Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mofmo Structured version   Visualization version   GIF version

Theorem mofmo 48714
Description: There is at most one function into a class containing at most one element. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mofmo (∃*𝑥 𝑥𝐵 → ∃*𝑓 𝑓:𝐴𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem mofmo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mo0sn 48693 . 2 (∃*𝑥 𝑥𝐵 ↔ (𝐵 = ∅ ∨ ∃𝑦 𝐵 = {𝑦}))
2 mof02 48706 . . 3 (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴𝐵)
3 mofsn2 48712 . . . 4 (𝐵 = {𝑦} → ∃*𝑓 𝑓:𝐴𝐵)
43exlimiv 1929 . . 3 (∃𝑦 𝐵 = {𝑦} → ∃*𝑓 𝑓:𝐴𝐵)
52, 4jaoi 857 . 2 ((𝐵 = ∅ ∨ ∃𝑦 𝐵 = {𝑦}) → ∃*𝑓 𝑓:𝐴𝐵)
61, 5sylbi 217 1 (∃*𝑥 𝑥𝐵 → ∃*𝑓 𝑓:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1539  wex 1778  wcel 2107  ∃*wmo 2536  c0 4313  {csn 4606  wf 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549
This theorem is referenced by:  setcthin  49090
  Copyright terms: Public domain W3C validator