MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  adddirp1d Structured version   Visualization version   GIF version

Theorem adddirp1d 11145
Description: Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
adddirp1d.a (𝜑𝐴 ∈ ℂ)
adddirp1d.b (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
adddirp1d (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵))

Proof of Theorem adddirp1d
StepHypRef Expression
1 adddirp1d.a . . 3 (𝜑𝐴 ∈ ℂ)
2 1cnd 11114 . . 3 (𝜑 → 1 ∈ ℂ)
3 adddirp1d.b . . 3 (𝜑𝐵 ∈ ℂ)
41, 2, 3adddird 11144 . 2 (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + (1 · 𝐵)))
53mullidd 11137 . . 3 (𝜑 → (1 · 𝐵) = 𝐵)
65oveq2d 7368 . 2 (𝜑 → ((𝐴 · 𝐵) + (1 · 𝐵)) = ((𝐴 · 𝐵) + 𝐵))
74, 6eqtrd 2768 1 (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  (class class class)co 7352  cc 11011  1c1 11014   + caddc 11016   · cmul 11018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-mulcl 11075  ax-mulcom 11077  ax-mulass 11079  ax-distr 11080  ax-1rid 11083  ax-cnre 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494  df-ov 7355
This theorem is referenced by:  modvalp1  13796  pcexp  16773  mulgnnass  19024  cnfldmulg  21342  dgrcolem1  26207  abelthlem2  26370  2lgsoddprmlem3d  27352  chpdifbndlem1  27492  breprexplemc  34666  deg1pow  42255  fltnltalem  42781  lt3addmuld  45427  lt4addmuld  45432  itgsinexp  46078  fourierdlem19  46249  fourierdlem35  46265  fourierdlem51  46280  minusmodnep2tmod  47478  gpg3kgrtriexlem2  48209
  Copyright terms: Public domain W3C validator