Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtnorec2lem Structured version   Visualization version   GIF version

Theorem fmtnorec2lem 43998
Description: Lemma for fmtnorec2 43999 (induction step). (Contributed by AV, 29-Jul-2021.)
Assertion
Ref Expression
fmtnorec2lem (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
Distinct variable group:   𝑦,𝑛

Proof of Theorem fmtnorec2lem
StepHypRef Expression
1 peano2nn0 11925 . . . . . 6 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ0)
2 peano2nn0 11925 . . . . . 6 ((𝑦 + 1) ∈ ℕ0 → ((𝑦 + 1) + 1) ∈ ℕ0)
3 fmtno 43985 . . . . . 6 (((𝑦 + 1) + 1) ∈ ℕ0 → (FermatNo‘((𝑦 + 1) + 1)) = ((2↑(2↑((𝑦 + 1) + 1))) + 1))
41, 2, 33syl 18 . . . . 5 (𝑦 ∈ ℕ0 → (FermatNo‘((𝑦 + 1) + 1)) = ((2↑(2↑((𝑦 + 1) + 1))) + 1))
5 2cnd 11703 . . . . . . . . 9 (𝑦 ∈ ℕ0 → 2 ∈ ℂ)
65, 1expp1d 13507 . . . . . . . 8 (𝑦 ∈ ℕ0 → (2↑((𝑦 + 1) + 1)) = ((2↑(𝑦 + 1)) · 2))
76oveq2d 7156 . . . . . . 7 (𝑦 ∈ ℕ0 → (2↑(2↑((𝑦 + 1) + 1))) = (2↑((2↑(𝑦 + 1)) · 2)))
8 2nn0 11902 . . . . . . . . . . . 12 2 ∈ ℕ0
98a1i 11 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → 2 ∈ ℕ0)
109, 1nn0expcld 13603 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (2↑(𝑦 + 1)) ∈ ℕ0)
119, 10nn0expcld 13603 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (2↑(2↑(𝑦 + 1))) ∈ ℕ0)
1211nn0cnd 11945 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (2↑(2↑(𝑦 + 1))) ∈ ℂ)
1312sqvald 13503 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((2↑(2↑(𝑦 + 1)))↑2) = ((2↑(2↑(𝑦 + 1))) · (2↑(2↑(𝑦 + 1)))))
145, 9, 10expmuld 13509 . . . . . . . 8 (𝑦 ∈ ℕ0 → (2↑((2↑(𝑦 + 1)) · 2)) = ((2↑(2↑(𝑦 + 1)))↑2))
15 fmtnom1nn 43988 . . . . . . . . . 10 ((𝑦 + 1) ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − 1) = (2↑(2↑(𝑦 + 1))))
161, 15syl 17 . . . . . . . . 9 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − 1) = (2↑(2↑(𝑦 + 1))))
1716, 16oveq12d 7158 . . . . . . . 8 (𝑦 ∈ ℕ0 → (((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = ((2↑(2↑(𝑦 + 1))) · (2↑(2↑(𝑦 + 1)))))
1813, 14, 173eqtr4d 2867 . . . . . . 7 (𝑦 ∈ ℕ0 → (2↑((2↑(𝑦 + 1)) · 2)) = (((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)))
197, 18eqtrd 2857 . . . . . 6 (𝑦 ∈ ℕ0 → (2↑(2↑((𝑦 + 1) + 1))) = (((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)))
2019oveq1d 7155 . . . . 5 (𝑦 ∈ ℕ0 → ((2↑(2↑((𝑦 + 1) + 1))) + 1) = ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
214, 20eqtrd 2857 . . . 4 (𝑦 ∈ ℕ0 → (FermatNo‘((𝑦 + 1) + 1)) = ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
2221adantr 484 . . 3 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → (FermatNo‘((𝑦 + 1) + 1)) = ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
23 oveq1 7147 . . . . . 6 ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → ((FermatNo‘(𝑦 + 1)) − 1) = ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1))
2423oveq1d 7155 . . . . 5 ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)))
2524oveq1d 7155 . . . 4 ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
2625adantl 485 . . 3 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → ((((FermatNo‘(𝑦 + 1)) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
27 fzfid 13336 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (0...𝑦) ∈ Fin)
28 elfznn0 12995 . . . . . . . . . . . . 13 (𝑛 ∈ (0...𝑦) → 𝑛 ∈ ℕ0)
29 fmtnonn 43987 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ ℕ)
3029nncnd 11641 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → (FermatNo‘𝑛) ∈ ℂ)
3128, 30syl 17 . . . . . . . . . . . 12 (𝑛 ∈ (0...𝑦) → (FermatNo‘𝑛) ∈ ℂ)
3231adantl 485 . . . . . . . . . . 11 ((𝑦 ∈ ℕ0𝑛 ∈ (0...𝑦)) → (FermatNo‘𝑛) ∈ ℂ)
3327, 32fprodcl 15297 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) ∈ ℂ)
