| Step | Hyp | Ref
| Expression |
| 1 | | cantnfrescl.d |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 ∈ On) |
| 2 | | cantnfrescl.b |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ⊆ 𝐷) |
| 3 | | cantnfrescl.x |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (𝐷 ∖ 𝐵)) → 𝑋 = ∅) |
| 4 | 1, 2, 3 | extmptsuppeq 8194 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅) = ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅)) |
| 5 | | oieq2 9534 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅) = ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅) → OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) = OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))) |
| 6 | 4, 5 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) = OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))) |
| 7 | 6 | fveq1d 6887 |
. . . . . . . . . 10
⊢ (𝜑 → (OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘) = (OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘)) |
| 8 | 7 | 3ad2ant1 1133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘) = (OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘)) |
| 9 | 8 | oveq2d 7428 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘)) = (𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘))) |
| 10 | | suppssdm 8183 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅) ⊆ dom (𝑛 ∈ 𝐵 ↦ 𝑋) |
| 11 | | eqid 2734 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ∈ 𝐵 ↦ 𝑋) = (𝑛 ∈ 𝐵 ↦ 𝑋) |
| 12 | 11 | dmmptss 6241 |
. . . . . . . . . . . . . 14
⊢ dom
(𝑛 ∈ 𝐵 ↦ 𝑋) ⊆ 𝐵 |
| 13 | 12 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → dom (𝑛 ∈ 𝐵 ↦ 𝑋) ⊆ 𝐵) |
| 14 | 10, 13 | sstrid 3975 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅) ⊆ 𝐵) |
| 15 | 14 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅) ⊆ 𝐵) |
| 16 | | eqid 2734 |
. . . . . . . . . . . . . 14
⊢ OrdIso( E
, ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) = OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) |
| 17 | 16 | oif 9551 |
. . . . . . . . . . . . 13
⊢ OrdIso( E
, ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)):dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))⟶((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅) |
| 18 | 17 | ffvelcdmi 7082 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) → (OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘) ∈ ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) |
| 19 | 18 | 3ad2ant2 1134 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘) ∈ ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) |
| 20 | 15, 19 | sseldd 3964 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘) ∈ 𝐵) |
| 21 | 20 | fvresd 6905 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (((𝑛 ∈ 𝐷 ↦ 𝑋) ↾ 𝐵)‘(OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘)) = ((𝑛 ∈ 𝐷 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘))) |
| 22 | 2 | 3ad2ant1 1133 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) ∧ 𝑧 ∈ On) → 𝐵 ⊆ 𝐷) |
| 23 | 22 | resmptd 6038 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝑛 ∈ 𝐷 ↦ 𝑋) ↾ 𝐵) = (𝑛 ∈ 𝐵 ↦ 𝑋)) |
| 24 | 23 | fveq1d 6887 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (((𝑛 ∈ 𝐷 ↦ 𝑋) ↾ 𝐵)‘(OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘)) = ((𝑛 ∈ 𝐵 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘))) |
| 25 | 8 | fveq2d 6889 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝑛 ∈ 𝐷 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘)) = ((𝑛 ∈ 𝐷 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘))) |
| 26 | 21, 24, 25 | 3eqtr3d 2777 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝑛 ∈ 𝐵 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘)) = ((𝑛 ∈ 𝐷 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘))) |
| 27 | 9, 26 | oveq12d 7430 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐵 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘))) = ((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐷 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘)))) |
| 28 | 27 | oveq1d 7427 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐵 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧) = (((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐷 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧)) |
| 29 | 28 | mpoeq3dva 7491 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐵 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐷 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧))) |
| 30 | 6 | dmeqd 5896 |
. . . . . 6
⊢ (𝜑 → dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)) = dom OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))) |
| 31 | | eqid 2734 |
. . . . . 6
⊢ On =
On |
| 32 | | mpoeq12 7487 |
. . . . . 6
⊢ ((dom
OrdIso( E , ((𝑛 ∈
𝐵 ↦ 𝑋) supp ∅)) = dom OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅)) ∧ On = On) →
(𝑘 ∈ dom OrdIso( E ,
((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐷 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐷 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧))) |
| 33 | 30, 31, 32 | sylancl 586 |
. . . . 5
⊢ (𝜑 → (𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐷 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐷 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧))) |
| 34 | 29, 33 | eqtrd 2769 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐵 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐷 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧))) |
| 35 | | eqid 2734 |
. . . 4
⊢ ∅ =
∅ |
| 36 | | seqomeq12 8475 |
. . . 4
⊢ (((𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐵 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐷 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧)) ∧ ∅ = ∅) →
seqω((𝑘
∈ dom OrdIso( E , ((𝑛
∈ 𝐵 ↦ 𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴 ↑o (OrdIso( E ,
((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐵 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐷 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)) |
| 37 | 34, 35, 36 | sylancl 586 |
. . 3
⊢ (𝜑 →
seqω((𝑘
∈ dom OrdIso( E , ((𝑛
∈ 𝐵 ↦ 𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴 ↑o (OrdIso( E ,
((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐵 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐷 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)) |
| 38 | 37, 30 | fveq12d 6892 |
. 2
⊢ (𝜑 →
(seqω((𝑘
∈ dom OrdIso( E , ((𝑛
∈ 𝐵 ↦ 𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴 ↑o (OrdIso( E ,
((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐵 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))) =
(seqω((𝑘
∈ dom OrdIso( E , ((𝑛
∈ 𝐷 ↦ 𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴 ↑o (OrdIso( E ,
((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐷 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅)))) |
| 39 | | cantnfs.s |
. . 3
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| 40 | | cantnfs.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ On) |
| 41 | | cantnfs.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ On) |
| 42 | | cantnfres.m |
. . 3
⊢ (𝜑 → (𝑛 ∈ 𝐵 ↦ 𝑋) ∈ 𝑆) |
| 43 | | eqid 2734 |
. . 3
⊢
seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐵 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐵 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅) |
| 44 | 39, 40, 41, 16, 42, 43 | cantnfval2 9690 |
. 2
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑛 ∈ 𝐵 ↦ 𝑋)) = (seqω((𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐵 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝑛 ∈ 𝐵 ↦ 𝑋) supp ∅)))) |
| 45 | | cantnfrescl.t |
. . 3
⊢ 𝑇 = dom (𝐴 CNF 𝐷) |
| 46 | | eqid 2734 |
. . 3
⊢ OrdIso( E
, ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅)) = OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅)) |
| 47 | | cantnfrescl.a |
. . . . 5
⊢ (𝜑 → ∅ ∈ 𝐴) |
| 48 | 39, 40, 41, 1, 2, 3,
47, 45 | cantnfrescl 9697 |
. . . 4
⊢ (𝜑 → ((𝑛 ∈ 𝐵 ↦ 𝑋) ∈ 𝑆 ↔ (𝑛 ∈ 𝐷 ↦ 𝑋) ∈ 𝑇)) |
| 49 | 42, 48 | mpbid 232 |
. . 3
⊢ (𝜑 → (𝑛 ∈ 𝐷 ↦ 𝑋) ∈ 𝑇) |
| 50 | | eqid 2734 |
. . 3
⊢
seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐷 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐷 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅) |
| 51 | 45, 40, 1, 46, 49, 50 | cantnfval2 9690 |
. 2
⊢ (𝜑 → ((𝐴 CNF 𝐷)‘(𝑛 ∈ 𝐷 ↦ 𝑋)) = (seqω((𝑘 ∈ dom OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴 ↑o (OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘)) ·o ((𝑛 ∈ 𝐷 ↦ 𝑋)‘(OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝑛 ∈ 𝐷 ↦ 𝑋) supp ∅)))) |
| 52 | 38, 44, 51 | 3eqtr4d 2779 |
1
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘(𝑛 ∈ 𝐵 ↦ 𝑋)) = ((𝐴 CNF 𝐷)‘(𝑛 ∈ 𝐷 ↦ 𝑋))) |