Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mofsn2 | Structured version Visualization version GIF version |
Description: There is at most one function into a singleton. An unconditional variant of mofsn 46182, i.e., the singleton could be empty if 𝑌 is a proper class. (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
mofsn2 | ⊢ (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mofsn 46182 | . . . 4 ⊢ (𝑌 ∈ V → ∃*𝑓 𝑓:𝐴⟶{𝑌}) | |
2 | 1 | adantl 482 | . . 3 ⊢ ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴⟶{𝑌}) |
3 | feq3 6592 | . . . . 5 ⊢ (𝐵 = {𝑌} → (𝑓:𝐴⟶𝐵 ↔ 𝑓:𝐴⟶{𝑌})) | |
4 | 3 | mobidv 2550 | . . . 4 ⊢ (𝐵 = {𝑌} → (∃*𝑓 𝑓:𝐴⟶𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶{𝑌})) |
5 | 4 | adantr 481 | . . 3 ⊢ ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → (∃*𝑓 𝑓:𝐴⟶𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶{𝑌})) |
6 | 2, 5 | mpbird 256 | . 2 ⊢ ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴⟶𝐵) |
7 | simpl 483 | . . . 4 ⊢ ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → 𝐵 = {𝑌}) | |
8 | snprc 4654 | . . . . . 6 ⊢ (¬ 𝑌 ∈ V ↔ {𝑌} = ∅) | |
9 | 8 | biimpi 215 | . . . . 5 ⊢ (¬ 𝑌 ∈ V → {𝑌} = ∅) |
10 | 9 | adantl 482 | . . . 4 ⊢ ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → {𝑌} = ∅) |
11 | 7, 10 | eqtrd 2779 | . . 3 ⊢ ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → 𝐵 = ∅) |
12 | mof02 46177 | . . 3 ⊢ (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴⟶𝐵) | |
13 | 11, 12 | syl 17 | . 2 ⊢ ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴⟶𝐵) |
14 | 6, 13 | pm2.61dan 810 | 1 ⊢ (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ∃*wmo 2539 Vcvv 3433 ∅c0 4257 {csn 4562 ⟶wf 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-fv 6445 |
This theorem is referenced by: mofsssn 46184 mofmo 46185 |
Copyright terms: Public domain | W3C validator |