MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubpropd2 Structured version   Visualization version   GIF version

Theorem grpsubpropd2 19064
Description: Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
grpsubpropd2.1 (𝜑𝐵 = (Base‘𝐺))
grpsubpropd2.2 (𝜑𝐵 = (Base‘𝐻))
grpsubpropd2.3 (𝜑𝐺 ∈ Grp)
grpsubpropd2.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
Assertion
Ref Expression
grpsubpropd2 (𝜑 → (-g𝐺) = (-g𝐻))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝜑,𝑥,𝑦

Proof of Theorem grpsubpropd2
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1137 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝜑)
2 simp2 1138 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑎 ∈ (Base‘𝐺))
3 grpsubpropd2.1 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐺))
433ad2ant1 1134 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝐵 = (Base‘𝐺))
52, 4eleqtrrd 2844 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑎𝐵)
6 grpsubpropd2.3 . . . . . . . . 9 (𝜑𝐺 ∈ Grp)
763ad2ant1 1134 . . . . . . . 8 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝐺 ∈ Grp)
8 simp3 1139 . . . . . . . 8 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → 𝑏 ∈ (Base‘𝐺))
9 eqid 2737 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
10 eqid 2737 . . . . . . . . 9 (invg𝐺) = (invg𝐺)
119, 10grpinvcl 19005 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑏) ∈ (Base‘𝐺))
127, 8, 11syl2anc 584 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑏) ∈ (Base‘𝐺))
1312, 4eleqtrrd 2844 . . . . . 6 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → ((invg𝐺)‘𝑏) ∈ 𝐵)
14 grpsubpropd2.4 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
1514oveqrspc2v 7458 . . . . . 6 ((𝜑 ∧ (𝑎𝐵 ∧ ((invg𝐺)‘𝑏) ∈ 𝐵)) → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐺)‘𝑏)))
161, 5, 13, 15syl12anc 837 . . . . 5 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐺)‘𝑏)))
17 grpsubpropd2.2 . . . . . . . . 9 (𝜑𝐵 = (Base‘𝐻))
183, 17, 14grpinvpropd 19033 . . . . . . . 8 (𝜑 → (invg𝐺) = (invg𝐻))
1918fveq1d 6908 . . . . . . 7 (𝜑 → ((invg𝐺)‘𝑏) = ((invg𝐻)‘𝑏))
2019oveq2d 7447 . . . . . 6 (𝜑 → (𝑎(+g𝐻)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
21203ad2ant1 1134 . . . . 5 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐻)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
2216, 21eqtrd 2777 . . . 4 ((𝜑𝑎 ∈ (Base‘𝐺) ∧ 𝑏 ∈ (Base‘𝐺)) → (𝑎(+g𝐺)((invg𝐺)‘𝑏)) = (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
2322mpoeq3dva 7510 . . 3 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
243, 17eqtr3d 2779 . . . 4 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
25 mpoeq12 7506 . . . 4 (((Base‘𝐺) = (Base‘𝐻) ∧ (Base‘𝐺) = (Base‘𝐻)) → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
2624, 24, 25syl2anc 584 . . 3 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
2723, 26eqtrd 2777 . 2 (𝜑 → (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏))) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏))))
28 eqid 2737 . . 3 (+g𝐺) = (+g𝐺)
29 eqid 2737 . . 3 (-g𝐺) = (-g𝐺)
309, 28, 10, 29grpsubfval 19001 . 2 (-g𝐺) = (𝑎 ∈ (Base‘𝐺), 𝑏 ∈ (Base‘𝐺) ↦ (𝑎(+g𝐺)((invg𝐺)‘𝑏)))
31 eqid 2737 . . 3 (Base‘𝐻) = (Base‘𝐻)
32 eqid 2737 . . 3 (+g𝐻) = (+g𝐻)
33 eqid 2737 . . 3 (invg𝐻) = (invg𝐻)
34 eqid 2737 . . 3 (-g𝐻) = (-g𝐻)
3531, 32, 33, 34grpsubfval 19001 . 2 (-g𝐻) = (𝑎 ∈ (Base‘𝐻), 𝑏 ∈ (Base‘𝐻) ↦ (𝑎(+g𝐻)((invg𝐻)‘𝑏)))
3627, 30, 353eqtr4g 2802 1 (𝜑 → (-g𝐺) = (-g𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  cmpo 7433  Basecbs 17247  +gcplusg 17297  Grpcgrp 18951  invgcminusg 18952  -gcsg 18953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956
This theorem is referenced by:  ngppropd  24650
  Copyright terms: Public domain W3C validator