| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adddirp1d | Structured version Visualization version GIF version | ||
| Description: Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| adddirp1d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| adddirp1d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| adddirp1d | ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adddirp1d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | 1cnd 11129 | . . 3 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 3 | adddirp1d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | 1, 2, 3 | adddird 11159 | . 2 ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + (1 · 𝐵))) |
| 5 | 3 | mullidd 11152 | . . 3 ⊢ (𝜑 → (1 · 𝐵) = 𝐵) |
| 6 | 5 | oveq2d 7369 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) + (1 · 𝐵)) = ((𝐴 · 𝐵) + 𝐵)) |
| 7 | 4, 6 | eqtrd 2764 | 1 ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 1c1 11029 + caddc 11031 · cmul 11033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-mulcl 11090 ax-mulcom 11092 ax-mulass 11094 ax-distr 11095 ax-1rid 11098 ax-cnre 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 |
| This theorem is referenced by: modvalp1 13812 pcexp 16789 mulgnnass 19006 cnfldmulg 21328 dgrcolem1 26195 abelthlem2 26358 2lgsoddprmlem3d 27340 chpdifbndlem1 27480 breprexplemc 34599 deg1pow 42114 fltnltalem 42635 lt3addmuld 45283 lt4addmuld 45288 itgsinexp 45937 fourierdlem19 46108 fourierdlem35 46124 fourierdlem51 46139 minusmodnep2tmod 47338 gpg3kgrtriexlem2 48069 |
| Copyright terms: Public domain | W3C validator |