Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnorec2lem Structured version   Visualization version   GIF version

Theorem fmtnorec2lem 47529
Description: Lemma for fmtnorec2 47530 (induction step). (Contributed by AV, 29-Jul-2021.)
Assertion
Ref Expression
fmtnorec2lem (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
Distinct variable group:   𝑦,𝑛

Proof of Theorem fmtnorec2lem
StepHypRef Expression
1 peano2nn0 12566 . . . . . 6 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ0)
2 peano2nn0 12566 . . . . . 6 ((𝑦 + 1) ∈ ℕ0 → ((𝑦 + 1) + 1) ∈ ℕ0)
3 fmtno 47516 . . . . . 6 (((𝑦 + 1) + 1) ∈ ℕ0 → (FermatNo‘((𝑦 + 1) + 1)) = ((2↑(2↑((𝑦 + 1) + 1))) + 1))
41, 2, 33syl 18 . . . . 5 (𝑦 ∈ ℕ0 → (FermatNo‘((𝑦 + 1) + 1)) = ((2↑(2↑((𝑦 + 1) + 1))) + 1))
5 2cnd 12344 . . . . . . . . 9 (𝑦 ∈ ℕ0 → 2 ∈ ℂ)
65, 1expp1d 14187 . . . . . . . 8 (𝑦 ∈ ℕ0 → (2↑((𝑦 + 1) + 1)) = ((2↑(𝑦 + 1)) · 2))
76oveq2d 7447 . . . . . . 7 (𝑦 ∈ ℕ0 → (2↑(2↑((𝑦 + 1) + 1))) = (2↑((2↑(𝑦 + 1)) · 2)))
8 2nn0 12543 . . . . . . . . . . . 12 2 ∈ ℕ0
98a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → 2 ∈ ℕ0)
109, 1nn0expcld 14285 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (2↑(𝑦 + 1)) ∈ ℕ0)
119, 10nn0expcld 14285 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (2↑(2↑(𝑦 + 1))) ∈ ℕ0)
1211nn0cnd 12589 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (2↑(2↑(𝑦 + 1))) ∈ ℂ)
1312sqvald 14183 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((2↑(2↑(𝑦 + 1)))↑2) = ((2↑(2↑(𝑦 + 1))) · (2↑(2↑(𝑦 + 1)))))
145, 9, 10expmuld 14189 . . . . . . . 8 (𝑦 ∈ ℕ0 → (2↑((2↑(𝑦 + 1)) · 2)) = ((2↑(2↑(𝑦 + 1)))↑2))
15 fmtnom1nn 47519 . . . . . . . . . 10 ((𝑦 + 1) ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − 1) = (2↑(2↑(𝑦 + 1))))
161, 15syl 17 . . . . . . . . 9 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − 1) = (2↑(2↑(𝑦 + 1))))
1716, 16oveq12d 7449 . . . . . . . 8 (𝑦 ∈ ℕ0 → (((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = ((2↑(2↑(𝑦 + 1))) · (2↑(2↑(𝑦 + 1)))))
1813, 14, 173eqtr4d 2787 . . . . . . 7 (𝑦 ∈ ℕ0 → (2↑((2↑(𝑦 + 1)) · 2)) = (((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)))
197, 18eqtrd 2777 . . . . . 6 (𝑦 ∈ ℕ0 → (2↑(2↑((𝑦 + 1) + 1))) = (((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)))
2019oveq1d 7446 . . . . 5 (𝑦 ∈ ℕ0 → ((2↑(2↑((𝑦 + 1) + 1))) + 1) = ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
214, 20eqtrd 2777 . . . 4 (𝑦 ∈ ℕ0 → (FermatNo‘((𝑦 + 1) + 1)) = ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
2221adantr 480 . . 3 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → (FermatNo‘((𝑦 + 1) + 1)) = ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
23 oveq1 7438 . . . . . 6 ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → ((FermatNo‘(𝑦 + 1)) − 1) = ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1))
2423oveq1d 7446 . . . . 5 ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)))
2524oveq1d 7446 . . . 4 ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
2625adantl 481 . . 3 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
27 fzfid 14014 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (0...𝑦) ∈ Fin)
28 elfznn0 13660 . . . . . . . . . . . . 13 (𝑛 ∈ (0...𝑦) → 𝑛 ∈ ℕ0)
29 fmtnonn 47518 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ ℕ)
3029nncnd 12282 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ ℂ)
3128, 30syl 17 . . . . . . . . . . . 12 (𝑛 ∈ (0...𝑦) → (FermatNo‘𝑛) ∈ ℂ)
3231adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑛 ∈ (0...𝑦)) → (FermatNo‘𝑛) ∈ ℂ)
3327, 32fprodcl 15988 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) ∈ ℂ)
34 1cnd 11256 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → 1 ∈ ℂ)
3533, 5, 34addsubassd 11640 . . . . . . . . 9 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + (2 − 1)))
36 2m1e1 12392 . . . . . . . . . 10 (2 − 1) = 1
3736oveq2i 7442 . . . . . . . . 9 (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + (2 − 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 1)
3835, 37eqtrdi 2793 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 1))
3938oveq1d 7446 . . . . . . 7 (𝑦 ∈ ℕ0 → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 1) · ((FermatNo‘(𝑦 + 1)) − 1)))
40 fmtnonn 47518 . . . . . . . . . . 11 ((𝑦 + 1) ∈ ℕ0 → (FermatNo‘(𝑦 + 1)) ∈ ℕ)
411, 40syl 17 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (FermatNo‘(𝑦 + 1)) ∈ ℕ)
4241nncnd 12282 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (FermatNo‘(𝑦 + 1)) ∈ ℂ)
4342, 34subcld 11620 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − 1) ∈ ℂ)
4433, 42muls1d 11723 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · ((FermatNo‘(𝑦 + 1)) − 1)) = ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)))
4543mullidd 11279 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (1 · ((FermatNo‘(𝑦 + 1)) − 1)) = ((FermatNo‘(𝑦 + 1)) − 1))
4644, 45oveq12d 7449 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · ((FermatNo‘(𝑦 + 1)) − 1)) + (1 · ((FermatNo‘(𝑦 + 1)) − 1))) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)))
4733, 43, 34, 46joinlmuladdmuld 11288 . . . . . . 7 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)))
4839, 47eqtrd 2777 . . . . . 6 (𝑦 ∈ ℕ0 → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)))
4948adantr 480 . . . . 5 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)))
5049oveq1d 7446 . . . 4 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
51 eqcom 2744 . . . . . . 7 ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) ↔ (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) = (FermatNo‘(𝑦 + 1)))
5242, 5, 33subadd2d 11639 . . . . . . 7 (𝑦 ∈ ℕ0 → (((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) ↔ (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) = (FermatNo‘(𝑦 + 1))))
5351, 52bitr4id 290 . . . . . 6 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) ↔ ((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)))
54 oveq2 7439 . . . . . . . . . . 11 (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) = ((FermatNo‘(𝑦 + 1)) − 2) → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) = ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)))
5554oveq1d 7446 . . . . . . . . . 10 (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) = ((FermatNo‘(𝑦 + 1)) − 2) → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)))
5655oveq1d 7446 . . . . . . . . 9 (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) = ((FermatNo‘(𝑦 + 1)) − 2) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
5756eqcoms 2745 . . . . . . . 8 (((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
5833, 42mulcld 11281 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) ∈ ℂ)
5942, 5subcld 11620 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − 2) ∈ ℂ)
6058, 59subcld 11620 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) ∈ ℂ)
6160, 43, 34addassd 11283 . . . . . . . . 9 (𝑦 ∈ ℕ0 → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + (((FermatNo‘(𝑦 + 1)) − 1) + 1)))
62 elnn0uz 12923 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0𝑦 ∈ (ℤ‘0))
6362biimpi 216 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ0𝑦 ∈ (ℤ‘0))
64 elfznn0 13660 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0...(𝑦 + 1)) → 𝑛 ∈ ℕ0)
6564, 30syl 17 . . . . . . . . . . . . . . 15 (𝑛 ∈ (0...(𝑦 + 1)) → (FermatNo‘𝑛) ∈ ℂ)
6665adantl 481 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0𝑛 ∈ (0...(𝑦 + 1))) → (FermatNo‘𝑛) ∈ ℂ)
67 fveq2 6906 . . . . . . . . . . . . . 14 (𝑛 = (𝑦 + 1) → (FermatNo‘𝑛) = (FermatNo‘(𝑦 + 1)))
6863, 66, 67fprodp1 16005 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0 → ∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))))
6968eqcomd 2743 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) = ∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛))
7069oveq1d 7446 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) − ((FermatNo‘(𝑦 + 1)) − 2)))
71 npcan1 11688 . . . . . . . . . . . 12 ((FermatNo‘(𝑦 + 1)) ∈ ℂ → (((FermatNo‘(𝑦 + 1)) − 1) + 1) = (FermatNo‘(𝑦 + 1)))
7242, 71syl 17 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (((FermatNo‘(𝑦 + 1)) − 1) + 1) = (FermatNo‘(𝑦 + 1)))
7370, 72oveq12d 7449 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + (((FermatNo‘(𝑦 + 1)) − 1) + 1)) = ((∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) − ((FermatNo‘(𝑦 + 1)) − 2)) + (FermatNo‘(𝑦 + 1))))
74 fzfid 14014 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → (0...(𝑦 + 1)) ∈ Fin)
7574, 66fprodcl 15988 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → ∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) ∈ ℂ)
7675, 59, 42subadd23d 11642 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) − ((FermatNo‘(𝑦 + 1)) − 2)) + (FermatNo‘(𝑦 + 1))) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + ((FermatNo‘(𝑦 + 1)) − ((FermatNo‘(𝑦 + 1)) − 2))))
7773, 76eqtrd 2777 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + (((FermatNo‘(𝑦 + 1)) − 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + ((FermatNo‘(𝑦 + 1)) − ((FermatNo‘(𝑦 + 1)) − 2))))
7842, 5nncand 11625 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − ((FermatNo‘(𝑦 + 1)) − 2)) = 2)
7978oveq2d 7447 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + ((FermatNo‘(𝑦 + 1)) − ((FermatNo‘(𝑦 + 1)) − 2))) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8061, 77, 793eqtrd 2781 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8157, 80sylan9eqr 2799 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8281ex 412 . . . . . 6 (𝑦 ∈ ℕ0 → (((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
8353, 82sylbid 240 . . . . 5 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
8483imp 406 . . . 4 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8550, 84eqtrd 2777 . . 3 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8622, 26, 853eqtrd 2781 . 2 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8786ex 412 1 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492  cn 12266  2c2 12321  0cn0 12526  cuz 12878  ...cfz 13547  cexp 14102  cprod 15939  FermatNocfmtno 47514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-prod 15940  df-fmtno 47515
This theorem is referenced by:  fmtnorec2  47530
  Copyright terms: Public domain W3C validator