Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mofsssn Structured version   Visualization version   GIF version

Theorem mofsssn 45750
Description: There is at most one function into a subclass of a singleton. (Contributed by Zhi Wang, 24-Sep-2024.)
Assertion
Ref Expression
mofsssn (𝐵 ⊆ {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑌

Proof of Theorem mofsssn
StepHypRef Expression
1 sssn 4724 . 2 (𝐵 ⊆ {𝑌} ↔ (𝐵 = ∅ ∨ 𝐵 = {𝑌}))
2 mof02 45743 . . 3 (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴𝐵)
3 mofsn2 45749 . . 3 (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
42, 3jaoi 856 . 2 ((𝐵 = ∅ ∨ 𝐵 = {𝑌}) → ∃*𝑓 𝑓:𝐴𝐵)
51, 4sylbi 220 1 (𝐵 ⊆ {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846   = wceq 1542  ∃*wmo 2539  wss 3853  c0 4221  {csn 4526  wf 6345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pr 5306
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-fv 6357
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator