Step | Hyp | Ref
| Expression |
1 | | xpsval.t |
. 2
⊢ 𝑇 = (𝑅 ×s 𝑆) |
2 | | xpsval.1 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑉) |
3 | 2 | elexd 3431 |
. . 3
⊢ (𝜑 → 𝑅 ∈ V) |
4 | | xpsval.2 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ 𝑊) |
5 | 4 | elexd 3431 |
. . 3
⊢ (𝜑 → 𝑆 ∈ V) |
6 | | fveq2 6659 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅)) |
7 | | xpsval.x |
. . . . . . . . 9
⊢ 𝑋 = (Base‘𝑅) |
8 | 6, 7 | eqtr4di 2812 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → (Base‘𝑟) = 𝑋) |
9 | | fveq2 6659 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆)) |
10 | | xpsval.y |
. . . . . . . . 9
⊢ 𝑌 = (Base‘𝑆) |
11 | 9, 10 | eqtr4di 2812 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → (Base‘𝑠) = 𝑌) |
12 | | mpoeq12 7222 |
. . . . . . . 8
⊢
(((Base‘𝑟) =
𝑋 ∧ (Base‘𝑠) = 𝑌) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})) |
13 | 8, 11, 12 | syl2an 599 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})) |
14 | | xpsval.f |
. . . . . . 7
⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) |
15 | 13, 14 | eqtr4di 2812 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = 𝐹) |
16 | 15 | cnveqd 5716 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ◡(𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉}) = ◡𝐹) |
17 | | fveq2 6659 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (Scalar‘𝑟) = (Scalar‘𝑅)) |
18 | 17 | adantr 485 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (Scalar‘𝑟) = (Scalar‘𝑅)) |
19 | | xpsval.k |
. . . . . . . 8
⊢ 𝐺 = (Scalar‘𝑅) |
20 | 18, 19 | eqtr4di 2812 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (Scalar‘𝑟) = 𝐺) |
21 | | simpl 487 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → 𝑟 = 𝑅) |
22 | 21 | opeq2d 4771 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → 〈∅, 𝑟〉 = 〈∅, 𝑅〉) |
23 | | simpr 489 |
. . . . . . . . 9
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → 𝑠 = 𝑆) |
24 | 23 | opeq2d 4771 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → 〈1o, 𝑠〉 = 〈1o,
𝑆〉) |
25 | 22, 24 | preq12d 4635 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → {〈∅, 𝑟〉, 〈1o, 𝑠〉} = {〈∅, 𝑅〉, 〈1o,
𝑆〉}) |
26 | 20, 25 | oveq12d 7169 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ((Scalar‘𝑟)Xs{〈∅, 𝑟〉, 〈1o, 𝑠〉}) = (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉})) |
27 | | xpsval.u |
. . . . . 6
⊢ 𝑈 = (𝐺Xs{〈∅, 𝑅〉, 〈1o, 𝑆〉}) |
28 | 26, 27 | eqtr4di 2812 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → ((Scalar‘𝑟)Xs{〈∅, 𝑟〉, 〈1o, 𝑠〉}) = 𝑈) |
29 | 16, 28 | oveq12d 7169 |
. . . 4
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (◡(𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})
“s ((Scalar‘𝑟)Xs{〈∅, 𝑟〉, 〈1o, 𝑠〉})) = (◡𝐹 “s 𝑈)) |
30 | | df-xps 16834 |
. . . 4
⊢
×s = (𝑟 ∈ V, 𝑠 ∈ V ↦ (◡(𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})
“s ((Scalar‘𝑟)Xs{〈∅, 𝑟〉, 〈1o, 𝑠〉}))) |
31 | | ovex 7184 |
. . . 4
⊢ (◡𝐹 “s 𝑈) ∈ V |
32 | 29, 30, 31 | ovmpoa 7301 |
. . 3
⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 ×s
𝑆) = (◡𝐹 “s 𝑈)) |
33 | 3, 5, 32 | syl2anc 588 |
. 2
⊢ (𝜑 → (𝑅 ×s 𝑆) = (◡𝐹 “s 𝑈)) |
34 | 1, 33 | syl5eq 2806 |
1
⊢ (𝜑 → 𝑇 = (◡𝐹 “s 𝑈)) |