Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > logbval | Structured version Visualization version GIF version |
Description: Define the value of the logb function, the logarithm generalized to an arbitrary base, when used as infix. Most Metamath statements select variables in order of their use, but to make the order clearer we use "B" for base and "X" for the argument of the logarithm function here. (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by David A. Wheeler, 16-Jul-2017.) |
Ref | Expression |
---|---|
logbval | ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6668 | . . 3 ⊢ (𝑥 = 𝐵 → (log‘𝑥) = (log‘𝐵)) | |
2 | 1 | oveq2d 7180 | . 2 ⊢ (𝑥 = 𝐵 → ((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵))) |
3 | fveq2 6668 | . . 3 ⊢ (𝑦 = 𝑋 → (log‘𝑦) = (log‘𝑋)) | |
4 | 3 | oveq1d 7179 | . 2 ⊢ (𝑦 = 𝑋 → ((log‘𝑦) / (log‘𝐵)) = ((log‘𝑋) / (log‘𝐵))) |
5 | df-logb 25495 | . 2 ⊢ logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥))) | |
6 | ovex 7197 | . 2 ⊢ ((log‘𝑋) / (log‘𝐵)) ∈ V | |
7 | 2, 4, 5, 6 | ovmpo 7319 | 1 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ∖ cdif 3838 {csn 4513 {cpr 4515 ‘cfv 6333 (class class class)co 7164 ℂcc 10606 0cc0 10608 1c1 10609 / cdiv 11368 logclog 25290 logb clogb 25494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-v 3399 df-sbc 3680 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-opab 5090 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-iota 6291 df-fun 6335 df-fv 6341 df-ov 7167 df-oprab 7168 df-mpo 7169 df-logb 25495 |
This theorem is referenced by: logbcl 25497 logbid1 25498 logb1 25499 elogb 25500 logbchbase 25501 relogbval 25502 relogbcl 25503 relogbreexp 25505 relogbmul 25507 nnlogbexp 25511 relogbcxp 25515 cxplogb 25516 logbgt0b 25523 dvrelog2b 39682 dvrelogpow2b 39684 rege1logbrege0 45422 logb2aval 45903 |
Copyright terms: Public domain | W3C validator |