Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnorec2lem Structured version   Visualization version   GIF version

Theorem fmtnorec2lem 45724
Description: Lemma for fmtnorec2 45725 (induction step). (Contributed by AV, 29-Jul-2021.)
Assertion
Ref Expression
fmtnorec2lem (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
Distinct variable group:   𝑦,𝑛

Proof of Theorem fmtnorec2lem
StepHypRef Expression
1 peano2nn0 12453 . . . . . 6 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ0)
2 peano2nn0 12453 . . . . . 6 ((𝑦 + 1) ∈ ℕ0 → ((𝑦 + 1) + 1) ∈ ℕ0)
3 fmtno 45711 . . . . . 6 (((𝑦 + 1) + 1) ∈ ℕ0 → (FermatNo‘((𝑦 + 1) + 1)) = ((2↑(2↑((𝑦 + 1) + 1))) + 1))
41, 2, 33syl 18 . . . . 5 (𝑦 ∈ ℕ0 → (FermatNo‘((𝑦 + 1) + 1)) = ((2↑(2↑((𝑦 + 1) + 1))) + 1))
5 2cnd 12231 . . . . . . . . 9 (𝑦 ∈ ℕ0 → 2 ∈ ℂ)
65, 1expp1d 14052 . . . . . . . 8 (𝑦 ∈ ℕ0 → (2↑((𝑦 + 1) + 1)) = ((2↑(𝑦 + 1)) · 2))
76oveq2d 7373 . . . . . . 7 (𝑦 ∈ ℕ0 → (2↑(2↑((𝑦 + 1) + 1))) = (2↑((2↑(𝑦 + 1)) · 2)))
8 2nn0 12430 . . . . . . . . . . . 12 2 ∈ ℕ0
98a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → 2 ∈ ℕ0)
109, 1nn0expcld 14149 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (2↑(𝑦 + 1)) ∈ ℕ0)
119, 10nn0expcld 14149 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (2↑(2↑(𝑦 + 1))) ∈ ℕ0)
1211nn0cnd 12475 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (2↑(2↑(𝑦 + 1))) ∈ ℂ)
1312sqvald 14048 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((2↑(2↑(𝑦 + 1)))↑2) = ((2↑(2↑(𝑦 + 1))) · (2↑(2↑(𝑦 + 1)))))
145, 9, 10expmuld 14054 . . . . . . . 8 (𝑦 ∈ ℕ0 → (2↑((2↑(𝑦 + 1)) · 2)) = ((2↑(2↑(𝑦 + 1)))↑2))
15 fmtnom1nn 45714 . . . . . . . . . 10 ((𝑦 + 1) ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − 1) = (2↑(2↑(𝑦 + 1))))
161, 15syl 17 . . . . . . . . 9 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − 1) = (2↑(2↑(𝑦 + 1))))
1716, 16oveq12d 7375 . . . . . . . 8 (𝑦 ∈ ℕ0 → (((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = ((2↑(2↑(𝑦 + 1))) · (2↑(2↑(𝑦 + 1)))))
1813, 14, 173eqtr4d 2786 . . . . . . 7 (𝑦 ∈ ℕ0 → (2↑((2↑(𝑦 + 1)) · 2)) = (((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)))
197, 18eqtrd 2776 . . . . . 6 (𝑦 ∈ ℕ0 → (2↑(2↑((𝑦 + 1) + 1))) = (((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)))
2019oveq1d 7372 . . . . 5 (𝑦 ∈ ℕ0 → ((2↑(2↑((𝑦 + 1) + 1))) + 1) = ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
214, 20eqtrd 2776 . . . 4 (𝑦 ∈ ℕ0 → (FermatNo‘((𝑦 + 1) + 1)) = ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
2221adantr 481 . . 3 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → (FermatNo‘((𝑦 + 1) + 1)) = ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
23 oveq1 7364 . . . . . 6 ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → ((FermatNo‘(𝑦 + 1)) − 1) = ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1))
2423oveq1d 7372 . . . . 5 ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)))
2524oveq1d 7372 . . . 4 ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
2625adantl 482 . . 3 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
27 fzfid 13878 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (0...𝑦) ∈ Fin)
28 elfznn0 13534 . . . . . . . . . . . . 13 (𝑛 ∈ (0...𝑦) → 𝑛 ∈ ℕ0)
29 fmtnonn 45713 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ ℕ)
3029nncnd 12169 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ ℂ)
3128, 30syl 17 . . . . . . . . . . . 12 (𝑛 ∈ (0...𝑦) → (FermatNo‘𝑛) ∈ ℂ)
3231adantl 482 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑛 ∈ (0...𝑦)) → (FermatNo‘𝑛) ∈ ℂ)
3327, 32fprodcl 15835 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) ∈ ℂ)
34 1cnd 11150 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → 1 ∈ ℂ)
3533, 5, 34addsubassd 11532 . . . . . . . . 9 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + (2 − 1)))
36 2m1e1 12279 . . . . . . . . . 10 (2 − 1) = 1
3736oveq2i 7368 . . . . . . . . 9 (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + (2 − 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 1)
3835, 37eqtrdi 2792 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 1))
3938oveq1d 7372 . . . . . . 7 (𝑦 ∈ ℕ0 → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 1) · ((FermatNo‘(𝑦 + 1)) − 1)))
40 fmtnonn 45713 . . . . . . . . . . 11 ((𝑦 + 1) ∈ ℕ0 → (FermatNo‘(𝑦 + 1)) ∈ ℕ)
411, 40syl 17 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (FermatNo‘(𝑦 + 1)) ∈ ℕ)
4241nncnd 12169 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (FermatNo‘(𝑦 + 1)) ∈ ℂ)
4342, 34subcld 11512 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − 1) ∈ ℂ)
4433, 42muls1d 11615 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · ((FermatNo‘(𝑦 + 1)) − 1)) = ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)))
4543mulid2d 11173 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (1 · ((FermatNo‘(𝑦 + 1)) − 1)) = ((FermatNo‘(𝑦 + 1)) − 1))
4644, 45oveq12d 7375 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · ((FermatNo‘(𝑦 + 1)) − 1)) + (1 · ((FermatNo‘(𝑦 + 1)) − 1))) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)))
4733, 43, 34, 46joinlmuladdmuld 11182 . . . . . . 7 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)))
4839, 47eqtrd 2776 . . . . . 6 (𝑦 ∈ ℕ0 → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)))
4948adantr 481 . . . . 5 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)))
5049oveq1d 7372 . . . 4 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
51 eqcom 2743 . . . . . . 7 ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) ↔ (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) = (FermatNo‘(𝑦 + 1)))
5242, 5, 33subadd2d 11531 . . . . . . 7 (𝑦 ∈ ℕ0 → (((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) ↔ (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) = (FermatNo‘(𝑦 + 1))))
5351, 52bitr4id 289 . . . . . 6 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) ↔ ((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)))
54 oveq2 7365 . . . . . . . . . . 11 (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) = ((FermatNo‘(𝑦 + 1)) − 2) → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) = ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)))
5554oveq1d 7372 . . . . . . . . . 10 (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) = ((FermatNo‘(𝑦 + 1)) − 2) → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)))
5655oveq1d 7372 . . . . . . . . 9 (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) = ((FermatNo‘(𝑦 + 1)) − 2) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
5756eqcoms 2744 . . . . . . . 8 (((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
5833, 42mulcld 11175 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) ∈ ℂ)
5942, 5subcld 11512 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − 2) ∈ ℂ)
6058, 59subcld 11512 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) ∈ ℂ)
6160, 43, 34addassd 11177 . . . . . . . . 9 (𝑦 ∈ ℕ0 → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + (((FermatNo‘(𝑦 + 1)) − 1) + 1)))
62 elnn0uz 12808 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0𝑦 ∈ (ℤ‘0))
6362biimpi 215 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ0𝑦 ∈ (ℤ‘0))
64 elfznn0 13534 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0...(𝑦 + 1)) → 𝑛 ∈ ℕ0)
6564, 30syl 17 . . . . . . . . . . . . . . 15 (𝑛 ∈ (0...(𝑦 + 1)) → (FermatNo‘𝑛) ∈ ℂ)
6665adantl 482 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0𝑛 ∈ (0...(𝑦 + 1))) → (FermatNo‘𝑛) ∈ ℂ)
67 fveq2 6842 . . . . . . . . . . . . . 14 (𝑛 = (𝑦 + 1) → (FermatNo‘𝑛) = (FermatNo‘(𝑦 + 1)))
6863, 66, 67fprodp1 15852 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0 → ∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))))
6968eqcomd 2742 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) = ∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛))
7069oveq1d 7372 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) − ((FermatNo‘(𝑦 + 1)) − 2)))
71 npcan1 11580 . . . . . . . . . . . 12 ((FermatNo‘(𝑦 + 1)) ∈ ℂ → (((FermatNo‘(𝑦 + 1)) − 1) + 1) = (FermatNo‘(𝑦 + 1)))
7242, 71syl 17 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (((FermatNo‘(𝑦 + 1)) − 1) + 1) = (FermatNo‘(𝑦 + 1)))
7370, 72oveq12d 7375 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + (((FermatNo‘(𝑦 + 1)) − 1) + 1)) = ((∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) − ((FermatNo‘(𝑦 + 1)) − 2)) + (FermatNo‘(𝑦 + 1))))
74 fzfid 13878 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → (0...(𝑦 + 1)) ∈ Fin)
7574, 66fprodcl 15835 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → ∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) ∈ ℂ)
7675, 59, 42subadd23d 11534 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) − ((FermatNo‘(𝑦 + 1)) − 2)) + (FermatNo‘(𝑦 + 1))) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + ((FermatNo‘(𝑦 + 1)) − ((FermatNo‘(𝑦 + 1)) − 2))))
7773, 76eqtrd 2776 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + (((FermatNo‘(𝑦 + 1)) − 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + ((FermatNo‘(𝑦 + 1)) − ((FermatNo‘(𝑦 + 1)) − 2))))
7842, 5nncand 11517 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − ((FermatNo‘(𝑦 + 1)) − 2)) = 2)
7978oveq2d 7373 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + ((FermatNo‘(𝑦 + 1)) − ((FermatNo‘(𝑦 + 1)) − 2))) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8061, 77, 793eqtrd 2780 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8157, 80sylan9eqr 2798 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8281ex 413 . . . . . 6 (𝑦 ∈ ℕ0 → (((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
8353, 82sylbid 239 . . . . 5 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
8483imp 407 . . . 4 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8550, 84eqtrd 2776 . . 3 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8622, 26, 853eqtrd 2780 . 2 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8786ex 413 1 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cmin 11385  cn 12153  2c2 12208  0cn0 12413  cuz 12763  ...cfz 13424  cexp 13967  cprod 15788  FermatNocfmtno 45709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-prod 15789  df-fmtno 45710
This theorem is referenced by:  fmtnorec2  45725
  Copyright terms: Public domain W3C validator