![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mofsssn | Structured version Visualization version GIF version |
Description: There is at most one function into a subclass of a singleton. (Contributed by Zhi Wang, 24-Sep-2024.) |
Ref | Expression |
---|---|
mofsssn | ⊢ (𝐵 ⊆ {𝑌} → ∃*𝑓 𝑓:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sssn 4825 | . 2 ⊢ (𝐵 ⊆ {𝑌} ↔ (𝐵 = ∅ ∨ 𝐵 = {𝑌})) | |
2 | mof02 48242 | . . 3 ⊢ (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴⟶𝐵) | |
3 | mofsn2 48248 | . . 3 ⊢ (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴⟶𝐵) | |
4 | 2, 3 | jaoi 855 | . 2 ⊢ ((𝐵 = ∅ ∨ 𝐵 = {𝑌}) → ∃*𝑓 𝑓:𝐴⟶𝐵) |
5 | 1, 4 | sylbi 216 | 1 ⊢ (𝐵 ⊆ {𝑌} → ∃*𝑓 𝑓:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 = wceq 1534 ∃*wmo 2527 ⊆ wss 3946 ∅c0 4322 {csn 4623 ⟶wf 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-fv 6554 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |