Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mofmo Structured version   Visualization version   GIF version

Theorem mofmo 48792
Description: There is at most one function into a class containing at most one element. (Contributed by Zhi Wang, 19-Sep-2024.)
Assertion
Ref Expression
mofmo (∃*𝑥 𝑥𝐵 → ∃*𝑓 𝑓:𝐴𝐵)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem mofmo
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mo0sn 48761 . 2 (∃*𝑥 𝑥𝐵 ↔ (𝐵 = ∅ ∨ ∃𝑦 𝐵 = {𝑦}))
2 mof02 48784 . . 3 (𝐵 = ∅ → ∃*𝑓 𝑓:𝐴𝐵)
3 mofsn2 48790 . . . 4 (𝐵 = {𝑦} → ∃*𝑓 𝑓:𝐴𝐵)
43exlimiv 1930 . . 3 (∃𝑦 𝐵 = {𝑦} → ∃*𝑓 𝑓:𝐴𝐵)
52, 4jaoi 857 . 2 ((𝐵 = ∅ ∨ ∃𝑦 𝐵 = {𝑦}) → ∃*𝑓 𝑓:𝐴𝐵)
61, 5sylbi 217 1 (∃*𝑥 𝑥𝐵 → ∃*𝑓 𝑓:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wex 1779  wcel 2109  ∃*wmo 2538  c0 4313  {csn 4606  wf 6532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544
This theorem is referenced by:  setcthin  49318
  Copyright terms: Public domain W3C validator