![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > logbval | Structured version Visualization version GIF version |
Description: Define the value of the logb function, the logarithm generalized to an arbitrary base, when used as infix. Most Metamath statements select variables in order of their use, but to make the order clearer we use "B" for base and "X" for the argument of the logarithm function here. (Contributed by David A. Wheeler, 21-Jan-2017.) (Revised by David A. Wheeler, 16-Jul-2017.) |
Ref | Expression |
---|---|
logbval | ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6412 | . . 3 ⊢ (𝑥 = 𝐵 → (log‘𝑥) = (log‘𝐵)) | |
2 | 1 | oveq2d 6895 | . 2 ⊢ (𝑥 = 𝐵 → ((log‘𝑦) / (log‘𝑥)) = ((log‘𝑦) / (log‘𝐵))) |
3 | fveq2 6412 | . . 3 ⊢ (𝑦 = 𝑋 → (log‘𝑦) = (log‘𝑋)) | |
4 | 3 | oveq1d 6894 | . 2 ⊢ (𝑦 = 𝑋 → ((log‘𝑦) / (log‘𝐵)) = ((log‘𝑋) / (log‘𝐵))) |
5 | df-logb 24846 | . 2 ⊢ logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥))) | |
6 | ovex 6911 | . 2 ⊢ ((log‘𝑋) / (log‘𝐵)) ∈ V | |
7 | 2, 4, 5, 6 | ovmpt2 7031 | 1 ⊢ ((𝐵 ∈ (ℂ ∖ {0, 1}) ∧ 𝑋 ∈ (ℂ ∖ {0})) → (𝐵 logb 𝑋) = ((log‘𝑋) / (log‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∖ cdif 3767 {csn 4369 {cpr 4371 ‘cfv 6102 (class class class)co 6879 ℂcc 10223 0cc0 10225 1c1 10226 / cdiv 10977 logclog 24641 logb clogb 24845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-iota 6065 df-fun 6104 df-fv 6110 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-logb 24846 |
This theorem is referenced by: logbcl 24848 logbid1 24849 logb1 24850 elogb 24851 logbchbase 24852 relogbval 24853 relogbcl 24854 relogbreexp 24856 relogbmul 24858 nnlogbexp 24862 relogbcxp 24866 cxplogb 24867 logbgt0b 24874 rege1logbrege0 43146 logb2aval 43302 |
Copyright terms: Public domain | W3C validator |