Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mofsn2 Structured version   Visualization version   GIF version

Theorem mofsn2 47598
Description: There is at most one function into a singleton. An unconditional variant of mofsn 47597, i.e., the singleton could be empty if 𝑌 is a proper class. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mofsn2 (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑌

Proof of Theorem mofsn2
StepHypRef Expression
1 mofsn 47597 . . . 4 (𝑌 ∈ V → ∃*𝑓 𝑓:𝐴⟶{𝑌})
21adantl 480 . . 3 ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴⟶{𝑌})
3 feq3 6699 . . . . 5 (𝐵 = {𝑌} → (𝑓:𝐴𝐵𝑓:𝐴⟶{𝑌}))
43mobidv 2541 . . . 4 (𝐵 = {𝑌} → (∃*𝑓 𝑓:𝐴𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶{𝑌}))
54adantr 479 . . 3 ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → (∃*𝑓 𝑓:𝐴𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶{𝑌}))
62, 5mpbird 256 . 2 ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴𝐵)
7 simpl 481 . . . 4 ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → 𝐵 = {𝑌})
8 snprc 4720 . . . . . 6 𝑌 ∈ V ↔ {𝑌} = ∅)
98biimpi 215 . . . . 5 𝑌 ∈ V → {𝑌} = ∅)
109adantl 480 . . . 4 ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → {𝑌} = ∅)
117, 10eqtrd 2770 . . 3 ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → 𝐵 = ∅)
12 mof02 47592 . . 3 (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴𝐵)
1311, 12syl 17 . 2 ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴𝐵)
146, 13pm2.61dan 809 1 (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  ∃*wmo 2530  Vcvv 3472  c0 4321  {csn 4627  wf 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550
This theorem is referenced by:  mofsssn  47599  mofmo  47600
  Copyright terms: Public domain W3C validator