34187 deg1pow 41532 fltnltalem 41998 lt3addmuld 44596 lt4addmuld 44601 itgsinexp 45256 fourierdlem19 45427 fourierdlem35 45443 fourierdlem51 45458 |
Copyright terms: Public domain | W3C validator |