| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > logbval | Structured version Visualization version GIF version | ||
| Description: Define the value of the logb function, the logarithm generalized to an arbitrary base, when used as infix. Most Metamath statements select variables in order of their use, but to make the order clearer we use "B" for base and "X" for the argument of the logarithm function here. (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by David A. Wheeler, 16-Jul-2017.) |
| Ref | Expression |
|---|---|
| logbval | ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6822 | . . 3 ⊢ (𝑥 = 𝐵 → (log‘𝑥) = (log‘𝐵)) | |
| 2 | 1 | oveq2d 7362 | . 2 ⊢ (𝑥 = 𝐵 → ((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵))) |
| 3 | fveq2 6822 | . . 3 ⊢ (𝑦 = 𝑋 → (log‘𝑦) = (log‘𝑋)) | |
| 4 | 3 | oveq1d 7361 | . 2 ⊢ (𝑦 = 𝑋 → ((log‘𝑦) / (log‘𝐵)) = ((log‘𝑋) / (log‘𝐵))) |
| 5 | df-logb 26700 | . 2 ⊢ logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥))) | |
| 6 | ovex 7379 | . 2 ⊢ ((log‘𝑋) / (log‘𝐵)) ∈ V | |
| 7 | 2, 4, 5, 6 | ovmpo 7506 | 1 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 {csn 4576 {cpr 4578 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 0cc0 11003 1c1 11004 / cdiv 11771 logclog 26488 logb clogb 26699 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-logb 26700 |
| This theorem is referenced by: logbcl 26702 logbid1 26703 logb1 26704 elogb 26705 logbchbase 26706 relogbval 26707 relogbcl 26708 relogbreexp 26710 relogbmul 26712 nnlogbexp 26716 relogbcxp 26720 cxplogb 26721 logbgt0b 26728 dvrelog2b 42098 dvrelogpow2b 42100 rege1logbrege0 48589 logb2aval 49795 |
| Copyright terms: Public domain | W3C validator |