| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mof0ALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of mof0 48783 with stronger requirements on distinct variables. Uses mo4 2566. (Contributed by Zhi Wang, 19-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mof0ALT | ⊢ ∃*𝑓 𝑓:𝐴⟶∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f00 6765 | . . . . 5 ⊢ (𝑓:𝐴⟶∅ ↔ (𝑓 = ∅ ∧ 𝐴 = ∅)) | |
| 2 | 1 | simplbi 497 | . . . 4 ⊢ (𝑓:𝐴⟶∅ → 𝑓 = ∅) |
| 3 | f00 6765 | . . . . 5 ⊢ (𝑔:𝐴⟶∅ ↔ (𝑔 = ∅ ∧ 𝐴 = ∅)) | |
| 4 | 3 | simplbi 497 | . . . 4 ⊢ (𝑔:𝐴⟶∅ → 𝑔 = ∅) |
| 5 | eqtr3 2758 | . . . 4 ⊢ ((𝑓 = ∅ ∧ 𝑔 = ∅) → 𝑓 = 𝑔) | |
| 6 | 2, 4, 5 | syl2an 596 | . . 3 ⊢ ((𝑓:𝐴⟶∅ ∧ 𝑔:𝐴⟶∅) → 𝑓 = 𝑔) |
| 7 | 6 | gen2 1796 | . 2 ⊢ ∀𝑓∀𝑔((𝑓:𝐴⟶∅ ∧ 𝑔:𝐴⟶∅) → 𝑓 = 𝑔) |
| 8 | feq1 6691 | . . 3 ⊢ (𝑓 = 𝑔 → (𝑓:𝐴⟶∅ ↔ 𝑔:𝐴⟶∅)) | |
| 9 | 8 | mo4 2566 | . 2 ⊢ (∃*𝑓 𝑓:𝐴⟶∅ ↔ ∀𝑓∀𝑔((𝑓:𝐴⟶∅ ∧ 𝑔:𝐴⟶∅) → 𝑓 = 𝑔)) |
| 10 | 7, 9 | mpbir 231 | 1 ⊢ ∃*𝑓 𝑓:𝐴⟶∅ |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃*wmo 2538 ∅c0 4313 ⟶wf 6532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-fun 6538 df-fn 6539 df-f 6540 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |