Proof of Theorem itgmulc2
| Step | Hyp | Ref
| Expression |
| 1 | | itgmulc2.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 2 | 1 | recld 15233 |
. . . . . . . 8
⊢ (𝜑 → (ℜ‘𝐶) ∈
ℝ) |
| 3 | 2 | recnd 11289 |
. . . . . . 7
⊢ (𝜑 → (ℜ‘𝐶) ∈
ℂ) |
| 4 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐶) ∈ ℂ) |
| 5 | | itgmulc2.3 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈
𝐿1) |
| 6 | | iblmbf 25802 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 7 | 5, 6 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
| 8 | | itgmulc2.2 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| 9 | 7, 8 | mbfmptcl 25671 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
| 10 | 9 | recld 15233 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℝ) |
| 11 | 10 | recnd 11289 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘𝐵) ∈ ℂ) |
| 12 | 4, 11 | mulcld 11281 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((ℜ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ) |
| 13 | 9 | iblcn 25834 |
. . . . . . . 8
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔
((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1
∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1))) |
| 14 | 5, 13 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈ 𝐿1 ∧ (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1)) |
| 15 | 14 | simpld 494 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℜ‘𝐵)) ∈
𝐿1) |
| 16 | 3, 10, 15 | iblmulc2 25866 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((ℜ‘𝐶) · (ℜ‘𝐵))) ∈
𝐿1) |
| 17 | 12, 16 | itgcl 25819 |
. . . 4
⊢ (𝜑 → ∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ) |
| 18 | | ax-icn 11214 |
. . . . 5
⊢ i ∈
ℂ |
| 19 | 9 | imcld 15234 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℝ) |
| 20 | 19 | recnd 11289 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐵) ∈ ℂ) |
| 21 | 4, 20 | mulcld 11281 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((ℜ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ) |
| 22 | 14 | simprd 495 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (ℑ‘𝐵)) ∈
𝐿1) |
| 23 | 3, 19, 22 | iblmulc2 25866 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((ℜ‘𝐶) · (ℑ‘𝐵))) ∈
𝐿1) |
| 24 | 21, 23 | itgcl 25819 |
. . . . 5
⊢ (𝜑 → ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ) |
| 25 | | mulcl 11239 |
. . . . 5
⊢ ((i
∈ ℂ ∧ ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ) → (i ·
∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) ∈ ℂ) |
| 26 | 18, 24, 25 | sylancr 587 |
. . . 4
⊢ (𝜑 → (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) ∈ ℂ) |
| 27 | 1 | imcld 15234 |
. . . . . . . . 9
⊢ (𝜑 → (ℑ‘𝐶) ∈
ℝ) |
| 28 | 27 | renegcld 11690 |
. . . . . . . 8
⊢ (𝜑 → -(ℑ‘𝐶) ∈
ℝ) |
| 29 | 28 | recnd 11289 |
. . . . . . 7
⊢ (𝜑 → -(ℑ‘𝐶) ∈
ℂ) |
| 30 | 29 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -(ℑ‘𝐶) ∈ ℂ) |
| 31 | 30, 20 | mulcld 11281 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ) |
| 32 | 29, 19, 22 | iblmulc2 25866 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (-(ℑ‘𝐶) · (ℑ‘𝐵))) ∈
𝐿1) |
| 33 | 31, 32 | itgcl 25819 |
. . . 4
⊢ (𝜑 → ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 ∈ ℂ) |
| 34 | 27 | recnd 11289 |
. . . . . . . 8
⊢ (𝜑 → (ℑ‘𝐶) ∈
ℂ) |
