Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mof0ALT Structured version   Visualization version   GIF version

Theorem mof0ALT 47496
Description: Alternate proof for mof0 47494 with stronger requirements on distinct variables. Uses mo4 2560. (Contributed by Zhi Wang, 19-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
mof0ALT βˆƒ*𝑓 𝑓:π΄βŸΆβˆ…
Distinct variable group:   𝐴,𝑓

Proof of Theorem mof0ALT
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 f00 6773 . . . . 5 (𝑓:π΄βŸΆβˆ… ↔ (𝑓 = βˆ… ∧ 𝐴 = βˆ…))
21simplbi 498 . . . 4 (𝑓:π΄βŸΆβˆ… β†’ 𝑓 = βˆ…)
3 f00 6773 . . . . 5 (𝑔:π΄βŸΆβˆ… ↔ (𝑔 = βˆ… ∧ 𝐴 = βˆ…))
43simplbi 498 . . . 4 (𝑔:π΄βŸΆβˆ… β†’ 𝑔 = βˆ…)
5 eqtr3 2758 . . . 4 ((𝑓 = βˆ… ∧ 𝑔 = βˆ…) β†’ 𝑓 = 𝑔)
62, 4, 5syl2an 596 . . 3 ((𝑓:π΄βŸΆβˆ… ∧ 𝑔:π΄βŸΆβˆ…) β†’ 𝑓 = 𝑔)
76gen2 1798 . 2 βˆ€π‘“βˆ€π‘”((𝑓:π΄βŸΆβˆ… ∧ 𝑔:π΄βŸΆβˆ…) β†’ 𝑓 = 𝑔)
8 feq1 6698 . . 3 (𝑓 = 𝑔 β†’ (𝑓:π΄βŸΆβˆ… ↔ 𝑔:π΄βŸΆβˆ…))
98mo4 2560 . 2 (βˆƒ*𝑓 𝑓:π΄βŸΆβˆ… ↔ βˆ€π‘“βˆ€π‘”((𝑓:π΄βŸΆβˆ… ∧ 𝑔:π΄βŸΆβˆ…) β†’ 𝑓 = 𝑔))
107, 9mpbir 230 1 βˆƒ*𝑓 𝑓:π΄βŸΆβˆ…
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396  βˆ€wal 1539   = wceq 1541  βˆƒ*wmo 2532  βˆ…c0 4322  βŸΆwf 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-fun 6545  df-fn 6546  df-f 6547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator