Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mofsn2 Structured version   Visualization version   GIF version

Theorem mofsn2 48700
Description: There is at most one function into a singleton. An unconditional variant of mofsn 48699, i.e., the singleton could be empty if 𝑌 is a proper class. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mofsn2 (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑌

Proof of Theorem mofsn2
StepHypRef Expression
1 mofsn 48699 . . . 4 (𝑌 ∈ V → ∃*𝑓 𝑓:𝐴⟶{𝑌})
21adantl 481 . . 3 ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴⟶{𝑌})
3 feq3 6699 . . . . 5 (𝐵 = {𝑌} → (𝑓:𝐴𝐵𝑓:𝐴⟶{𝑌}))
43mobidv 2547 . . . 4 (𝐵 = {𝑌} → (∃*𝑓 𝑓:𝐴𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶{𝑌}))
54adantr 480 . . 3 ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → (∃*𝑓 𝑓:𝐴𝐵 ↔ ∃*𝑓 𝑓:𝐴⟶{𝑌}))
62, 5mpbird 257 . 2 ((𝐵 = {𝑌} ∧ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴𝐵)
7 simpl 482 . . . 4 ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → 𝐵 = {𝑌})
8 snprc 4699 . . . . . 6 𝑌 ∈ V ↔ {𝑌} = ∅)
98biimpi 216 . . . . 5 𝑌 ∈ V → {𝑌} = ∅)
109adantl 481 . . . 4 ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → {𝑌} = ∅)
117, 10eqtrd 2769 . . 3 ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → 𝐵 = ∅)
12 mof02 48694 . . 3 (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴𝐵)
1311, 12syl 17 . 2 ((𝐵 = {𝑌} ∧ ¬ 𝑌 ∈ V) → ∃*𝑓 𝑓:𝐴𝐵)
146, 13pm2.61dan 812 1 (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  ∃*wmo 2536  Vcvv 3464  c0 4315  {csn 4608  wf 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550
This theorem is referenced by:  mofsssn  48701  mofmo  48702
  Copyright terms: Public domain W3C validator