Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > logbval | Structured version Visualization version GIF version |
Description: Define the value of the logb function, the logarithm generalized to an arbitrary base, when used as infix. Most Metamath statements select variables in order of their use, but to make the order clearer we use "B" for base and "X" for the argument of the logarithm function here. (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by David A. Wheeler, 16-Jul-2017.) |
Ref | Expression |
---|---|
logbval | ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6768 | . . 3 ⊢ (𝑥 = 𝐵 → (log‘𝑥) = (log‘𝐵)) | |
2 | 1 | oveq2d 7284 | . 2 ⊢ (𝑥 = 𝐵 → ((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵))) |
3 | fveq2 6768 | . . 3 ⊢ (𝑦 = 𝑋 → (log‘𝑦) = (log‘𝑋)) | |
4 | 3 | oveq1d 7283 | . 2 ⊢ (𝑦 = 𝑋 → ((log‘𝑦) / (log‘𝐵)) = ((log‘𝑋) / (log‘𝐵))) |
5 | df-logb 25896 | . 2 ⊢ logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥))) | |
6 | ovex 7301 | . 2 ⊢ ((log‘𝑋) / (log‘𝐵)) ∈ V | |
7 | 2, 4, 5, 6 | ovmpo 7424 | 1 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∖ cdif 3888 {csn 4566 {cpr 4568 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 0cc0 10855 1c1 10856 / cdiv 11615 logclog 25691 logb clogb 25895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-logb 25896 |
This theorem is referenced by: logbcl 25898 logbid1 25899 logb1 25900 elogb 25901 logbchbase 25902 relogbval 25903 relogbcl 25904 relogbreexp 25906 relogbmul 25908 nnlogbexp 25912 relogbcxp 25916 cxplogb 25917 logbgt0b 25924 dvrelog2b 40054 dvrelogpow2b 40056 rege1logbrege0 45856 logb2aval 46418 |
Copyright terms: Public domain | W3C validator |