Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucss Structured version   Visualization version   GIF version

Theorem onsucss 43259
Description: If one ordinal is less than another, then the successor of the first is less than or equal to the second. Lemma 1.13 of [Schloeder] p. 2. See ordsucss 7757. (Contributed by RP, 16-Jan-2025.)
Assertion
Ref Expression
onsucss (𝐴 ∈ On → (𝐵𝐴 → suc 𝐵𝐴))

Proof of Theorem onsucss
StepHypRef Expression
1 eloni 6321 . 2 (𝐴 ∈ On → Ord 𝐴)
2 ordsucss 7757 . 2 (Ord 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
31, 2syl 17 1 (𝐴 ∈ On → (𝐵𝐴 → suc 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3905  Ord word 6310  Oncon0 6311  suc csuc 6313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-ord 6314  df-on 6315  df-suc 6317
This theorem is referenced by:  oege2  43300  cantnftermord  43313  tfsconcatb0  43337  naddwordnexlem0  43389  naddwordnexlem4  43394
  Copyright terms: Public domain W3C validator