MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsval Structured version   Visualization version   GIF version

Theorem xpsval 17452
Description: Value of the binary structure product function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.)
Hypotheses
Ref Expression
xpsval.t 𝑇 = (𝑅 ×s 𝑆)
xpsval.x 𝑋 = (Base‘𝑅)
xpsval.y 𝑌 = (Base‘𝑆)
xpsval.1 (𝜑𝑅𝑉)
xpsval.2 (𝜑𝑆𝑊)
xpsval.f 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
xpsval.k 𝐺 = (Scalar‘𝑅)
xpsval.u 𝑈 = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
Assertion
Ref Expression
xpsval (𝜑𝑇 = (𝐹s 𝑈))
Distinct variable groups:   𝑥,𝑦   𝑥,𝑊   𝑥,𝑋,𝑦   𝑥,𝑅   𝑥,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑦)

Proof of Theorem xpsval
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsval.t . 2 𝑇 = (𝑅 ×s 𝑆)
2 xpsval.1 . . . 4 (𝜑𝑅𝑉)
32elexd 3465 . . 3 (𝜑𝑅 ∈ V)
4 xpsval.2 . . . 4 (𝜑𝑆𝑊)
54elexd 3465 . . 3 (𝜑𝑆 ∈ V)
6 fveq2 6842 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
7 xpsval.x . . . . . . . . 9 𝑋 = (Base‘𝑅)
86, 7eqtr4di 2794 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = 𝑋)
9 fveq2 6842 . . . . . . . . 9 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
10 xpsval.y . . . . . . . . 9 𝑌 = (Base‘𝑆)
119, 10eqtr4di 2794 . . . . . . . 8 (𝑠 = 𝑆 → (Base‘𝑠) = 𝑌)
12 mpoeq12 7430 . . . . . . . 8 (((Base‘𝑟) = 𝑋 ∧ (Base‘𝑠) = 𝑌) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
138, 11, 12syl2an 596 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
14 xpsval.f . . . . . . 7 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
1513, 14eqtr4di 2794 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = 𝐹)
1615cnveqd 5831 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = 𝐹)
17 fveq2 6842 . . . . . . . . 9 (𝑟 = 𝑅 → (Scalar‘𝑟) = (Scalar‘𝑅))
1817adantr 481 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → (Scalar‘𝑟) = (Scalar‘𝑅))
19 xpsval.k . . . . . . . 8 𝐺 = (Scalar‘𝑅)
2018, 19eqtr4di 2794 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (Scalar‘𝑟) = 𝐺)
21 simpl 483 . . . . . . . . 9 ((𝑟 = 𝑅𝑠 = 𝑆) → 𝑟 = 𝑅)
2221opeq2d 4837 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → ⟨∅, 𝑟⟩ = ⟨∅, 𝑅⟩)
23 simpr 485 . . . . . . . . 9 ((𝑟 = 𝑅𝑠 = 𝑆) → 𝑠 = 𝑆)
2423opeq2d 4837 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → ⟨1o, 𝑠⟩ = ⟨1o, 𝑆⟩)
2522, 24preq12d 4702 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → {⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩} = {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
2620, 25oveq12d 7375 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → ((Scalar‘𝑟)Xs{⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩}) = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
27 xpsval.u . . . . . 6 𝑈 = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
2826, 27eqtr4di 2794 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → ((Scalar‘𝑟)Xs{⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩}) = 𝑈)
2916, 28oveq12d 7375 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → ((𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑟)Xs{⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩})) = (𝐹s 𝑈))
30 df-xps 17392 . . . 4 ×s = (𝑟 ∈ V, 𝑠 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑟)Xs{⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩})))
31 ovex 7390 . . . 4 (𝐹s 𝑈) ∈ V
3229, 30, 31ovmpoa 7510 . . 3 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 ×s 𝑆) = (𝐹s 𝑈))
333, 5, 32syl2anc 584 . 2 (𝜑 → (𝑅 ×s 𝑆) = (𝐹s 𝑈))
341, 33eqtrid 2788 1 (𝜑𝑇 = (𝐹s 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  c0 4282  {cpr 4588  cop 4592  ccnv 5632  cfv 6496  (class class class)co 7357  cmpo 7359  1oc1o 8405  Basecbs 17083  Scalarcsca 17136  Xscprds 17327  s cimas 17386   ×s cxps 17388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-iota 6448  df-fun 6498  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-xps 17392
This theorem is referenced by:  xpsbas  17454  xpsadd  17456  xpsmul  17457  xpssca  17458  xpsvsca  17459  xpsless  17460  xpsle  17461  xpsmnd  18596  xpsgrp  18866  xpstps  23161  xpstopnlem2  23162  xpsdsfn  23730  xpsxmet  23733  xpsdsval  23734  xpsmet  23735  xpsxms  23890  xpsms  23891
  Copyright terms: Public domain W3C validator