MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfres Structured version   Visualization version   GIF version

Theorem cantnfres 9746
Description: The CNF function respects extensions of the domain to a larger ordinal. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfrescl.d (𝜑𝐷 ∈ On)
cantnfrescl.b (𝜑𝐵𝐷)
cantnfrescl.x ((𝜑𝑛 ∈ (𝐷𝐵)) → 𝑋 = ∅)
cantnfrescl.a (𝜑 → ∅ ∈ 𝐴)
cantnfrescl.t 𝑇 = dom (𝐴 CNF 𝐷)
cantnfres.m (𝜑 → (𝑛𝐵𝑋) ∈ 𝑆)
Assertion
Ref Expression
cantnfres (𝜑 → ((𝐴 CNF 𝐵)‘(𝑛𝐵𝑋)) = ((𝐴 CNF 𝐷)‘(𝑛𝐷𝑋)))
Distinct variable groups:   𝐵,𝑛   𝐷,𝑛   𝐴,𝑛   𝜑,𝑛
Allowed substitution hints:   𝑆(𝑛)   𝑇(𝑛)   𝑋(𝑛)

Proof of Theorem cantnfres
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cantnfrescl.d . . . . . . . . . . . . 13 (𝜑𝐷 ∈ On)
2 cantnfrescl.b . . . . . . . . . . . . 13 (𝜑𝐵𝐷)
3 cantnfrescl.x . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (𝐷𝐵)) → 𝑋 = ∅)
41, 2, 3extmptsuppeq 8229 . . . . . . . . . . . 12 (𝜑 → ((𝑛𝐵𝑋) supp ∅) = ((𝑛𝐷𝑋) supp ∅))
5 oieq2 9582 . . . . . . . . . . . 12 (((𝑛𝐵𝑋) supp ∅) = ((𝑛𝐷𝑋) supp ∅) → OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) = OrdIso( E , ((𝑛𝐷𝑋) supp ∅)))
64, 5syl 17 . . . . . . . . . . 11 (𝜑 → OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) = OrdIso( E , ((𝑛𝐷𝑋) supp ∅)))
76fveq1d 6922 . . . . . . . . . 10 (𝜑 → (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) = (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))
873ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) = (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))
98oveq2d 7464 . . . . . . . 8 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = (𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)))
10 suppssdm 8218 . . . . . . . . . . . . 13 ((𝑛𝐵𝑋) supp ∅) ⊆ dom (𝑛𝐵𝑋)
11 eqid 2740 . . . . . . . . . . . . . . 15 (𝑛𝐵𝑋) = (𝑛𝐵𝑋)
1211dmmptss 6272 . . . . . . . . . . . . . 14 dom (𝑛𝐵𝑋) ⊆ 𝐵
1312a1i 11 . . . . . . . . . . . . 13 (𝜑 → dom (𝑛𝐵𝑋) ⊆ 𝐵)
1410, 13sstrid 4020 . . . . . . . . . . . 12 (𝜑 → ((𝑛𝐵𝑋) supp ∅) ⊆ 𝐵)
15143ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝑛𝐵𝑋) supp ∅) ⊆ 𝐵)
16 eqid 2740 . . . . . . . . . . . . . 14 OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) = OrdIso( E , ((𝑛𝐵𝑋) supp ∅))
1716oif 9599 . . . . . . . . . . . . 13 OrdIso( E , ((𝑛𝐵𝑋) supp ∅)):dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅))⟶((𝑛𝐵𝑋) supp ∅)
1817ffvelcdmi 7117 . . . . . . . . . . . 12 (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) → (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) ∈ ((𝑛𝐵𝑋) supp ∅))
19183ad2ant2 1134 . . . . . . . . . . 11 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) ∈ ((𝑛𝐵𝑋) supp ∅))
2015, 19sseldd 4009 . . . . . . . . . 10 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘) ∈ 𝐵)
2120fvresd 6940 . . . . . . . . 9 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (((𝑛𝐷𝑋) ↾ 𝐵)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)))
2223ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → 𝐵𝐷)
2322resmptd 6069 . . . . . . . . . 10 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝑛𝐷𝑋) ↾ 𝐵) = (𝑛𝐵𝑋))
2423fveq1d 6922 . . . . . . . . 9 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (((𝑛𝐷𝑋) ↾ 𝐵)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)))
258fveq2d 6924 . . . . . . . . 9 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)))
2621, 24, 253eqtr3d 2788 . . . . . . . 8 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) = ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)))
