Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mofsn2 | Structured version Visualization version GIF version |
Description: There is at most one function into a singleton. An unconditional variant of mofsn 46059, i.e., the singleton could be empty if 𝑌 is a proper class. (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
mofsn2 | ⊢ (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mofsn 46059 | . . . 4 ⊢ (𝑌 ∈ V → ∃*𝑓 𝑓:𝐴⟶{𝑌}) | |
2 | 1 | adantl 481 | . . 3 ⊢ ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴⟶{𝑌}) |
3 | feq3 6567 | . . . . 5 ⊢ (𝐵 = {𝑌} → (𝑓:𝐴⟶𝐵 ↔ 𝑓:𝐴⟶{𝑌})) | |
4 | 3 | mobidv 2549 | . . . 4 ⊢ (𝐵 = {𝑌} → (∃*𝑓 𝑓:𝐴⟶𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶{𝑌})) |
5 | 4 | adantr 480 | . . 3 ⊢ ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → (∃*𝑓 𝑓:𝐴⟶𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶{𝑌})) |
6 | 2, 5 | mpbird 256 | . 2 ⊢ ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴⟶𝐵) |
7 | simpl 482 | . . . 4 ⊢ ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → 𝐵 = {𝑌}) | |
8 | snprc 4650 | . . . . . 6 ⊢ (¬ 𝑌 ∈ V ↔ {𝑌} = ∅) | |
9 | 8 | biimpi 215 | . . . . 5 ⊢ (¬ 𝑌 ∈ V → {𝑌} = ∅) |
10 | 9 | adantl 481 | . . . 4 ⊢ ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → {𝑌} = ∅) |
11 | 7, 10 | eqtrd 2778 | . . 3 ⊢ ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → 𝐵 = ∅) |
12 | mof02 46054 | . . 3 ⊢ (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴⟶𝐵) | |
13 | 11, 12 | syl 17 | . 2 ⊢ ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴⟶𝐵) |
14 | 6, 13 | pm2.61dan 809 | 1 ⊢ (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃*wmo 2538 Vcvv 3422 ∅c0 4253 {csn 4558 ⟶wf 6414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 |
This theorem is referenced by: mofsssn 46061 mofmo 46062 |
Copyright terms: Public domain | W3C validator |