MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfres Structured version   Visualization version   GIF version

Theorem cantnfres 9724
Description: The CNF function respects extensions of the domain to a larger ordinal. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfrescl.d (𝜑𝐷 ∈ On)
cantnfrescl.b (𝜑𝐵𝐷)
cantnfrescl.x ((𝜑𝑛 ∈ (𝐷𝐵)) → 𝑋 = ∅)
cantnfrescl.a (𝜑 → ∅ ∈ 𝐴)
cantnfrescl.t 𝑇 = dom (𝐴 CNF 𝐷)
cantnfres.m (𝜑 → (𝑛𝐵𝑋) ∈ 𝑆)
Assertion
Ref Expression
cantnfres (𝜑 → ((𝐴 CNF 𝐵)‘(𝑛𝐵𝑋)) = ((𝐴 CNF 𝐷)‘(𝑛𝐷𝑋)))
Distinct variable groups:   𝐵,𝑛   𝐷,𝑛   𝐴,𝑛   𝜑,𝑛
Allowed substitution hints:   𝑆(𝑛)   𝑇(𝑛)   𝑋(𝑛)

Proof of Theorem cantnfres
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfrescl.d . . . . . . . . . . . . 13 (𝜑𝐷 ∈ On)
2 cantnfrescl.b . . . . . . . . . . . . 13 (𝜑𝐵𝐷)
3 cantnfrescl.x . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝐷𝐵)) → 𝑋 = ∅)
41, 2, 3extmptsuppeq 8221 . . . . . . . . . . . 12 (𝜑 → ((𝑛𝐵𝑋) supp ∅) = ((𝑛𝐷𝑋) supp ∅))
5 oieq2 9560 . . . . . . . . . . . 12 (((𝑛𝐵𝑋) supp ∅) = ((𝑛𝐷𝑋) supp ∅) → OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) = OrdIso( E , ((𝑛𝐷𝑋) supp ∅)))
64, 5syl 17 . . . . . . . . . . 11 (𝜑 → OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) = OrdIso( E , ((𝑛𝐷𝑋) supp ∅)))
76fveq1d 6916 . . . . . . . . . 10 (𝜑 → (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) = (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))
873ad2ant1 1134 . . . . . . . . 9 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) = (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))
98oveq2d 7454 . . . . . . . 8 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = (𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)))
10 suppssdm 8210 . . . . . . . . . . . . 13 ((𝑛𝐵𝑋) supp ∅) ⊆ dom (𝑛𝐵𝑋)
11 eqid 2737 . . . . . . . . . . . . . . 15 (𝑛𝐵𝑋) = (𝑛𝐵𝑋)
1211dmmptss 6269 . . . . . . . . . . . . . 14 dom (𝑛𝐵𝑋) ⊆ 𝐵
1312a1i 11 . . . . . . . . . . . . 13 (𝜑 → dom (𝑛𝐵𝑋) ⊆ 𝐵)
1410, 13sstrid 4010 . . . . . . . . . . . 12 (𝜑 → ((𝑛𝐵𝑋) supp ∅) ⊆ 𝐵)
15143ad2ant1 1134 . . . . . . . . . . 11 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝑛𝐵𝑋) supp ∅) ⊆ 𝐵)
16 eqid 2737 . . . . . . . . . . . . . 14 OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) = OrdIso( E , ((𝑛𝐵𝑋) supp ∅))
1716oif 9577 . . . . . . . . . . . . 13 OrdIso( E , ((𝑛𝐵𝑋) supp ∅)):dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅))⟶((𝑛𝐵𝑋) supp ∅)
1817ffvelcdmi 7110 . . . . . . . . . . . 12 (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) → (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) ∈ ((𝑛𝐵𝑋) supp ∅))
19183ad2ant2 1135 . . . . . . . . . . 11 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) ∈ ((𝑛𝐵𝑋) supp ∅))
2015, 19sseldd 3999 . . . . . . . . . 10 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) ∈ 𝐵)
2120fvresd 6934 . . . . . . . . 9 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (((𝑛𝐷𝑋) ↾ 𝐵)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)))
2223ad2ant1 1134 . . . . . . . . . . 11 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → 𝐵𝐷)
2322resmptd 6065 . . . . . . . . . 10 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝑛𝐷𝑋) ↾ 𝐵) = (𝑛𝐵𝑋))
2423fveq1d 6916 . . . . . . . . 9 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (((𝑛𝐷𝑋) ↾ 𝐵)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)))
258fveq2d 6918 . . . . . . . . 9 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)))
2621, 24, 253eqtr3d 2785 . . . . . . . 8 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)))
279, 26oveq12d 7456 . . . . . . 7 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) = ((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))))
2827oveq1d 7453 . . . . . 6 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧) = (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧))
2928mpoeq3dva 7517 . . . . 5 (𝜑 → (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)))
306dmeqd 5923 . . . . . 6 (𝜑 → dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) = dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)))
31 eqid 2737 . . . . . 6 On = On
32 mpoeq12 7513 . . . . . 6 ((dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) = dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)) ∧ On = On) → (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)))
3330, 31, 32sylancl 586 . . . . 5 (𝜑 → (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)))
3429, 33eqtrd 2777 . . . 4 (𝜑 → (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)))
35 eqid 2737 . . . 4 ∅ = ∅
36 seqomeq12 8502 . . . 4 (((𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)) ∧ ∅ = ∅) → seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅))
3734, 35, 36sylancl 586 . . 3 (𝜑 → seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅))
3837, 30fveq12d 6921 . 2 (𝜑 → (seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅))) = (seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅))))
39 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
40 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
41 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
42 cantnfres.m . . 3 (𝜑 → (𝑛𝐵𝑋) ∈ 𝑆)
43 eqid 2737 . . 3 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)
4439, 40, 41, 16, 42, 43cantnfval2 9716 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘(𝑛𝐵𝑋)) = (seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅))))
45 cantnfrescl.t . . 3 𝑇 = dom (𝐴 CNF 𝐷)
46 eqid 2737 . . 3 OrdIso( E , ((𝑛𝐷𝑋) supp ∅)) = OrdIso( E , ((𝑛𝐷𝑋) supp ∅))
47 cantnfrescl.a . . . . 5 (𝜑 → ∅ ∈ 𝐴)
4839, 40, 41, 1, 2, 3, 47, 45cantnfrescl 9723 . . . 4 (𝜑 → ((𝑛𝐵𝑋) ∈ 𝑆 ↔ (𝑛𝐷𝑋) ∈ 𝑇))
4942, 48mpbid 232 . . 3 (𝜑 → (𝑛𝐷𝑋) ∈ 𝑇)
50 eqid 2737 . . 3 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)
5145, 40, 1, 46, 49, 50cantnfval2 9716 . 2 (𝜑 → ((𝐴 CNF 𝐷)‘(𝑛𝐷𝑋)) = (seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅))))
5238, 44, 513eqtr4d 2787 1 (𝜑 → ((𝐴 CNF 𝐵)‘(𝑛𝐵𝑋)) = ((𝐴 CNF 𝐷)‘(𝑛𝐷𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1539  wcel 2108  Vcvv 3481  cdif 3963  wss 3966  c0 4342  cmpt 5234   E cep 5592  dom cdm 5693  cres 5695  Oncon0 6392  cfv 6569  (class class class)co 7438  cmpo 7440   supp csupp 8193  seqωcseqom 8495   +o coa 8511   ·o comu 8512  o coe 8513  OrdIsocoi 9556   CNF ccnf 9708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-se 5646  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-isom 6578  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-supp 8194  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-seqom 8496  df-1o 8514  df-oadd 8518  df-map 8876  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-fsupp 9409  df-oi 9557  df-cnf 9709
This theorem is referenced by:  cantnf2  43331
  Copyright terms: Public domain W3C validator