Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfac8prim Structured version   Visualization version   GIF version

Theorem wfac8prim 45035
Description: The class of well-founded sets 𝑊 models the Axiom of Choice. Since the previous theorems show that all the ZF axioms hold in 𝑊, we may use any statement that ZF proves is equivalent to Choice to prove this. We use ac8prim 45024. Part of Corollary II.2.12 of [Kunen2] p. 114. (Contributed by Eric Schmidt, 19-Oct-2025.)
Hypothesis
Ref Expression
wfax.1 𝑊 = (𝑅1 “ On)
Assertion
Ref Expression
wfac8prim 𝑥𝑊 ((∀𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊 𝑤𝑧) ∧ ∀𝑧𝑊𝑤𝑊 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑊 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊𝑣𝑊 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑊

Proof of Theorem wfac8prim
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 trwf 44992 . . 3 Tr (𝑅1 “ On)
2 wfax.1 . . . 4 𝑊 = (𝑅1 “ On)
3 treq 5200 . . . 4 (𝑊 = (𝑅1 “ On) → (Tr 𝑊 ↔ Tr (𝑅1 “ On)))
42, 3ax-mp 5 . . 3 (Tr 𝑊 ↔ Tr (𝑅1 “ On))
51, 4mpbir 231 . 2 Tr 𝑊
6 ac8 10378 . . . . 5 ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑡𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑡))
7 uniwf 9707 . . . . . . . . . 10 (𝑥 (𝑅1 “ On) ↔ 𝑥 (𝑅1 “ On))
8 inss2 4183 . . . . . . . . . . 11 (𝑡 𝑥) ⊆ 𝑥
9 sswf 9696 . . . . . . . . . . 11 (( 𝑥 (𝑅1 “ On) ∧ (𝑡 𝑥) ⊆ 𝑥) → (𝑡 𝑥) ∈ (𝑅1 “ On))
108, 9mpan2 691 . . . . . . . . . 10 ( 𝑥 (𝑅1 “ On) → (𝑡 𝑥) ∈ (𝑅1 “ On))
117, 10sylbi 217 . . . . . . . . 9 (𝑥 (𝑅1 “ On) → (𝑡 𝑥) ∈ (𝑅1 “ On))
122eleq2i 2823 . . . . . . . . 9 (𝑥𝑊𝑥 (𝑅1 “ On))
132eleq2i 2823 . . . . . . . . 9 ((𝑡 𝑥) ∈ 𝑊 ↔ (𝑡 𝑥) ∈ (𝑅1 “ On))
1411, 12, 133imtr4i 292 . . . . . . . 8 (𝑥𝑊 → (𝑡 𝑥) ∈ 𝑊)
15 inss1 4182 . . . . . . . . . . . . . . 15 (𝑧𝑡) ⊆ 𝑧
16 elssuni 4884 . . . . . . . . . . . . . . 15 (𝑧𝑥𝑧 𝑥)
1715, 16sstrid 3941 . . . . . . . . . . . . . 14 (𝑧𝑥 → (𝑧𝑡) ⊆ 𝑥)
18 dfss 3916 . . . . . . . . . . . . . 14 ((𝑧𝑡) ⊆ 𝑥 ↔ (𝑧𝑡) = ((𝑧𝑡) ∩ 𝑥))
1917, 18sylib 218 . . . . . . . . . . . . 13 (𝑧𝑥 → (𝑧𝑡) = ((𝑧𝑡) ∩ 𝑥))
20 inass 4173 . . . . . . . . . . . . 13 ((𝑧𝑡) ∩ 𝑥) = (𝑧 ∩ (𝑡 𝑥))
2119, 20eqtrdi 2782 . . . . . . . . . . . 12 (𝑧𝑥 → (𝑧𝑡) = (𝑧 ∩ (𝑡 𝑥)))
2221eleq2d 2817 . . . . . . . . . . 11 (𝑧𝑥 → (𝑣 ∈ (𝑧𝑡) ↔ 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥))))
2322eubidv 2581 . . . . . . . . . 10 (𝑧𝑥 → (∃!𝑣 𝑣 ∈ (𝑧𝑡) ↔ ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥))))
2423ralbiia 3076 . . . . . . . . 9 (∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑡) ↔ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥)))
25 ineq2 4159 . . . . . . . . . . . . 13 (𝑦 = (𝑡 𝑥) → (𝑧𝑦) = (𝑧 ∩ (𝑡 𝑥)))
2625eleq2d 2817 . . . . . . . . . . . 12 (𝑦 = (𝑡 𝑥) → (𝑣 ∈ (𝑧𝑦) ↔ 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥))))
2726eubidv 2581 . . . . . . . . . . 11 (𝑦 = (𝑡 𝑥) → (∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥))))
2827ralbidv 3155 . . . . . . . . . 10 (𝑦 = (𝑡 𝑥) → (∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥))))
2928rspcev 3572 . . . . . . . . 9 (((𝑡 𝑥) ∈ 𝑊 ∧ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥))) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
3024, 29sylan2b 594 . . . . . . . 8 (((𝑡 𝑥) ∈ 𝑊 ∧ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑡)) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
3114, 30sylan 580 . . . . . . 7 ((𝑥𝑊 ∧ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑡)) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
3231ex 412 . . . . . 6 (𝑥𝑊 → (∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑡) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
3332exlimdv 1934 . . . . 5 (𝑥𝑊 → (∃𝑡𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑡) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
346, 33syl5 34 . . . 4 (𝑥𝑊 → ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
3534rgen 3049 . . 3 𝑥𝑊 ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
36 modelac8prim 45025 . . 3 (Tr 𝑊 → (∀𝑥𝑊 ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑥𝑊 ((∀𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊 𝑤𝑧) ∧ ∀𝑧𝑊𝑤𝑊 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑊 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊𝑣𝑊 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))))
3735, 36mpbii 233 . 2 (Tr 𝑊 → ∀𝑥𝑊 ((∀𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊 𝑤𝑧) ∧ ∀𝑧𝑊𝑤𝑊 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑊 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊𝑣𝑊 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤))))
385, 37ax-mp 5 1 𝑥𝑊 ((∀𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊 𝑤𝑧) ∧ ∀𝑧𝑊𝑤𝑊 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑊 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊𝑣𝑊 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  ∃!weu 2563  wne 2928  wral 3047  wrex 3056  cin 3896  wss 3897  c0 4278   cuni 4854  Tr wtr 5193  cima 5614  Oncon0 6301  𝑅1cr1 9650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-ac2 10349
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-r1 9652  df-rank 9653  df-ac 10002
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator