Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfac8prim Structured version   Visualization version   GIF version

Theorem wfac8prim 45159
Description: The class of well-founded sets 𝑊 models the Axiom of Choice. Since the previous theorems show that all the ZF axioms hold in 𝑊, we may use any statement that ZF proves is equivalent to Choice to prove this. We use ac8prim 45148. Part of Corollary II.2.12 of [Kunen2] p. 114. (Contributed by Eric Schmidt, 19-Oct-2025.)
Hypothesis
Ref Expression
wfax.1 𝑊 = (𝑅1 “ On)
Assertion
Ref Expression
wfac8prim 𝑥𝑊 ((∀𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊 𝑤𝑧) ∧ ∀𝑧𝑊𝑤𝑊 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑊 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊𝑣𝑊 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑊

Proof of Theorem wfac8prim
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 trwf 45116 . . 3 Tr (𝑅1 “ On)
2 wfax.1 . . . 4 𝑊 = (𝑅1 “ On)
3 treq 5209 . . . 4 (𝑊 = (𝑅1 “ On) → (Tr 𝑊 ↔ Tr (𝑅1 “ On)))
42, 3ax-mp 5 . . 3 (Tr 𝑊 ↔ Tr (𝑅1 “ On))
51, 4mpbir 231 . 2 Tr 𝑊
6 ac8 10394 . . . . 5 ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑡𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑡))
7 uniwf 9723 . . . . . . . . . 10 (𝑥 (𝑅1 “ On) ↔ 𝑥 (𝑅1 “ On))
8 inss2 4187 . . . . . . . . . . 11 (𝑡 𝑥) ⊆ 𝑥
9 sswf 9712 . . . . . . . . . . 11 (( 𝑥 (𝑅1 “ On) ∧ (𝑡 𝑥) ⊆ 𝑥) → (𝑡 𝑥) ∈ (𝑅1 “ On))
108, 9mpan2 691 . . . . . . . . . 10 ( 𝑥 (𝑅1 “ On) → (𝑡 𝑥) ∈ (𝑅1 “ On))
117, 10sylbi 217 . . . . . . . . 9 (𝑥 (𝑅1 “ On) → (𝑡 𝑥) ∈ (𝑅1 “ On))
122eleq2i 2825 . . . . . . . . 9 (𝑥𝑊𝑥 (𝑅1 “ On))
132eleq2i 2825 . . . . . . . . 9 ((𝑡 𝑥) ∈ 𝑊 ↔ (𝑡 𝑥) ∈ (𝑅1 “ On))
1411, 12, 133imtr4i 292 . . . . . . . 8 (𝑥𝑊 → (𝑡 𝑥) ∈ 𝑊)
15 inss1 4186 . . . . . . . . . . . . . . 15 (𝑧𝑡) ⊆ 𝑧
16 elssuni 4891 . . . . . . . . . . . . . . 15 (𝑧𝑥𝑧 𝑥)
1715, 16sstrid 3942 . . . . . . . . . . . . . 14 (𝑧𝑥 → (𝑧𝑡) ⊆ 𝑥)
18 dfss 3917 . . . . . . . . . . . . . 14 ((𝑧𝑡) ⊆ 𝑥 ↔ (𝑧𝑡) = ((𝑧𝑡) ∩ 𝑥))
1917, 18sylib 218 . . . . . . . . . . . . 13 (𝑧𝑥 → (𝑧𝑡) = ((𝑧𝑡) ∩ 𝑥))
20 inass 4177 . . . . . . . . . . . . 13 ((𝑧𝑡) ∩ 𝑥) = (𝑧 ∩ (𝑡 𝑥))
2119, 20eqtrdi 2784 . . . . . . . . . . . 12 (𝑧𝑥 → (𝑧𝑡) = (𝑧 ∩ (𝑡 𝑥)))
2221eleq2d 2819 . . . . . . . . . . 11 (𝑧𝑥 → (𝑣 ∈ (𝑧𝑡) ↔ 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥))))
2322eubidv 2583 . . . . . . . . . 10 (𝑧𝑥 → (∃!𝑣 𝑣 ∈ (𝑧𝑡) ↔ ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥))))
2423ralbiia 3077 . . . . . . . . 9 (∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑡) ↔ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥)))
25 ineq2 4163 . . . . . . . . . . . . 13 (𝑦 = (𝑡 𝑥) → (𝑧𝑦) = (𝑧 ∩ (𝑡 𝑥)))
2625eleq2d 2819 . . . . . . . . . . . 12 (𝑦 = (𝑡 𝑥) → (𝑣 ∈ (𝑧𝑦) ↔ 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥))))
2726eubidv 2583 . . . . . . . . . . 11 (𝑦 = (𝑡 𝑥) → (∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥))))
2827ralbidv 3156 . . . . . . . . . 10 (𝑦 = (𝑡 𝑥) → (∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥))))
2928rspcev 3573 . . . . . . . . 9 (((𝑡 𝑥) ∈ 𝑊 ∧ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧 ∩ (𝑡 𝑥))) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
3024, 29sylan2b 594 . . . . . . . 8 (((𝑡 𝑥) ∈ 𝑊 ∧ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑡)) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
3114, 30sylan 580 . . . . . . 7 ((𝑥𝑊 ∧ ∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑡)) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
3231ex 412 . . . . . 6 (𝑥𝑊 → (∀𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑡) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
3332exlimdv 1934 . . . . 5 (𝑥𝑊 → (∃𝑡𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑡) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
346, 33syl5 34 . . . 4 (𝑥𝑊 → ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
3534rgen 3050 . . 3 𝑥𝑊 ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
36 modelac8prim 45149 . . 3 (Tr 𝑊 → (∀𝑥𝑊 ((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑊𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)) ↔ ∀𝑥𝑊 ((∀𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊 𝑤𝑧) ∧ ∀𝑧𝑊𝑤𝑊 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑊 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊𝑣𝑊 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))))
3735, 36mpbii 233 . 2 (Tr 𝑊 → ∀𝑥𝑊 ((∀𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊 𝑤𝑧) ∧ ∀𝑧𝑊𝑤𝑊 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑊 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊𝑣𝑊 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤))))
385, 37ax-mp 5 1 𝑥𝑊 ((∀𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊 𝑤𝑧) ∧ ∀𝑧𝑊𝑤𝑊 ((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦𝑊 (𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑊𝑧𝑊 (𝑧𝑥 → ∃𝑤𝑊𝑣𝑊 ((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  ∃!weu 2565  wne 2929  wral 3048  wrex 3057  cin 3897  wss 3898  c0 4282   cuni 4860  Tr wtr 5202  cima 5624  Oncon0 6314  𝑅1cr1 9666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-ac2 10365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-r1 9668  df-rank 9669  df-ac 10018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator