| Mathbox for Eric Schmidt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ac8prim | Structured version Visualization version GIF version | ||
| Description: ac8 10451 expanded into primitives. (Contributed by Eric Schmidt, 19-Oct-2025.) |
| Ref | Expression |
|---|---|
| ac8prim | ⊢ ((∀𝑧(𝑧 ∈ 𝑥 → ∃𝑤 𝑤 ∈ 𝑧) ∧ ∀𝑧∀𝑤((𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤)))) → ∃𝑦∀𝑧(𝑧 ∈ 𝑥 → ∃𝑤∀𝑣((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ↔ 𝑣 = 𝑤))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac5prim 44973 | . 2 ⊢ (CHOICE ↔ ∀𝑥((∀𝑧(𝑧 ∈ 𝑥 → ∃𝑤 𝑤 ∈ 𝑧) ∧ ∀𝑧∀𝑤((𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤)))) → ∃𝑦∀𝑧(𝑧 ∈ 𝑥 → ∃𝑤∀𝑣((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ↔ 𝑣 = 𝑤)))) | |
| 2 | 1 | axaci 10427 | 1 ⊢ ((∀𝑧(𝑧 ∈ 𝑥 → ∃𝑤 𝑤 ∈ 𝑧) ∧ ∀𝑧∀𝑤((𝑧 ∈ 𝑥 ∧ 𝑤 ∈ 𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦 ∈ 𝑧 → ¬ 𝑦 ∈ 𝑤)))) → ∃𝑦∀𝑧(𝑧 ∈ 𝑥 → ∃𝑤∀𝑣((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ↔ 𝑣 = 𝑤))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-ac2 10422 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fv 6521 df-ac 10075 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |