Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mofsssn Structured version   Visualization version   GIF version

Theorem mofsssn 48960
Description: There is at most one function into a subclass of a singleton. (Contributed by Zhi Wang, 24-Sep-2024.)
Assertion
Ref Expression
mofsssn (𝐵 ⊆ {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝑓,𝑌

Proof of Theorem mofsssn
StepHypRef Expression
1 sssn 4779 . 2 (𝐵 ⊆ {𝑌} ↔ (𝐵 = ∅ ∨ 𝐵 = {𝑌}))
2 mof02 48953 . . 3 (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴𝐵)
3 mofsn2 48959 . . 3 (𝐵 = {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
42, 3jaoi 857 . 2 ((𝐵 = ∅ ∨ 𝐵 = {𝑌}) → ∃*𝑓 𝑓:𝐴𝐵)
51, 4sylbi 217 1 (𝐵 ⊆ {𝑌} → ∃*𝑓 𝑓:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  ∃*wmo 2535  wss 3899  c0 4284  {csn 4577  wf 6485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator