| Step | Hyp | Ref
| Expression |
| 1 | | trwf 44951 |
. . 3
⊢ Tr ∪ (𝑅1 “ On) |
| 2 | | wfax.1 |
. . . 4
⊢ 𝑊 = ∪
(𝑅1 “ On) |
| 3 | | treq 5265 |
. . . 4
⊢ (𝑊 = ∪
(𝑅1 “ On) → (Tr 𝑊 ↔ Tr ∪
(𝑅1 “ On))) |
| 4 | 2, 3 | ax-mp 5 |
. . 3
⊢ (Tr 𝑊 ↔ Tr ∪ (𝑅1 “ On)) |
| 5 | 1, 4 | mpbir 231 |
. 2
⊢ Tr 𝑊 |
| 6 | | ac8 10528 |
. . . . 5
⊢
((∀𝑧 ∈
𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑡∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑡)) |
| 7 | | uniwf 9855 |
. . . . . . . . . 10
⊢ (𝑥 ∈ ∪ (𝑅1 “ On) ↔ ∪ 𝑥
∈ ∪ (𝑅1 “
On)) |
| 8 | | inss2 4237 |
. . . . . . . . . . 11
⊢ (𝑡 ∩ ∪ 𝑥)
⊆ ∪ 𝑥 |
| 9 | | sswf 9844 |
. . . . . . . . . . 11
⊢ ((∪ 𝑥
∈ ∪ (𝑅1 “ On) ∧
(𝑡 ∩ ∪ 𝑥)
⊆ ∪ 𝑥) → (𝑡 ∩ ∪ 𝑥) ∈ ∪ (𝑅1 “ On)) |
| 10 | 8, 9 | mpan2 691 |
. . . . . . . . . 10
⊢ (∪ 𝑥
∈ ∪ (𝑅1 “ On) →
(𝑡 ∩ ∪ 𝑥)
∈ ∪ (𝑅1 “
On)) |
| 11 | 7, 10 | sylbi 217 |
. . . . . . . . 9
⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → (𝑡 ∩ ∪ 𝑥)
∈ ∪ (𝑅1 “
On)) |
| 12 | 2 | eleq2i 2832 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑊 ↔ 𝑥 ∈ ∪
(𝑅1 “ On)) |
| 13 | 2 | eleq2i 2832 |
. . . . . . . . 9
⊢ ((𝑡 ∩ ∪ 𝑥)
∈ 𝑊 ↔ (𝑡 ∩ ∪ 𝑥)
∈ ∪ (𝑅1 “
On)) |
| 14 | 11, 12, 13 | 3imtr4i 292 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑊 → (𝑡 ∩ ∪ 𝑥) ∈ 𝑊) |
| 15 | | inss1 4236 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∩ 𝑡) ⊆ 𝑧 |
| 16 | | elssuni 4935 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ 𝑥 → 𝑧 ⊆ ∪ 𝑥) |
| 17 | 15, 16 | sstrid 3994 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ 𝑥 → (𝑧 ∩ 𝑡) ⊆ ∪ 𝑥) |
| 18 | | dfss 3969 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∩ 𝑡) ⊆ ∪ 𝑥 ↔ (𝑧 ∩ 𝑡) = ((𝑧 ∩ 𝑡) ∩ ∪ 𝑥)) |
| 19 | 17, 18 | sylib 218 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ 𝑥 → (𝑧 ∩ 𝑡) = ((𝑧 ∩ 𝑡) ∩ ∪ 𝑥)) |
| 20 | | inass 4227 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∩ 𝑡) ∩ ∪ 𝑥) = (𝑧 ∩ (𝑡 ∩ ∪ 𝑥)) |
| 21 | 19, 20 | eqtrdi 2792 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ 𝑥 → (𝑧 ∩ 𝑡) = (𝑧 ∩ (𝑡 ∩ ∪ 𝑥))) |
| 22 | 21 | eleq2d 2826 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝑥 → (𝑣 ∈ (𝑧 ∩ 𝑡) ↔ 𝑣 ∈ (𝑧 ∩ (𝑡 ∩ ∪ 𝑥)))) |
| 23 | 22 | eubidv 2585 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑥 → (∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑡) ↔ ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑡 ∩ ∪ 𝑥)))) |
| 24 | 23 | ralbiia 3090 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑡) ↔ ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑡 ∩ ∪ 𝑥))) |
| 25 | | ineq2 4213 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑡 ∩ ∪ 𝑥) → (𝑧 ∩ 𝑦) = (𝑧 ∩ (𝑡 ∩ ∪ 𝑥))) |
| 26 | 25 | eleq2d 2826 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝑡 ∩ ∪ 𝑥) → (𝑣 ∈ (𝑧 ∩ 𝑦) ↔ 𝑣 ∈ (𝑧 ∩ (𝑡 ∩ ∪ 𝑥)))) |
| 27 | 26 | eubidv 2585 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑡 ∩ ∪ 𝑥) → (∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦) ↔ ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑡 ∩ ∪ 𝑥)))) |
| 28 | 27 | ralbidv 3177 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑡 ∩ ∪ 𝑥) → (∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦) ↔ ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑡 ∩ ∪ 𝑥)))) |
| 29 | 28 | rspcev 3621 |
. . . . . . . . 9
⊢ (((𝑡 ∩ ∪ 𝑥)
∈ 𝑊 ∧
∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑡 ∩ ∪ 𝑥))) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) |
| 30 | 24, 29 | sylan2b 594 |
. . . . . . . 8
⊢ (((𝑡 ∩ ∪ 𝑥)
∈ 𝑊 ∧
∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑡)) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) |
| 31 | 14, 30 | sylan 580 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑊 ∧ ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑡)) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) |
| 32 | 31 | ex 412 |
. . . . . 6
⊢ (𝑥 ∈ 𝑊 → (∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑡) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |
| 33 | 32 | exlimdv 1933 |
. . . . 5
⊢ (𝑥 ∈ 𝑊 → (∃𝑡∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑡) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |
| 34 | 6, 33 | syl5 34 |
. . . 4
⊢ (𝑥 ∈ 𝑊 → ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦))) |
| 35 | 34 | rgen 3062 |
. . 3
⊢
∀𝑥 ∈
𝑊 ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) |
| 36 | | modelac8prim 44982 |
. . 3
⊢ (Tr 𝑊 → (∀𝑥 ∈ 𝑊 ((∀𝑧 ∈ 𝑥 𝑧 ≠ ∅ ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑧 ≠ 𝑤 → (𝑧 ∩ 𝑤) = ∅)) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ 𝑦)) ↔ ∀𝑥 ∈ 𝑊 ((∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 → ∃𝑤 ∈ 𝑊 𝑤 ∈ 𝑧) ∧ ∀𝑧 ∈ 𝑊 ∀𝑤 ∈ 𝑊 ((𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦 ∈ 𝑊 (𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤)))) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 → ∃𝑤 ∈ 𝑊 ∀𝑣 ∈ 𝑊 ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ↔ 𝑣 = 𝑤))))) |
| 37 | 35, 36 | mpbii 233 |
. 2
⊢ (Tr 𝑊 → ∀𝑥 ∈ 𝑊 ((∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 → ∃𝑤 ∈ 𝑊 𝑤 ∈ 𝑧) ∧ ∀𝑧 ∈ 𝑊 ∀𝑤 ∈ 𝑊 ((𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦 ∈ 𝑊 (𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤)))) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 → ∃𝑤 ∈ 𝑊 ∀𝑣 ∈ 𝑊 ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ↔ 𝑣 = 𝑤)))) |
| 38 | 5, 37 | ax-mp 5 |
1
⊢
∀𝑥 ∈
𝑊 ((∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 → ∃𝑤 ∈ 𝑊 𝑤 ∈ 𝑧) ∧ ∀𝑧 ∈ 𝑊 ∀𝑤 ∈ 𝑊 ((𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦 ∈ 𝑊 (𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤)))) → ∃𝑦 ∈ 𝑊 ∀𝑧 ∈ 𝑊 (𝑧 ∈ 𝑥 → ∃𝑤 ∈ 𝑊 ∀𝑣 ∈ 𝑊 ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ↔ 𝑣 = 𝑤))) |