279, 26oveq12d 7466 . . . . . . 7 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → ((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) = ((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))))
2827oveq1d 7463 . . . . . 6 ((𝜑𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) ∧ 𝑧 ∈ On) → (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧) = (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧))
2928mpoeq3dva 7527 . . . . 5 (𝜑 → (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)))
306dmeqd 5930 . . . . . 6 (𝜑 → dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) = dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)))
31 eqid 2740 . . . . . 6 On = On
32 mpoeq12 7523 . . . . . 6 ((dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)) = dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)) ∧ On = On) → (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)))
3330, 31, 32sylancl 585 . . . . 5 (𝜑 → (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)))
3429, 33eqtrd 2780 . . . 4 (𝜑 → (𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)))
35 eqid 2740 . . . 4 ∅ = ∅
36 seqomeq12 8510 . . . 4 (((𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)) = (𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)) ∧ ∅ = ∅) → seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅))
3734, 35, 36sylancl 585 . . 3 (𝜑 → seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅))
3837, 30fveq12d 6927 . 2 (𝜑 → (seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅))) = (seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅))))
39 cantnfs.s . . 3 𝑆 = dom (𝐴 CNF 𝐵)
40 cantnfs.a . . 3 (𝜑𝐴 ∈ On)
41 cantnfs.b . . 3 (𝜑𝐵 ∈ On)
42 cantnfres.m . . 3 (𝜑 → (𝑛𝐵𝑋) ∈ 𝑆)
43 eqid 2740 . . 3 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)
4439, 40, 41, 16, 42, 43cantnfval2 9738 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘(𝑛𝐵𝑋)) = (seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐵𝑋)‘(OrdIso( E , ((𝑛𝐵𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝑛𝐵𝑋) supp ∅))))
45 cantnfrescl.t . . 3 𝑇 = dom (𝐴 CNF 𝐷)
46 eqid 2740 . . 3 OrdIso( E , ((𝑛𝐷𝑋) supp ∅)) = OrdIso( E , ((𝑛𝐷𝑋) supp ∅))
47 cantnfrescl.a . . . . 5 (𝜑 → ∅ ∈ 𝐴)
4839, 40, 41, 1, 2, 3, 47, 45cantnfrescl 9745 . . . 4 (𝜑 → ((𝑛𝐵𝑋) ∈ 𝑆 ↔ (𝑛𝐷𝑋) ∈ 𝑇))
4942, 48mpbid 232 . . 3 (𝜑 → (𝑛𝐷𝑋) ∈ 𝑇)
50 eqid 2740 . . 3 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)
5145, 40, 1, 46, 49, 50cantnfval2 9738 . 2 (𝜑 → ((𝐴 CNF 𝐷)‘(𝑛𝐷𝑋)) = (seqω((𝑘 ∈ dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅)), 𝑧 ∈ On ↦ (((𝐴o (OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘)) ·o ((𝑛𝐷𝑋)‘(OrdIso( E , ((𝑛𝐷𝑋) supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , ((𝑛𝐷𝑋) supp ∅))))
5238, 44, 513eqtr4d 2790 1 (𝜑 → ((𝐴 CNF 𝐵)‘(𝑛𝐵𝑋)) = ((𝐴 CNF 𝐷)‘(𝑛𝐷𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  wss 3976  c0 4352  cmpt 5249   E cep 5598  dom cdm 5700  cres 5702  Oncon0 6395  cfv 6573  (class class class)co 7448  cmpo 7450   supp csupp 8201  seqωcseqom 8503   +o coa 8519   ·o comu 8520  o coe 8521  OrdIsocoi 9578   CNF ccnf 9730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seqom 8504  df-1o 8522  df-oadd 8526  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-cnf 9731
This theorem is referenced by:  cantnf2  43287
  Copyright terms: Public domain W3C validator