Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfac8prim Structured version   Visualization version   GIF version

Theorem wfac8prim 44965
Description: The class of well-founded sets 𝑊 models the Axiom of Choice. Since the previous theorems show that all the ZF axioms hold in 𝑊, we may use any statement that ZF proves is equivalent to Choice to prove this. We use ac8prim 44954. Part of Corollary II.2.12 of [Kunen2] p. 114. (Contributed by Eric Schmidt, 19-Oct-2025.)
Hypothesis
Ref Expression
wfax.1 𝑊 = (𝑅1 “ On)
Assertion
Ref Expression
wfac8prim 𝑥𝑊 ((∀𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊 𝑤𝑧) ∧ ∀𝑧𝑊𝑤𝑊 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑊 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊𝑣𝑊 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑊

Proof of Theorem wfac8prim
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 trwf 44922 . . 3 Tr (𝑅1 “ On)
2 wfax.1 . . . 4 𝑊 = (𝑅1 “ On)
3 treq 5217 . . . 4 (𝑊 = (𝑅1 “ On) → (Tr 𝑊 ↔ Tr (𝑅1 “ On)))
42, 3ax-mp 5 . . 3 (Tr 𝑊 ↔ Tr (𝑅1 “ On))
51, 4mpbir 231 . 2 Tr 𝑊
6 ac8 10421 . . . . 5 ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑡𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑡))
7 uniwf 9748 . . . . . . . . . 10 (𝑥 (𝑅1 “ On) ↔ 𝑥 (𝑅1 “ On))
8 inss2 4197 . . . . . . . . . . 11 (𝑡 𝑥) ⊆ 𝑥
9 sswf 9737 . . . . . . . . . . 11 (( 𝑥 (𝑅1 “ On) ∧ (𝑡 𝑥) ⊆ 𝑥) → (𝑡 𝑥) ∈ (𝑅1 “ On))
108, 9mpan2 691 . . . . . . . . . 10 ( 𝑥 (𝑅1 “ On) → (𝑡 𝑥) ∈ (𝑅1 “ On))
117, 10sylbi 217 . . . . . . . . 9 (𝑥 (𝑅1 “ On) → (𝑡 𝑥) ∈ (𝑅1 “ On))
122eleq2i 2820 . . . . . . . . 9 (𝑥𝑊𝑥 (𝑅1 “ On))
132eleq2i 2820 . . . . . . . . 9 ((𝑡 𝑥) ∈ 𝑊 ↔ (𝑡 𝑥) ∈ (𝑅1 “ On))
1411, 12, 133imtr4i 292 . . . . . . . 8 (𝑥𝑊 → (𝑡 𝑥) ∈ 𝑊)
15 inss1 4196 . . . . . . . . . . . . . . 15 (𝑧𝑡) ⊆ 𝑧
16 elssuni 4897 . . . . . . . . . . . . . . 15 (𝑧𝑥𝑧 𝑥)
1715, 16sstrid 3955 . . . . . . . . . . . . . 14 (𝑧𝑥 → (𝑧𝑡) ⊆ 𝑥)
18 dfss 3930 . . . . . . . . . . . . . 14 ((𝑧𝑡) ⊆ 𝑥 ↔ (𝑧𝑡) = ((𝑧𝑡) ∩ 𝑥))
1917, 18sylib 218 . . . . . . . . . . . . 13 (𝑧𝑥 → (𝑧𝑡) = ((𝑧𝑡) ∩ 𝑥))
20 inass 4187 . . . . . . . . . . . . 13 ((𝑧𝑡) ∩ 𝑥) = (𝑧 ∩ (𝑡 𝑥))
2119, 20eqtrdi 2780 . . . . . . . . . . . 12 (𝑧𝑥 → (𝑧𝑡) = (𝑧 ∩ (𝑡 𝑥)))
2221eleq2d 2814 . . . . . . . . . . 11 (𝑧𝑥 → (𝑣 ∈ (𝑧𝑡) ↔ 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥))))
2322eubidv 2579 . . . . . . . . . 10 (𝑧𝑥 → (∃!𝑣 𝑣 ∈ (𝑧𝑡) ↔ ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥))))
2423ralbiia 3073 . . . . . . . . 9 (∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑡) ↔ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥)))
25 ineq2 4173 . . . . . . . . . . . . 13 (𝑦 = (𝑡 𝑥) → (𝑧𝑦) = (𝑧 ∩ (𝑡 𝑥)))
2625eleq2d 2814 . . . . . . . . . . . 12 (𝑦 = (𝑡 𝑥) → (𝑣 ∈ (𝑧𝑦) ↔ 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥))))
2726eubidv 2579 . . . . . . . . . . 11 (𝑦 = (𝑡 𝑥) → (∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥))))
2827ralbidv 3156 . . . . . . . . . 10 (𝑦 = (𝑡 𝑥) → (∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥))))
2928rspcev 3585 . . . . . . . . 9 (((𝑡 𝑥) ∈ 𝑊 ∧ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥))) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
3024, 29sylan2b 594 . . . . . . . 8 (((𝑡 𝑥) ∈ 𝑊 ∧ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑡)) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
3114, 30sylan 580 . . . . . . 7 ((𝑥𝑊 ∧ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑡)) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
3231ex 412 . . . . . 6 (𝑥𝑊 → (∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑡) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
3332exlimdv 1933 . . . . 5 (𝑥𝑊 → (∃𝑡𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑡) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
346, 33syl5 34 . . . 4 (𝑥𝑊 → ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
3534rgen 3046 . . 3 𝑥𝑊 ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
36 modelac8prim 44955 . . 3 (Tr 𝑊 → (∀𝑥𝑊 ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑥𝑊 ((∀𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊 𝑤𝑧) ∧ ∀𝑧𝑊𝑤𝑊 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑊 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊𝑣𝑊 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))))
3735, 36mpbii 233 . 2 (Tr 𝑊 → ∀𝑥𝑊 ((∀𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊 𝑤𝑧) ∧ ∀𝑧𝑊𝑤𝑊 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑊 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊𝑣𝑊 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤))))
385, 37ax-mp 5 1 𝑥𝑊 ((∀𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊 𝑤𝑧) ∧ ∀𝑧𝑊𝑤𝑊 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑊 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊𝑣𝑊 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  ∃!weu 2561  wne 2925  wral 3044  wrex 3053  cin 3910  wss 3911  c0 4292   cuni 4867  Tr wtr 5209  cima 5634  Oncon0 6320  𝑅1cr1 9691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-ac2 10392
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-r1 9693  df-rank 9694  df-ac 10045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator