Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mof02 Structured version   Visualization version   GIF version

Theorem mof02 48669
Description: A variant of mof0 48668. (Contributed by Zhi Wang, 20-Sep-2024.)
Assertion
Ref Expression
mof02 (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴𝐵)
Distinct variable group:   𝐵,𝑓
Allowed substitution hint:   𝐴(𝑓)

Proof of Theorem mof02
StepHypRef Expression
1 mof0 48668 . 2 ∃*𝑓 𝑓:𝐴⟶∅
2 feq3 6719 . . 3 (𝐵 = ∅ → (𝑓:𝐴𝐵𝑓:𝐴⟶∅))
32mobidv 2547 . 2 (𝐵 = ∅ → (∃*𝑓 𝑓:𝐴𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶∅))
41, 3mpbiri 258 1 (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  ∃*wmo 2536  c0 4339  wf 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-fun 6565  df-fn 6566  df-f 6567
This theorem is referenced by:  mofsn2  48675  mofsssn  48676  mofmo  48677
  Copyright terms: Public domain W3C validator