Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucss Structured version   Visualization version   GIF version

Theorem onsucss 42695
Description: If one ordinal is less than another, then the successor of the first is less than or equal to the second. Lemma 1.13 of [Schloeder] p. 2. See ordsucss 7821. (Contributed by RP, 16-Jan-2025.)
Assertion
Ref Expression
onsucss (𝐴 ∈ On → (𝐵𝐴 → suc 𝐵𝐴))

Proof of Theorem onsucss
StepHypRef Expression
1 eloni 6379 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ordsucss 7821 . 2 (Ord 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
31, 2syl 17 1 (𝐴 ∈ On → (𝐵𝐴 → suc 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  wss 3947  Ord word 6368  Oncon0 6369  suc csuc 6371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-ord 6372  df-on 6373  df-suc 6375
This theorem is referenced by:  oege2  42736  cantnftermord  42749  tfsconcatb0  42773  naddwordnexlem0  42826  naddwordnexlem4  42831
  Copyright terms: Public domain W3C validator