Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mofmo Structured version   Visualization version   GIF version

Theorem mofmo 49008
Description: There is at most one function into a class containing at most one element. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mofmo (∃*𝑥 𝑥𝐵 → ∃*𝑓 𝑓:𝐴𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem mofmo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mo0sn 48977 . 2 (∃*𝑥 𝑥𝐵 ↔ (𝐵 = ∅ ∨ ∃𝑦 𝐵 = {𝑦}))
2 mof02 49000 . . 3 (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴𝐵)
3 mofsn2 49006 . . . 4 (𝐵 = {𝑦} → ∃*𝑓 𝑓:𝐴𝐵)
43exlimiv 1931 . . 3 (∃𝑦 𝐵 = {𝑦} → ∃*𝑓 𝑓:𝐴𝐵)
52, 4jaoi 857 . 2 ((𝐵 = ∅ ∨ ∃𝑦 𝐵 = {𝑦}) → ∃*𝑓 𝑓:𝐴𝐵)
61, 5sylbi 217 1 (∃*𝑥 𝑥𝐵 → ∃*𝑓 𝑓:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wex 1780  wcel 2113  ∃*wmo 2535  c0 4282  {csn 4577  wf 6485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497
This theorem is referenced by:  setcthin  49626
  Copyright terms: Public domain W3C validator