Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mof02 Structured version   Visualization version   GIF version

Theorem mof02 48870
Description: A variant of mof0 48869. (Contributed by Zhi Wang, 20-Sep-2024.)
Assertion
Ref Expression
mof02 (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴𝐵)
Distinct variable group:   𝐵,𝑓
Allowed substitution hint:   𝐴(𝑓)

Proof of Theorem mof02
StepHypRef Expression
1 mof0 48869 . 2 ∃*𝑓 𝑓:𝐴⟶∅
2 feq3 6626 . . 3 (𝐵 = ∅ → (𝑓:𝐴𝐵𝑓:𝐴⟶∅))
32mobidv 2544 . 2 (𝐵 = ∅ → (∃*𝑓 𝑓:𝐴𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶∅))
41, 3mpbiri 258 1 (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  ∃*wmo 2533  c0 4278  wf 6472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-fun 6478  df-fn 6479  df-f 6480
This theorem is referenced by:  mofsn2  48876  mofsssn  48877  mofmo  48878
  Copyright terms: Public domain W3C validator