Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mofsn2 Structured version   Visualization version   GIF version

Theorem mofsn2 48675
Description: There is at most one function into a singleton. An unconditional variant of mofsn 48674, i.e., the singleton could be empty if 𝑌 is a proper class. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mofsn2 (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑌

Proof of Theorem mofsn2
StepHypRef Expression
1 mofsn 48674 . . . 4 (𝑌 ∈ V → ∃*𝑓 𝑓:𝐴⟶{𝑌})
21adantl 481 . . 3 ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴⟶{𝑌})
3 feq3 6719 . . . . 5 (𝐵 = {𝑌} → (𝑓:𝐴𝐵𝑓:𝐴⟶{𝑌}))
43mobidv 2547 . . . 4 (𝐵 = {𝑌} → (∃*𝑓 𝑓:𝐴𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶{𝑌}))
54adantr 480 . . 3 ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → (∃*𝑓 𝑓:𝐴𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶{𝑌}))
62, 5mpbird 257 . 2 ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴𝐵)
7 simpl 482 . . . 4 ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → 𝐵 = {𝑌})
8 snprc 4722 . . . . . 6 𝑌 ∈ V ↔ {𝑌} = ∅)
98biimpi 216 . . . . 5 𝑌 ∈ V → {𝑌} = ∅)
109adantl 481 . . . 4 ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → {𝑌} = ∅)
117, 10eqtrd 2775 . . 3 ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → 𝐵 = ∅)
12 mof02 48669 . . 3 (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴𝐵)
1311, 12syl 17 . 2 ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴𝐵)
146, 13pm2.61dan 813 1 (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  ∃*wmo 2536  Vcvv 3478  c0 4339  {csn 4631  wf 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571
This theorem is referenced by:  mofsssn  48676  mofmo  48677
  Copyright terms: Public domain W3C validator