Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mofsssn Structured version   Visualization version   GIF version

Theorem mofsssn 47676
Description: There is at most one function into a subclass of a singleton. (Contributed by Zhi Wang, 24-Sep-2024.)
Assertion
Ref Expression
mofsssn (𝐵 ⊆ {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑌

Proof of Theorem mofsssn
StepHypRef Expression
1 sssn 4829 . 2 (𝐵 ⊆ {𝑌} ↔ (𝐵 = ∅ ∨ 𝐵 = {𝑌}))
2 mof02 47669 . . 3 (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴𝐵)
3 mofsn2 47675 . . 3 (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
42, 3jaoi 854 . 2 ((𝐵 = ∅ ∨ 𝐵 = {𝑌}) → ∃*𝑓 𝑓:𝐴𝐵)
51, 4sylbi 216 1 (𝐵 ⊆ {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844   = wceq 1540  ∃*wmo 2531  wss 3948  c0 4322  {csn 4628  wf 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator