Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mofsn2 | Structured version Visualization version GIF version |
Description: There is at most one function into a singleton. An unconditional variant of mofsn 45685, i.e., the singleton could be empty if 𝑌 is a proper class. (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
mofsn2 | ⊢ (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mofsn 45685 | . . . 4 ⊢ (𝑌 ∈ V → ∃*𝑓 𝑓:𝐴⟶{𝑌}) | |
2 | 1 | adantl 485 | . . 3 ⊢ ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴⟶{𝑌}) |
3 | feq3 6481 | . . . . 5 ⊢ (𝐵 = {𝑌} → (𝑓:𝐴⟶𝐵 ↔ 𝑓:𝐴⟶{𝑌})) | |
4 | 3 | mobidv 2549 | . . . 4 ⊢ (𝐵 = {𝑌} → (∃*𝑓 𝑓:𝐴⟶𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶{𝑌})) |
5 | 4 | adantr 484 | . . 3 ⊢ ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → (∃*𝑓 𝑓:𝐴⟶𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶{𝑌})) |
6 | 2, 5 | mpbird 260 | . 2 ⊢ ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴⟶𝐵) |
7 | simpl 486 | . . . 4 ⊢ ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → 𝐵 = {𝑌}) | |
8 | snprc 4605 | . . . . . 6 ⊢ (¬ 𝑌 ∈ V ↔ {𝑌} = ∅) | |
9 | 8 | biimpi 219 | . . . . 5 ⊢ (¬ 𝑌 ∈ V → {𝑌} = ∅) |
10 | 9 | adantl 485 | . . . 4 ⊢ ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → {𝑌} = ∅) |
11 | 7, 10 | eqtrd 2773 | . . 3 ⊢ ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → 𝐵 = ∅) |
12 | mof02 45680 | . . 3 ⊢ (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴⟶𝐵) | |
13 | 11, 12 | syl 17 | . 2 ⊢ ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴⟶𝐵) |
14 | 6, 13 | pm2.61dan 813 | 1 ⊢ (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2113 ∃*wmo 2538 Vcvv 3397 ∅c0 4209 {csn 4513 ⟶wf 6329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-fv 6341 |
This theorem is referenced by: mofsssn 45687 mofmo 45688 |
Copyright terms: Public domain | W3C validator |