![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mofsn2 | Structured version Visualization version GIF version |
Description: There is at most one function into a singleton. An unconditional variant of mofsn 48557, i.e., the singleton could be empty if 𝑌 is a proper class. (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
mofsn2 | ⊢ (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mofsn 48557 | . . . 4 ⊢ (𝑌 ∈ V → ∃*𝑓 𝑓:𝐴⟶{𝑌}) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴⟶{𝑌}) |
3 | feq3 6730 | . . . . 5 ⊢ (𝐵 = {𝑌} → (𝑓:𝐴⟶𝐵 ↔ 𝑓:𝐴⟶{𝑌})) | |
4 | 3 | mobidv 2552 | . . . 4 ⊢ (𝐵 = {𝑌} → (∃*𝑓 𝑓:𝐴⟶𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶{𝑌})) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → (∃*𝑓 𝑓:𝐴⟶𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶{𝑌})) |
6 | 2, 5 | mpbird 257 | . 2 ⊢ ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴⟶𝐵) |
7 | simpl 482 | . . . 4 ⊢ ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → 𝐵 = {𝑌}) | |
8 | snprc 4742 | . . . . . 6 ⊢ (¬ 𝑌 ∈ V ↔ {𝑌} = ∅) | |
9 | 8 | biimpi 216 | . . . . 5 ⊢ (¬ 𝑌 ∈ V → {𝑌} = ∅) |
10 | 9 | adantl 481 | . . . 4 ⊢ ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → {𝑌} = ∅) |
11 | 7, 10 | eqtrd 2780 | . . 3 ⊢ ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → 𝐵 = ∅) |
12 | mof02 48552 | . . 3 ⊢ (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴⟶𝐵) | |
13 | 11, 12 | syl 17 | . 2 ⊢ ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴⟶𝐵) |
14 | 6, 13 | pm2.61dan 812 | 1 ⊢ (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃*wmo 2541 Vcvv 3488 ∅c0 4352 {csn 4648 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 |
This theorem is referenced by: mofsssn 48559 mofmo 48560 |
Copyright terms: Public domain | W3C validator |