![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mof0ALT | Structured version Visualization version GIF version |
Description: Alternate proof for mof0 47494 with stronger requirements on distinct variables. Uses mo4 2560. (Contributed by Zhi Wang, 19-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mof0ALT | β’ β*π π:π΄βΆβ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f00 6773 | . . . . 5 β’ (π:π΄βΆβ β (π = β β§ π΄ = β )) | |
2 | 1 | simplbi 498 | . . . 4 β’ (π:π΄βΆβ β π = β ) |
3 | f00 6773 | . . . . 5 β’ (π:π΄βΆβ β (π = β β§ π΄ = β )) | |
4 | 3 | simplbi 498 | . . . 4 β’ (π:π΄βΆβ β π = β ) |
5 | eqtr3 2758 | . . . 4 β’ ((π = β β§ π = β ) β π = π) | |
6 | 2, 4, 5 | syl2an 596 | . . 3 β’ ((π:π΄βΆβ β§ π:π΄βΆβ ) β π = π) |
7 | 6 | gen2 1798 | . 2 β’ βπβπ((π:π΄βΆβ β§ π:π΄βΆβ ) β π = π) |
8 | feq1 6698 | . . 3 β’ (π = π β (π:π΄βΆβ β π:π΄βΆβ )) | |
9 | 8 | mo4 2560 | . 2 β’ (β*π π:π΄βΆβ β βπβπ((π:π΄βΆβ β§ π:π΄βΆβ ) β π = π)) |
10 | 7, 9 | mpbir 230 | 1 β’ β*π π:π΄βΆβ |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 βwal 1539 = wceq 1541 β*wmo 2532 β c0 4322 βΆwf 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-fun 6545 df-fn 6546 df-f 6547 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |