| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > logbval | Structured version Visualization version GIF version | ||
| Description: Define the value of the logb function, the logarithm generalized to an arbitrary base, when used as infix. Most Metamath statements select variables in order of their use, but to make the order clearer we use "B" for base and "X" for the argument of the logarithm function here. (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by David A. Wheeler, 16-Jul-2017.) |
| Ref | Expression |
|---|---|
| logbval | ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6828 | . . 3 ⊢ (𝑥 = 𝐵 → (log‘𝑥) = (log‘𝐵)) | |
| 2 | 1 | oveq2d 7368 | . 2 ⊢ (𝑥 = 𝐵 → ((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵))) |
| 3 | fveq2 6828 | . . 3 ⊢ (𝑦 = 𝑋 → (log‘𝑦) = (log‘𝑋)) | |
| 4 | 3 | oveq1d 7367 | . 2 ⊢ (𝑦 = 𝑋 → ((log‘𝑦) / (log‘𝐵)) = ((log‘𝑋) / (log‘𝐵))) |
| 5 | df-logb 26703 | . 2 ⊢ logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥))) | |
| 6 | ovex 7385 | . 2 ⊢ ((log‘𝑋) / (log‘𝐵)) ∈ V | |
| 7 | 2, 4, 5, 6 | ovmpo 7512 | 1 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∖ cdif 3895 {csn 4575 {cpr 4577 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 0cc0 11013 1c1 11014 / cdiv 11781 logclog 26491 logb clogb 26702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-logb 26703 |
| This theorem is referenced by: logbcl 26705 logbid1 26706 logb1 26707 elogb 26708 logbchbase 26709 relogbval 26710 relogbcl 26711 relogbreexp 26713 relogbmul 26715 nnlogbexp 26719 relogbcxp 26723 cxplogb 26724 logbgt0b 26731 dvrelog2b 42179 dvrelogpow2b 42181 rege1logbrege0 48683 logb2aval 49889 |
| Copyright terms: Public domain | W3C validator |