Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mof02 Structured version   Visualization version   GIF version

Theorem mof02 48552
Description: A variant of mof0 48551. (Contributed by Zhi Wang, 20-Sep-2024.)
Assertion
Ref Expression
mof02 (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴𝐵)
Distinct variable group:   𝐵,𝑓
Allowed substitution hint:   𝐴(𝑓)

Proof of Theorem mof02
StepHypRef Expression
1 mof0 48551 . 2 ∃*𝑓 𝑓:𝐴⟶∅
2 feq3 6730 . . 3 (𝐵 = ∅ → (𝑓:𝐴𝐵𝑓:𝐴⟶∅))
32mobidv 2552 . 2 (𝐵 = ∅ → (∃*𝑓 𝑓:𝐴𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶∅))
41, 3mpbiri 258 1 (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  ∃*wmo 2541  c0 4352  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  mofsn2  48558  mofsssn  48559  mofmo  48560
  Copyright terms: Public domain W3C validator