| 35 | 34 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘𝐶) ∈ ℂ) |
| 36 | 35, 11 | mulcld 11281 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((ℑ‘𝐶) · (ℜ‘𝐵)) ∈ ℂ) |
| 37 | 34, 10, 15 | iblmulc2 25866 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ ((ℑ‘𝐶) · (ℜ‘𝐵))) ∈
𝐿1) |
| 38 | 36, 37 | itgcl 25819 |
. . . . 5
⊢ (𝜑 → ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ) |
| 39 | | mulcl 11239 |
. . . . 5
⊢ ((i
∈ ℂ ∧ ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥 ∈ ℂ) → (i ·
∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) ∈ ℂ) |
| 40 | 18, 38, 39 | sylancr 587 |
. . . 4
⊢ (𝜑 → (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) ∈ ℂ) |
| 41 | 17, 26, 33, 40 | add4d 11490 |
. . 3
⊢ (𝜑 → ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) + ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))) |
| 42 | 8, 5 | itgcl 25819 |
. . . 4
⊢ (𝜑 → ∫𝐴𝐵 d𝑥 ∈ ℂ) |
| 43 | | mulcl 11239 |
. . . . 5
⊢ ((i
∈ ℂ ∧ (ℑ‘𝐶) ∈ ℂ) → (i ·
(ℑ‘𝐶)) ∈
ℂ) |
| 44 | 18, 34, 43 | sylancr 587 |
. . . 4
⊢ (𝜑 → (i ·
(ℑ‘𝐶)) ∈
ℂ) |
| 45 | 8, 5 | itgcnval 25835 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) |
| 46 | 45 | oveq2d 7447 |
. . . . . 6
⊢ (𝜑 → ((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) = ((ℜ‘𝐶) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))) |
| 47 | 10, 15 | itgcl 25819 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴(ℜ‘𝐵) d𝑥 ∈ ℂ) |
| 48 | 19, 22 | itgcl 25819 |
. . . . . . . 8
⊢ (𝜑 → ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) |
| 49 | | mulcl 11239 |
. . . . . . . 8
⊢ ((i
∈ ℂ ∧ ∫𝐴(ℑ‘𝐵) d𝑥 ∈ ℂ) → (i ·
∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ) |
| 50 | 18, 48, 49 | sylancr 587 |
. . . . . . 7
⊢ (𝜑 → (i · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ) |
| 51 | 3, 47, 50 | adddid 11285 |
. . . . . 6
⊢ (𝜑 → ((ℜ‘𝐶) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥)))) |
| 52 | 3, 10, 15, 2, 10 | itgmulc2lem2 25868 |
. . . . . . 7
⊢ (𝜑 → ((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) = ∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥) |
| 53 | 18 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → i ∈
ℂ) |
| 54 | 3, 53, 48 | mul12d 11470 |
. . . . . . . 8
⊢ (𝜑 → ((ℜ‘𝐶) · (i ·
∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ((ℜ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥))) |
| 55 | 3, 19, 22, 2, 19 | itgmulc2lem2 25868 |
. . . . . . . . 9
⊢ (𝜑 → ((ℜ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) |
| 56 | 55 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝜑 → (i ·
((ℜ‘𝐶) ·
∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) |
| 57 | 54, 56 | eqtrd 2777 |
. . . . . . 7
⊢ (𝜑 → ((ℜ‘𝐶) · (i ·
∫𝐴(ℑ‘𝐵) d𝑥)) = (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) |
| 58 | 52, 57 | oveq12d 7449 |
. . . . . 6
⊢ (𝜑 → (((ℜ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((ℜ‘𝐶) · (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥))) |
| 59 | 46, 51, 58 | 3eqtrd 2781 |
. . . . 5
⊢ (𝜑 → ((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥))) |
| 60 | 45 | oveq2d 7447 |
. . . . . 6
⊢ (𝜑 → ((i ·
(ℑ‘𝐶)) ·
∫𝐴𝐵 d𝑥) = ((i · (ℑ‘𝐶)) · (∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥)))) |
| 61 | 44, 47, 50 | adddid 11285 |
. . . . . 6
⊢ (𝜑 → ((i ·
(ℑ‘𝐶)) ·
(∫𝐴(ℜ‘𝐵) d𝑥 + (i · ∫𝐴(ℑ‘𝐵) d𝑥))) = (((i · (ℑ‘𝐶)) · ∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i ·
∫𝐴(ℑ‘𝐵) d𝑥)))) |
| 62 | 53, 34, 47 | mulassd 11284 |
. . . . . . . . 9
⊢ (𝜑 → ((i ·
(ℑ‘𝐶)) ·
∫𝐴(ℜ‘𝐵) d𝑥) = (i · ((ℑ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥))) |
| 63 | 34, 10, 15, 27, 10 | itgmulc2lem2 25868 |
. . . . . . . . . 10
⊢ (𝜑 → ((ℑ‘𝐶) · ∫𝐴(ℜ‘𝐵) d𝑥) = ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) |
| 64 | 63 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝜑 → (i ·
((ℑ‘𝐶) ·
∫𝐴(ℜ‘𝐵) d𝑥)) = (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)) |
| 65 | 62, 64 | eqtrd 2777 |
. . . . . . . 8
⊢ (𝜑 → ((i ·
(ℑ‘𝐶)) ·
∫𝐴(ℜ‘𝐵) d𝑥) = (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)) |
| 66 | 53, 34, 53, 48 | mul4d 11473 |
. . . . . . . . 9
⊢ (𝜑 → ((i ·
(ℑ‘𝐶)) ·
(i · ∫𝐴(ℑ‘𝐵) d𝑥)) = ((i · i) ·
((ℑ‘𝐶) ·
∫𝐴(ℑ‘𝐵) d𝑥))) |
| 67 | | ixi 11892 |
. . . . . . . . . . 11
⊢ (i
· i) = -1 |
| 68 | 67 | oveq1i 7441 |
. . . . . . . . . 10
⊢ ((i
· i) · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) = (-1 · ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) |
| 69 | 34, 48 | mulcld 11281 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) ∈ ℂ) |
| 70 | 69 | mulm1d 11715 |
. . . . . . . . . 10
⊢ (𝜑 → (-1 ·
((ℑ‘𝐶) ·
∫𝐴(ℑ‘𝐵) d𝑥)) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) |
| 71 | 68, 70 | eqtrid 2789 |
. . . . . . . . 9
⊢ (𝜑 → ((i · i) ·
((ℑ‘𝐶) ·
∫𝐴(ℑ‘𝐵) d𝑥)) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) |
| 72 | 34, 48 | mulneg1d 11716 |
. . . . . . . . . 10
⊢ (𝜑 → (-(ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥)) |
| 73 | 29, 19, 22, 28, 19 | itgmulc2lem2 25868 |
. . . . . . . . . 10
⊢ (𝜑 → (-(ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) |
| 74 | 72, 73 | eqtr3d 2779 |
. . . . . . . . 9
⊢ (𝜑 → -((ℑ‘𝐶) · ∫𝐴(ℑ‘𝐵) d𝑥) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) |
| 75 | 66, 71, 74 | 3eqtrd 2781 |
. . . . . . . 8
⊢ (𝜑 → ((i ·
(ℑ‘𝐶)) ·
(i · ∫𝐴(ℑ‘𝐵) d𝑥)) = ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) |
| 76 | 65, 75 | oveq12d 7449 |
. . . . . . 7
⊢ (𝜑 → (((i ·
(ℑ‘𝐶)) ·
∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i ·
∫𝐴(ℑ‘𝐵) d𝑥))) = ((i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥) + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)) |
| 77 | 40, 33, 76 | comraddd 11475 |
. . . . . 6
⊢ (𝜑 → (((i ·
(ℑ‘𝐶)) ·
∫𝐴(ℜ‘𝐵) d𝑥) + ((i · (ℑ‘𝐶)) · (i ·
∫𝐴(ℑ‘𝐵) d𝑥))) = (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))) |
| 78 | 60, 61, 77 | 3eqtrd 2781 |
. . . . 5
⊢ (𝜑 → ((i ·
(ℑ‘𝐶)) ·
∫𝐴𝐵 d𝑥) = (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))) |
| 79 | 59, 78 | oveq12d 7449 |
. . . 4
⊢ (𝜑 → (((ℜ‘𝐶) · ∫𝐴𝐵 d𝑥) + ((i · (ℑ‘𝐶)) · ∫𝐴𝐵 d𝑥)) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))) |
| 80 | 3, 42, 44, 79 | joinlmuladdmuld 11288 |
. . 3
⊢ (𝜑 → (((ℜ‘𝐶) + (i ·
(ℑ‘𝐶)))
· ∫𝐴𝐵 d𝑥) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + (i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥)) + (∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥 + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))) |
| 81 | 35, 20 | mulcld 11281 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((ℑ‘𝐶) · (ℑ‘𝐵)) ∈ ℂ) |
| 82 | 12, 81 | negsubd 11626 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + -((ℑ‘𝐶) · (ℑ‘𝐵))) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))) |
| 83 | 35, 20 | mulneg1d 11716 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (-(ℑ‘𝐶) · (ℑ‘𝐵)) = -((ℑ‘𝐶) · (ℑ‘𝐵))) |
| 84 | 83 | oveq2d 7447 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) = (((ℜ‘𝐶) · (ℜ‘𝐵)) + -((ℑ‘𝐶) · (ℑ‘𝐵)))) |
| 85 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 86 | 85, 9 | remuld 15257 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℜ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℜ‘𝐵)) − ((ℑ‘𝐶) · (ℑ‘𝐵)))) |
| 87 | 82, 84, 86 | 3eqtr4d 2787 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) = (ℜ‘(𝐶 · 𝐵))) |
| 88 | 87 | itgeq2dv 25817 |
. . . . 5
⊢ (𝜑 → ∫𝐴(((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) d𝑥 = ∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥) |
| 89 | 12, 16, 31, 32 | itgadd 25860 |
. . . . 5
⊢ (𝜑 → ∫𝐴(((ℜ‘𝐶) · (ℜ‘𝐵)) + (-(ℑ‘𝐶) · (ℑ‘𝐵))) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)) |
| 90 | 88, 89 | eqtr3d 2779 |
. . . 4
⊢ (𝜑 → ∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥)) |
| 91 | 85, 9 | immuld 15258 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (ℑ‘(𝐶 · 𝐵)) = (((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵)))) |
| 92 | 91 | itgeq2dv 25817 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥 = ∫𝐴(((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))) d𝑥) |
| 93 | 21, 23, 36, 37 | itgadd 25860 |
. . . . . . 7
⊢ (𝜑 → ∫𝐴(((ℜ‘𝐶) · (ℑ‘𝐵)) + ((ℑ‘𝐶) · (ℜ‘𝐵))) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)) |
| 94 | 92, 93 | eqtrd 2777 |
. . . . . 6
⊢ (𝜑 → ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥 = (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)) |
| 95 | 94 | oveq2d 7447 |
. . . . 5
⊢ (𝜑 → (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥) = (i · (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))) |
| 96 | 53, 24, 38 | adddid 11285 |
. . . . 5
⊢ (𝜑 → (i · (∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥 + ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)) = ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))) |
| 97 | 95, 96 | eqtrd 2777 |
. . . 4
⊢ (𝜑 → (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥) = ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥))) |
| 98 | 90, 97 | oveq12d 7449 |
. . 3
⊢ (𝜑 → (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥)) = ((∫𝐴((ℜ‘𝐶) · (ℜ‘𝐵)) d𝑥 + ∫𝐴(-(ℑ‘𝐶) · (ℑ‘𝐵)) d𝑥) + ((i · ∫𝐴((ℜ‘𝐶) · (ℑ‘𝐵)) d𝑥) + (i · ∫𝐴((ℑ‘𝐶) · (ℜ‘𝐵)) d𝑥)))) |
| 99 | 41, 80, 98 | 3eqtr4d 2787 |
. 2
⊢ (𝜑 → (((ℜ‘𝐶) + (i ·
(ℑ‘𝐶)))
· ∫𝐴𝐵 d𝑥) = (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥))) |
| 100 | 1 | replimd 15236 |
. . 3
⊢ (𝜑 → 𝐶 = ((ℜ‘𝐶) + (i · (ℑ‘𝐶)))) |
| 101 | 100 | oveq1d 7446 |
. 2
⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = (((ℜ‘𝐶) + (i · (ℑ‘𝐶))) · ∫𝐴𝐵 d𝑥)) |
| 102 | 85, 9 | mulcld 11281 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 · 𝐵) ∈ ℂ) |
| 103 | 1, 8, 5 | iblmulc2 25866 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈
𝐿1) |
| 104 | 102, 103 | itgcnval 25835 |
. 2
⊢ (𝜑 → ∫𝐴(𝐶 · 𝐵) d𝑥 = (∫𝐴(ℜ‘(𝐶 · 𝐵)) d𝑥 + (i · ∫𝐴(ℑ‘(𝐶 · 𝐵)) d𝑥))) |
| 105 | 99, 101, 104 | 3eqtr4d 2787 |
1
⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥) |