Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mofsssn Structured version   Visualization version   GIF version

Theorem mofsssn 48701
Description: There is at most one function into a subclass of a singleton. (Contributed by Zhi Wang, 24-Sep-2024.)
Assertion
Ref Expression
mofsssn (𝐵 ⊆ {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑌

Proof of Theorem mofsssn
StepHypRef Expression
1 sssn 4808 . 2 (𝐵 ⊆ {𝑌} ↔ (𝐵 = ∅ ∨ 𝐵 = {𝑌}))
2 mof02 48694 . . 3 (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴𝐵)
3 mofsn2 48700 . . 3 (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
42, 3jaoi 857 . 2 ((𝐵 = ∅ ∨ 𝐵 = {𝑌}) → ∃*𝑓 𝑓:𝐴𝐵)
51, 4sylbi 217 1 (𝐵 ⊆ {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1539  ∃*wmo 2536  wss 3933  c0 4315  {csn 4608  wf 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator