![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mofsn2 | Structured version Visualization version GIF version |
Description: There is at most one function into a singleton. An unconditional variant of mofsn 47597, i.e., the singleton could be empty if 𝑌 is a proper class. (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
mofsn2 | ⊢ (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mofsn 47597 | . . . 4 ⊢ (𝑌 ∈ V → ∃*𝑓 𝑓:𝐴⟶{𝑌}) | |
2 | 1 | adantl 480 | . . 3 ⊢ ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴⟶{𝑌}) |
3 | feq3 6699 | . . . . 5 ⊢ (𝐵 = {𝑌} → (𝑓:𝐴⟶𝐵 ↔ 𝑓:𝐴⟶{𝑌})) | |
4 | 3 | mobidv 2541 | . . . 4 ⊢ (𝐵 = {𝑌} → (∃*𝑓 𝑓:𝐴⟶𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶{𝑌})) |
5 | 4 | adantr 479 | . . 3 ⊢ ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → (∃*𝑓 𝑓:𝐴⟶𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶{𝑌})) |
6 | 2, 5 | mpbird 256 | . 2 ⊢ ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴⟶𝐵) |
7 | simpl 481 | . . . 4 ⊢ ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → 𝐵 = {𝑌}) | |
8 | snprc 4720 | . . . . . 6 ⊢ (¬ 𝑌 ∈ V ↔ {𝑌} = ∅) | |
9 | 8 | biimpi 215 | . . . . 5 ⊢ (¬ 𝑌 ∈ V → {𝑌} = ∅) |
10 | 9 | adantl 480 | . . . 4 ⊢ ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → {𝑌} = ∅) |
11 | 7, 10 | eqtrd 2770 | . . 3 ⊢ ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → 𝐵 = ∅) |
12 | mof02 47592 | . . 3 ⊢ (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴⟶𝐵) | |
13 | 11, 12 | syl 17 | . 2 ⊢ ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴⟶𝐵) |
14 | 6, 13 | pm2.61dan 809 | 1 ⊢ (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∃*wmo 2530 Vcvv 3472 ∅c0 4321 {csn 4627 ⟶wf 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 |
This theorem is referenced by: mofsssn 47599 mofmo 47600 |
Copyright terms: Public domain | W3C validator |