Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ac8prim Structured version   Visualization version   GIF version

Theorem ac8prim 44954
Description: ac8 10421 expanded into primitives. (Contributed by Eric Schmidt, 19-Oct-2025.)
Assertion
Ref Expression
ac8prim ((∀𝑧(𝑧𝑥 → ∃𝑤 𝑤𝑧) ∧ ∀𝑧𝑤((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑧(𝑧𝑥 → ∃𝑤𝑣((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))
Distinct variable group:   𝑥,𝑧,𝑦,𝑤,𝑣

Proof of Theorem ac8prim
StepHypRef Expression
1 dfac5prim 44953 . 2 (CHOICE ↔ ∀𝑥((∀𝑧(𝑧𝑥 → ∃𝑤 𝑤𝑧) ∧ ∀𝑧𝑤((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑧(𝑧𝑥 → ∃𝑤𝑣((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤))))
21axaci 10397 1 ((∀𝑧(𝑧𝑥 → ∃𝑤 𝑤𝑧) ∧ ∀𝑧𝑤((𝑧𝑥𝑤𝑥) → (¬ 𝑧 = 𝑤 → ∀𝑦(𝑦𝑧 → ¬ 𝑦𝑤)))) → ∃𝑦𝑧(𝑧𝑥 → ∃𝑤𝑣((𝑣𝑧𝑣𝑦) ↔ 𝑣 = 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-ac2 10392
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ac 10045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator