MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfres Structured version   Visualization version   GIF version

Theorem cantnfres 9124
Description: The CNF function respects extensions of the domain to a larger ordinal. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfrescl.d (𝜑𝐷 ∈ On)
cantnfrescl.b (𝜑𝐵𝐷)
cantnfrescl.x ((𝜑𝑛 ∈ (𝐷𝐵)) → 𝑋 = ∅)
cantnfrescl.a (𝜑 → ∅ ∈ 𝐴)
cantnfrescl.t 𝑇 = dom (𝐴 CNF 𝐷)
cantnfres.m (𝜑 → (𝑛𝐵𝑋) ∈ 𝑆)
Assertion
Ref Expression
cantnfres (𝜑 → ((𝐴 CNF 𝐵)‘(𝑛𝐵𝑋)) = ((𝐴 CNF 𝐷)‘(𝑛𝐷𝑋)))
Distinct variable groups:   𝐵,𝑛   𝐷,𝑛   𝐴,𝑛   𝜑,𝑛
Allowed substitution hints:   𝑆(𝑛)   𝑇(𝑛)   𝑋(𝑛)

Proof of Theorem cantnfres
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfrescl.d . . . . . . . . . . . . 13 (𝜑𝐷 ∈ On)
2 cantnfrescl.b . . . . . . . . . . . . 13 (𝜑𝐵𝐷)
3 cantnfrescl.x . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝐷𝐵)) → 𝑋 = ∅)
41, 2, 3extmptsuppeq 7837 . . . . . . . . . . . 12 (𝜑 → ((𝑛𝐵𝑋) supp ∅) = ((𝑛𝐷𝑋) supp ∅))
5 oieq2 8961 . . . . . . . . . . . 12 (((𝑛𝐵𝑋) supp ∅) = ((𝑛𝐷𝑋) supp ∅) → OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) = OrdIso( E , ((𝑛𝐷𝑋) supp ∅)))
64, 5syl 17 . . . . . . . . . . 11 (𝜑 → OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) = OrdIso( E , ((𝑛𝐷𝑋) supp ∅)))
76fveq1d 6647 . . . . . . . . . 10 (𝜑 → (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) = (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))
873ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) = (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))
98oveq2d 7151 . . . . . . . 8 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = (𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)))
10 suppssdm 7826 . . . . . . . . . . . . 13 ((𝑛𝐵𝑋) supp ∅) ⊆ dom (𝑛𝐵𝑋)
11 eqid 2798 . . . . . . . . . . . . . . 15 (𝑛𝐵𝑋) = (𝑛𝐵𝑋)
1211dmmptss 6062 . . . . . . . . . . . . . 14 dom (𝑛𝐵𝑋) ⊆ 𝐵
1312a1i 11 . . . . . . . . . . . . 13 (𝜑 → dom (𝑛𝐵𝑋) ⊆ 𝐵)
1410, 13sstrid 3926 . . . . . . . . . . . 12 (𝜑 → ((𝑛𝐵𝑋) supp ∅) ⊆ 𝐵)
15143ad2ant1 1130 . . . . . . . . . . 11 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝑛𝐵𝑋) supp ∅) ⊆ 𝐵)
16 eqid 2798 . . . . . . . . . . . . . 14 OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) = OrdIso( E , ((𝑛𝐵𝑋) supp ∅))
1716oif 8978 . . . . . . . . . . . . 13 OrdIso( E , ((𝑛𝐵𝑋) supp ∅)):dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅))⟶((𝑛𝐵𝑋) supp ∅)
1817ffvelrni 6827 . . . . . . . . . . . 12 (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) → (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) ∈ ((𝑛𝐵𝑋) supp ∅))
19183ad2ant2 1131 . . . . . . . . . . 11 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) ∈ ((𝑛𝐵𝑋) supp ∅))
2015, 19sseldd 3916 . . . . . . . . . 10 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) ∈ 𝐵)
2120fvresd 6665 . . . . . . . . 9 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (((𝑛𝐷𝑋) ↾ 𝐵)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)))
2223ad2ant1 1130 . . . . . . . . . . 11 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → 𝐵𝐷)
2322resmptd 5875 . . . . . . . . . 10 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝑛𝐷𝑋) ↾ 𝐵) = (𝑛𝐵𝑋))
2423fveq1d 6647 . . . . . . . . 9 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (((𝑛𝐷𝑋) ↾ 𝐵)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)))
258fveq2d 6649 . . . . . . . . 9 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)))
2621, 24, 253eqtr3d 2841 . . . . . . . 8 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)))
279, 26oveq12d 7153 . . . . . . 7 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) = ((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))))
2827oveq1d 7150 . . . . . 6 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧) = (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧))
2928mpoeq3dva 7210 . . . . 5 (𝜑 → (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)))
306dmeqd 5738 . . . . . 6 (𝜑 → dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) = dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)))
31 eqid 2798 . . . . . 6 On = On
32 mpoeq12 7206 . . . . . 6 ((dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) = dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)) ∧ On = On) → (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)))
3330, 31, 32sylancl 589 . . . . 5 (𝜑 → (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)))
3429, 33eqtrd 2833 . . . 4 (𝜑 → (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)))
35 eqid 2798 . . . 4 ∅ = ∅
36 seqomeq12 8073 . . . 4 (((𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)) ∧ ∅ = ∅) → seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅))
3734, 35, 36sylancl 589 . . 3 (𝜑 → seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅))
3837, 30fveq12d 6652 . 2 (𝜑 → (seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅))) = (seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅))))
39 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
40 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
41 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
42 cantnfres.m . . 3 (𝜑 → (𝑛𝐵𝑋) ∈ 𝑆)
43 eqid 2798 . . 3 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)
4439, 40, 41, 16, 42, 43cantnfval2 9116 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘(𝑛𝐵𝑋)) = (seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅))))
45 cantnfrescl.t . . 3 𝑇 = dom (𝐴 CNF 𝐷)
46 eqid 2798 . . 3 OrdIso( E , ((𝑛𝐷𝑋) supp ∅)) = OrdIso( E , ((𝑛𝐷𝑋) supp ∅))
47 cantnfrescl.a . . . . 5 (𝜑 → ∅ ∈ 𝐴)
4839, 40, 41, 1, 2, 3, 47, 45cantnfrescl 9123 . . . 4 (𝜑 → ((𝑛𝐵𝑋) ∈ 𝑆 ↔ (𝑛𝐷𝑋) ∈ 𝑇))
4942, 48mpbid 235 . . 3 (𝜑 → (𝑛𝐷𝑋) ∈ 𝑇)
50 eqid 2798 . . 3 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)
5145, 40, 1, 46, 49, 50cantnfval2 9116 . 2 (𝜑 → ((𝐴 CNF 𝐷)‘(𝑛𝐷𝑋)) = (seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅))))
5238, 44, 513eqtr4d 2843 1 (𝜑 → ((𝐴 CNF 𝐵)‘(𝑛𝐵𝑋)) = ((𝐴 CNF 𝐷)‘(𝑛𝐷𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  Vcvv 3441  cdif 3878  wss 3881  c0 4243  cmpt 5110   E cep 5429  dom cdm 5519  cres 5521  Oncon0 6159  cfv 6324  (class class class)co 7135  cmpo 7137   supp csupp 7813  seqωcseqom 8066   +o coa 8082   ·o comu 8083  o coe 8084  OrdIsocoi 8957   CNF ccnf 9108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-seqom 8067  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-oi 8958  df-cnf 9109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator