Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnorec2lem Structured version   Visualization version   GIF version

Theorem fmtnorec2lem 47466
Description: Lemma for fmtnorec2 47467 (induction step). (Contributed by AV, 29-Jul-2021.)
Assertion
Ref Expression
fmtnorec2lem (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
Distinct variable group:   𝑦,𝑛

Proof of Theorem fmtnorec2lem
StepHypRef Expression
1 peano2nn0 12563 . . . . . 6 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ0)
2 peano2nn0 12563 . . . . . 6 ((𝑦 + 1) ∈ ℕ0 → ((𝑦 + 1) + 1) ∈ ℕ0)
3 fmtno 47453 . . . . . 6 (((𝑦 + 1) + 1) ∈ ℕ0 → (FermatNo‘((𝑦 + 1) + 1)) = ((2↑(2↑((𝑦 + 1) + 1))) + 1))
41, 2, 33syl 18 . . . . 5 (𝑦 ∈ ℕ0 → (FermatNo‘((𝑦 + 1) + 1)) = ((2↑(2↑((𝑦 + 1) + 1))) + 1))
5 2cnd 12341 . . . . . . . . 9 (𝑦 ∈ ℕ0 → 2 ∈ ℂ)
65, 1expp1d 14183 . . . . . . . 8 (𝑦 ∈ ℕ0 → (2↑((𝑦 + 1) + 1)) = ((2↑(𝑦 + 1)) · 2))
76oveq2d 7446 . . . . . . 7 (𝑦 ∈ ℕ0 → (2↑(2↑((𝑦 + 1) + 1))) = (2↑((2↑(𝑦 + 1)) · 2)))
8 2nn0 12540 . . . . . . . . . . . 12 2 ∈ ℕ0
98a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → 2 ∈ ℕ0)
109, 1nn0expcld 14281 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (2↑(𝑦 + 1)) ∈ ℕ0)
119, 10nn0expcld 14281 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (2↑(2↑(𝑦 + 1))) ∈ ℕ0)
1211nn0cnd 12586 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (2↑(2↑(𝑦 + 1))) ∈ ℂ)
1312sqvald 14179 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((2↑(2↑(𝑦 + 1)))↑2) = ((2↑(2↑(𝑦 + 1))) · (2↑(2↑(𝑦 + 1)))))
145, 9, 10expmuld 14185 . . . . . . . 8 (𝑦 ∈ ℕ0 → (2↑((2↑(𝑦 + 1)) · 2)) = ((2↑(2↑(𝑦 + 1)))↑2))
15 fmtnom1nn 47456 . . . . . . . . . 10 ((𝑦 + 1) ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − 1) = (2↑(2↑(𝑦 + 1))))
161, 15syl 17 . . . . . . . . 9 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − 1) = (2↑(2↑(𝑦 + 1))))
1716, 16oveq12d 7448 . . . . . . . 8 (𝑦 ∈ ℕ0 → (((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = ((2↑(2↑(𝑦 + 1))) · (2↑(2↑(𝑦 + 1)))))
1813, 14, 173eqtr4d 2784 . . . . . . 7 (𝑦 ∈ ℕ0 → (2↑((2↑(𝑦 + 1)) · 2)) = (((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)))
197, 18eqtrd 2774 . . . . . 6 (𝑦 ∈ ℕ0 → (2↑(2↑((𝑦 + 1) + 1))) = (((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)))
2019oveq1d 7445 . . . . 5 (𝑦 ∈ ℕ0 → ((2↑(2↑((𝑦 + 1) + 1))) + 1) = ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
214, 20eqtrd 2774 . . . 4 (𝑦 ∈ ℕ0 → (FermatNo‘((𝑦 + 1) + 1)) = ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
2221adantr 480 . . 3 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → (FermatNo‘((𝑦 + 1) + 1)) = ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
23 oveq1 7437 . . . . . 6 ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → ((FermatNo‘(𝑦 + 1)) − 1) = ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1))
2423oveq1d 7445 . . . . 5 ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)))
2524oveq1d 7445 . . . 4 ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
2625adantl 481 . . 3 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
27 fzfid 14010 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (0...𝑦) ∈ Fin)
28 elfznn0 13656 . . . . . . . . . . . . 13 (𝑛 ∈ (0...𝑦) → 𝑛 ∈ ℕ0)
29 fmtnonn 47455 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ ℕ)
3029nncnd 12279 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ ℂ)
3128, 30syl 17 . . . . . . . . . . . 12 (𝑛 ∈ (0...𝑦) → (FermatNo‘𝑛) ∈ ℂ)
3231adantl 481 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑛 ∈ (0...𝑦)) → (FermatNo‘𝑛) ∈ ℂ)
3327, 32fprodcl 15984 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) ∈ ℂ)
34 1cnd 11253 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → 1 ∈ ℂ)
3533, 5, 34addsubassd 11637 . . . . . . . . 9 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + (2 − 1)))
36 2m1e1 12389 . . . . . . . . . 10 (2 − 1) = 1
3736oveq2i 7441 . . . . . . . . 9 (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + (2 − 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 1)
3835, 37eqtrdi 2790 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 1))
3938oveq1d 7445 . . . . . . 7 (𝑦 ∈ ℕ0 → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 1) · ((FermatNo‘(𝑦 + 1)) − 1)))
40 fmtnonn 47455 . . . . . . . . . . 11 ((𝑦 + 1) ∈ ℕ0 → (FermatNo‘(𝑦 + 1)) ∈ ℕ)
411, 40syl 17 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (FermatNo‘(𝑦 + 1)) ∈ ℕ)
4241nncnd 12279 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (FermatNo‘(𝑦 + 1)) ∈ ℂ)
4342, 34subcld 11617 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − 1) ∈ ℂ)
4433, 42muls1d 11720 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · ((FermatNo‘(𝑦 + 1)) − 1)) = ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)))
4543mullidd 11276 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (1 · ((FermatNo‘(𝑦 + 1)) − 1)) = ((FermatNo‘(𝑦 + 1)) − 1))
4644, 45oveq12d 7448 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · ((FermatNo‘(𝑦 + 1)) − 1)) + (1 · ((FermatNo‘(𝑦 + 1)) − 1))) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)))
4733, 43, 34, 46joinlmuladdmuld 11285 . . . . . . 7 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)))
