![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mof02 | Structured version Visualization version GIF version |
Description: A variant of mof0 48668. (Contributed by Zhi Wang, 20-Sep-2024.) |
Ref | Expression |
---|---|
mof02 | ⊢ (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mof0 48668 | . 2 ⊢ ∃*𝑓 𝑓:𝐴⟶∅ | |
2 | feq3 6719 | . . 3 ⊢ (𝐵 = ∅ → (𝑓:𝐴⟶𝐵 ↔ 𝑓:𝐴⟶∅)) | |
3 | 2 | mobidv 2547 | . 2 ⊢ (𝐵 = ∅ → (∃*𝑓 𝑓:𝐴⟶𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶∅)) |
4 | 1, 3 | mpbiri 258 | 1 ⊢ (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∃*wmo 2536 ∅c0 4339 ⟶wf 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 df-f 6567 |
This theorem is referenced by: mofsn2 48675 mofsssn 48676 mofmo 48677 |
Copyright terms: Public domain | W3C validator |