Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mofsn2 Structured version   Visualization version   GIF version

Theorem mofsn2 48833
Description: There is at most one function into a singleton. An unconditional variant of mofsn 48832, i.e., the singleton could be empty if 𝑌 is a proper class. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mofsn2 (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑌

Proof of Theorem mofsn2
StepHypRef Expression
1 mofsn 48832 . . . 4 (𝑌 ∈ V → ∃*𝑓 𝑓:𝐴⟶{𝑌})
21adantl 481 . . 3 ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴⟶{𝑌})
3 feq3 6668 . . . . 5 (𝐵 = {𝑌} → (𝑓:𝐴𝐵𝑓:𝐴⟶{𝑌}))
43mobidv 2542 . . . 4 (𝐵 = {𝑌} → (∃*𝑓 𝑓:𝐴𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶{𝑌}))
54adantr 480 . . 3 ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → (∃*𝑓 𝑓:𝐴𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶{𝑌}))
62, 5mpbird 257 . 2 ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴𝐵)
7 simpl 482 . . . 4 ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → 𝐵 = {𝑌})
8 snprc 4681 . . . . . 6 𝑌 ∈ V ↔ {𝑌} = ∅)
98biimpi 216 . . . . 5 𝑌 ∈ V → {𝑌} = ∅)
109adantl 481 . . . 4 ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → {𝑌} = ∅)
117, 10eqtrd 2764 . . 3 ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → 𝐵 = ∅)
12 mof02 48827 . . 3 (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴𝐵)
1311, 12syl 17 . 2 ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴𝐵)
146, 13pm2.61dan 812 1 (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃*wmo 2531  Vcvv 3447  c0 4296  {csn 4589  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519
This theorem is referenced by:  mofsssn  48834  mofmo  48835
  Copyright terms: Public domain W3C validator