4839, 47eqtrd 2774 . . . . . 6 (𝑦 ∈ ℕ0 → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)))
4948adantr 480 . . . . 5 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)))
5049oveq1d 7445 . . . 4 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
51 eqcom 2741 . . . . . . 7 ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) ↔ (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) = (FermatNo‘(𝑦 + 1)))
5242, 5, 33subadd2d 11636 . . . . . . 7 (𝑦 ∈ ℕ0 → (((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) ↔ (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) = (FermatNo‘(𝑦 + 1))))
5351, 52bitr4id 290 . . . . . 6 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) ↔ ((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)))
54 oveq2 7438 . . . . . . . . . . 11 (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) = ((FermatNo‘(𝑦 + 1)) − 2) → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) = ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)))
5554oveq1d 7445 . . . . . . . . . 10 (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) = ((FermatNo‘(𝑦 + 1)) − 2) → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)))
5655oveq1d 7445 . . . . . . . . 9 (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) = ((FermatNo‘(𝑦 + 1)) − 2) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
5756eqcoms 2742 . . . . . . . 8 (((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
5833, 42mulcld 11278 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) ∈ ℂ)
5942, 5subcld 11617 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − 2) ∈ ℂ)
6058, 59subcld 11617 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) ∈ ℂ)
6160, 43, 34addassd 11280 . . . . . . . . 9 (𝑦 ∈ ℕ0 → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + (((FermatNo‘(𝑦 + 1)) − 1) + 1)))
62 elnn0uz 12920 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0𝑦 ∈ (ℤ‘0))
6362biimpi 216 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ0𝑦 ∈ (ℤ‘0))
64 elfznn0 13656 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0...(𝑦 + 1)) → 𝑛 ∈ ℕ0)
6564, 30syl 17 . . . . . . . . . . . . . . 15 (𝑛 ∈ (0...(𝑦 + 1)) → (FermatNo‘𝑛) ∈ ℂ)
6665adantl 481 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0𝑛 ∈ (0...(𝑦 + 1))) → (FermatNo‘𝑛) ∈ ℂ)
67 fveq2 6906 . . . . . . . . . . . . . 14 (𝑛 = (𝑦 + 1) → (FermatNo‘𝑛) = (FermatNo‘(𝑦 + 1)))
6863, 66, 67fprodp1 16001 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0 → ∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))))
6968eqcomd 2740 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) = ∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛))
7069oveq1d 7445 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) − ((FermatNo‘(𝑦 + 1)) − 2)))
71 npcan1 11685 . . . . . . . . . . . 12 ((FermatNo‘(𝑦 + 1)) ∈ ℂ → (((FermatNo‘(𝑦 + 1)) − 1) + 1) = (FermatNo‘(𝑦 + 1)))
7242, 71syl 17 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (((FermatNo‘(𝑦 + 1)) − 1) + 1) = (FermatNo‘(𝑦 + 1)))
7370, 72oveq12d 7448 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + (((FermatNo‘(𝑦 + 1)) − 1) + 1)) = ((∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) − ((FermatNo‘(𝑦 + 1)) − 2)) + (FermatNo‘(𝑦 + 1))))
74 fzfid 14010 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → (0...(𝑦 + 1)) ∈ Fin)
7574, 66fprodcl 15984 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → ∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) ∈ ℂ)
7675, 59, 42subadd23d 11639 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) − ((FermatNo‘(𝑦 + 1)) − 2)) + (FermatNo‘(𝑦 + 1))) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + ((FermatNo‘(𝑦 + 1)) − ((FermatNo‘(𝑦 + 1)) − 2))))
7773, 76eqtrd 2774 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + (((FermatNo‘(𝑦 + 1)) − 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + ((FermatNo‘(𝑦 + 1)) − ((FermatNo‘(𝑦 + 1)) − 2))))
7842, 5nncand 11622 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − ((FermatNo‘(𝑦 + 1)) − 2)) = 2)
7978oveq2d 7446 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + ((FermatNo‘(𝑦 + 1)) − ((FermatNo‘(𝑦 + 1)) − 2))) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8061, 77, 793eqtrd 2778 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8157, 80sylan9eqr 2796 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8281ex 412 . . . . . 6 (𝑦 ∈ ℕ0 → (((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
8353, 82sylbid 240 . . . . 5 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
8483imp 406 . . . 4 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8550, 84eqtrd 2774 . . 3 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8622, 26, 853eqtrd 2778 . 2 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8786ex 412 1 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  cfv 6562  (class class class)co 7430  cc 11150  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  cmin 11489  cn 12263  2c2 12318  0cn0 12523  cuz 12875  ...cfz 13543  cexp 14098  cprod 15935  FermatNocfmtno 47451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-prod 15936  df-fmtno 47452
This theorem is referenced by:  fmtnorec2  47467
  Copyright terms: Public domain W3C validator