Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mof0ALT Structured version   Visualization version   GIF version

Theorem mof0ALT 46167
Description: Alternate proof for mof0 46165 with stronger requirements on distinct variables. Uses mo4 2566. (Contributed by Zhi Wang, 19-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
mof0ALT ∃*𝑓 𝑓:𝐴⟶∅
Distinct variable group:   𝐴,𝑓

Proof of Theorem mof0ALT
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 f00 6656 . . . . 5 (𝑓:𝐴⟶∅ ↔ (𝑓 = ∅ ∧ 𝐴 = ∅))
21simplbi 498 . . . 4 (𝑓:𝐴⟶∅ → 𝑓 = ∅)
3 f00 6656 . . . . 5 (𝑔:𝐴⟶∅ ↔ (𝑔 = ∅ ∧ 𝐴 = ∅))
43simplbi 498 . . . 4 (𝑔:𝐴⟶∅ → 𝑔 = ∅)
5 eqtr3 2764 . . . 4 ((𝑓 = ∅ ∧ 𝑔 = ∅) → 𝑓 = 𝑔)
62, 4, 5syl2an 596 . . 3 ((𝑓:𝐴⟶∅ ∧ 𝑔:𝐴⟶∅) → 𝑓 = 𝑔)
76gen2 1799 . 2 𝑓𝑔((𝑓:𝐴⟶∅ ∧ 𝑔:𝐴⟶∅) → 𝑓 = 𝑔)
8 feq1 6581 . . 3 (𝑓 = 𝑔 → (𝑓:𝐴⟶∅ ↔ 𝑔:𝐴⟶∅))
98mo4 2566 . 2 (∃*𝑓 𝑓:𝐴⟶∅ ↔ ∀𝑓𝑔((𝑓:𝐴⟶∅ ∧ 𝑔:𝐴⟶∅) → 𝑓 = 𝑔))
107, 9mpbir 230 1 ∃*𝑓 𝑓:𝐴⟶∅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537   = wceq 1539  ∃*wmo 2538  c0 4256  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-f 6437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator