Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mof0ALT Structured version   Visualization version   GIF version

Theorem mof0ALT 48553
Description: Alternate proof for mof0 48551 with stronger requirements on distinct variables. Uses mo4 2569. (Contributed by Zhi Wang, 19-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
mof0ALT ∃*𝑓 𝑓:𝐴⟶∅
Distinct variable group:   𝐴,𝑓

Proof of Theorem mof0ALT
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 f00 6803 . . . . 5 (𝑓:𝐴⟶∅ ↔ (𝑓 = ∅ ∧ 𝐴 = ∅))
21simplbi 497 . . . 4 (𝑓:𝐴⟶∅ → 𝑓 = ∅)
3 f00 6803 . . . . 5 (𝑔:𝐴⟶∅ ↔ (𝑔 = ∅ ∧ 𝐴 = ∅))
43simplbi 497 . . . 4 (𝑔:𝐴⟶∅ → 𝑔 = ∅)
5 eqtr3 2766 . . . 4 ((𝑓 = ∅ ∧ 𝑔 = ∅) → 𝑓 = 𝑔)
62, 4, 5syl2an 595 . . 3 ((𝑓:𝐴⟶∅ ∧ 𝑔:𝐴⟶∅) → 𝑓 = 𝑔)
76gen2 1794 . 2 𝑓𝑔((𝑓:𝐴⟶∅ ∧ 𝑔:𝐴⟶∅) → 𝑓 = 𝑔)
8 feq1 6728 . . 3 (𝑓 = 𝑔 → (𝑓:𝐴⟶∅ ↔ 𝑔:𝐴⟶∅))
98mo4 2569 . 2 (∃*𝑓 𝑓:𝐴⟶∅ ↔ ∀𝑓𝑔((𝑓:𝐴⟶∅ ∧ 𝑔:𝐴⟶∅) → 𝑓 = 𝑔))
107, 9mpbir 231 1 ∃*𝑓 𝑓:𝐴⟶∅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  ∃*wmo 2541  c0 4352  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator