MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logbval Structured version   Visualization version   GIF version

Theorem logbval 26810
Description: Define the value of the logb function, the logarithm generalized to an arbitrary base, when used as infix. Most Metamath statements select variables in order of their use, but to make the order clearer we use "B" for base and "X" for the argument of the logarithm function here. (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by David A. Wheeler, 16-Jul-2017.)
Assertion
Ref Expression
logbval ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))

Proof of Theorem logbval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6905 . . 3 (𝑥 = 𝐵 → (log‘𝑥) = (log‘𝐵))
21oveq2d 7448 . 2 (𝑥 = 𝐵 → ((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵)))
3 fveq2 6905 . . 3 (𝑦 = 𝑋 → (log‘𝑦) = (log‘𝑋))
43oveq1d 7447 . 2 (𝑦 = 𝑋 → ((log‘𝑦) / (log‘𝐵)) = ((log‘𝑋) / (log‘𝐵)))
5 df-logb 26809 . 2 logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥)))
6 ovex 7465 . 2 ((log‘𝑋) / (log‘𝐵)) ∈ V
72, 4, 5, 6ovmpo 7594 1 ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cdif 3947  {csn 4625  {cpr 4627  cfv 6560  (class class class)co 7432  cc 11154  0cc0 11156  1c1 11157   / cdiv 11921  logclog 26597   logb clogb 26808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-iota 6513  df-fun 6562  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-logb 26809
This theorem is referenced by:  logbcl  26811  logbid1  26812  logb1  26813  elogb  26814  logbchbase  26815  relogbval  26816  relogbcl  26817  relogbreexp  26819  relogbmul  26821  nnlogbexp  26825  relogbcxp  26829  cxplogb  26830  logbgt0b  26837  dvrelog2b  42068  dvrelogpow2b  42070  rege1logbrege0  48484  logb2aval  49338
  Copyright terms: Public domain W3C validator