34 1cnd 10625 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → 1 ∈ ℂ)
3533, 5, 34addsubassd 11006 . . . . . . . . 9 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + (2 − 1)))
36 2m1e1 11751 . . . . . . . . . 10 (2 − 1) = 1
3736oveq2i 7151 . . . . . . . . 9 (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + (2 − 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 1)
3835, 37syl6eq 2873 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 1))
3938oveq1d 7155 . . . . . . 7 (𝑦 ∈ ℕ0 → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 1) · ((FermatNo‘(𝑦 + 1)) − 1)))
40 fmtnonn 43987 . . . . . . . . . . 11 ((𝑦 + 1) ∈ ℕ0 → (FermatNo‘(𝑦 + 1)) ∈ ℕ)
411, 40syl 17 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (FermatNo‘(𝑦 + 1)) ∈ ℕ)
4241nncnd 11641 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (FermatNo‘(𝑦 + 1)) ∈ ℂ)
4342, 34subcld 10986 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − 1) ∈ ℂ)
4433, 42muls1d 11089 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · ((FermatNo‘(𝑦 + 1)) − 1)) = ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)))
4543mulid2d 10648 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (1 · ((FermatNo‘(𝑦 + 1)) − 1)) = ((FermatNo‘(𝑦 + 1)) − 1))
4644, 45oveq12d 7158 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · ((FermatNo‘(𝑦 + 1)) − 1)) + (1 · ((FermatNo‘(𝑦 + 1)) − 1))) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)))
4733, 43, 34, 46joinlmuladdmuld 10657 . . . . . . 7 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)))
4839, 47eqtrd 2857 . . . . . 6 (𝑦 ∈ ℕ0 → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)))
4948adantr 484 . . . . 5 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)))
5049oveq1d 7155 . . . 4 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
5142, 5, 33subadd2d 11005 . . . . . . 7 (𝑦 ∈ ℕ0 → (((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) ↔ (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) = (FermatNo‘(𝑦 + 1))))
52 eqcom 2829 . . . . . . 7 ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) ↔ (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) = (FermatNo‘(𝑦 + 1)))
5351, 52syl6rbbr 293 . . . . . 6 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) ↔ ((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)))
54 oveq2 7148 . . . . . . . . . . 11 (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) = ((FermatNo‘(𝑦 + 1)) − 2) → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) = ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)))
5554oveq1d 7155 . . . . . . . . . 10 (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) = ((FermatNo‘(𝑦 + 1)) − 2) → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)))
5655oveq1d 7155 . . . . . . . . 9 (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) = ((FermatNo‘(𝑦 + 1)) − 2) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
5756eqcoms 2830 . . . . . . . 8 (((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1))
5833, 42mulcld 10650 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) ∈ ℂ)
5942, 5subcld 10986 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − 2) ∈ ℂ)
6058, 59subcld 10986 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) ∈ ℂ)
6160, 43, 34addassd 10652 . . . . . . . . 9 (𝑦 ∈ ℕ0 → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + (((FermatNo‘(𝑦 + 1)) − 1) + 1)))
62 elnn0uz 12271 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℕ0𝑦 ∈ (ℤ‘0))
6362biimpi 219 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ0𝑦 ∈ (ℤ‘0))
64 elfznn0 12995 . . . . . . . . . . . . . . . 16 (𝑛 ∈ (0...(𝑦 + 1)) → 𝑛 ∈ ℕ0)
6564, 30syl 17 . . . . . . . . . . . . . . 15 (𝑛 ∈ (0...(𝑦 + 1)) → (FermatNo‘𝑛) ∈ ℂ)
6665adantl 485 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0𝑛 ∈ (0...(𝑦 + 1))) → (FermatNo‘𝑛) ∈ ℂ)
67 fveq2 6652 . . . . . . . . . . . . . 14 (𝑛 = (𝑦 + 1) → (FermatNo‘𝑛) = (FermatNo‘(𝑦 + 1)))
6863, 66, 67fprodp1 15314 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ0 → ∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))))
6968eqcomd 2828 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) = ∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛))
7069oveq1d 7155 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) − ((FermatNo‘(𝑦 + 1)) − 2)))
71 npcan1 11054 . . . . . . . . . . . 12 ((FermatNo‘(𝑦 + 1)) ∈ ℂ → (((FermatNo‘(𝑦 + 1)) − 1) + 1) = (FermatNo‘(𝑦 + 1)))
7242, 71syl 17 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (((FermatNo‘(𝑦 + 1)) − 1) + 1) = (FermatNo‘(𝑦 + 1)))
7370, 72oveq12d 7158 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + (((FermatNo‘(𝑦 + 1)) − 1) + 1)) = ((∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) − ((FermatNo‘(𝑦 + 1)) − 2)) + (FermatNo‘(𝑦 + 1))))
74 fzfid 13336 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → (0...(𝑦 + 1)) ∈ Fin)
7574, 66fprodcl 15297 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → ∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) ∈ ℂ)
7675, 59, 42subadd23d 11008 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) − ((FermatNo‘(𝑦 + 1)) − 2)) + (FermatNo‘(𝑦 + 1))) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + ((FermatNo‘(𝑦 + 1)) − ((FermatNo‘(𝑦 + 1)) − 2))))
7773, 76eqtrd 2857 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + (((FermatNo‘(𝑦 + 1)) − 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + ((FermatNo‘(𝑦 + 1)) − ((FermatNo‘(𝑦 + 1)) − 2))))
7842, 5nncand 10991 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) − ((FermatNo‘(𝑦 + 1)) − 2)) = 2)
7978oveq2d 7156 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + ((FermatNo‘(𝑦 + 1)) − ((FermatNo‘(𝑦 + 1)) − 2))) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8061, 77, 793eqtrd 2861 . . . . . . . 8 (𝑦 ∈ ℕ0 → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ((FermatNo‘(𝑦 + 1)) − 2)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8157, 80sylan9eqr 2879 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8281ex 416 . . . . . 6 (𝑦 ∈ ℕ0 → (((FermatNo‘(𝑦 + 1)) − 2) = ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
8353, 82sylbid 243 . . . . 5 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
8483imp 410 . . . 4 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) · (FermatNo‘(𝑦 + 1))) − ∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛)) + ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8550, 84eqtrd 2857 . . 3 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → ((((∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) − 1) · ((FermatNo‘(𝑦 + 1)) − 1)) + 1) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8622, 26, 853eqtrd 2861 . 2 ((𝑦 ∈ ℕ0 ∧ (FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2)) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2))
8786ex 416 1 (𝑦 ∈ ℕ0 → ((FermatNo‘(𝑦 + 1)) = (∏𝑛 ∈ (0...𝑦)(FermatNo‘𝑛) + 2) → (FermatNo‘((𝑦 + 1) + 1)) = (∏𝑛 ∈ (0...(𝑦 + 1))(FermatNo‘𝑛) + 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2114  cfv 6334  (class class class)co 7140  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859  cn 11625  2c2 11680  0cn0 11885  cuz 12231  ...cfz 12885  cexp 13425  cprod 15250  FermatNocfmtno 43983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-clim 14836  df-prod 15251  df-fmtno 43984
This theorem is referenced by:  fmtnorec2  43999
  Copyright terms: Public domain W3C validator