MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsval Structured version   Visualization version   GIF version

Theorem xpsval 17492
Description: Value of the binary structure product function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.)
Hypotheses
Ref Expression
xpsval.t 𝑇 = (𝑅 ×s 𝑆)
xpsval.x 𝑋 = (Base‘𝑅)
xpsval.y 𝑌 = (Base‘𝑆)
xpsval.1 (𝜑𝑅𝑉)
xpsval.2 (𝜑𝑆𝑊)
xpsval.f 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
xpsval.k 𝐺 = (Scalar‘𝑅)
xpsval.u 𝑈 = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
Assertion
Ref Expression
xpsval (𝜑𝑇 = (𝐹s 𝑈))
Distinct variable groups:   𝑥,𝑦   𝑥,𝑊   𝑥,𝑋,𝑦   𝑥,𝑅   𝑥,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑦)

Proof of Theorem xpsval
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsval.t . 2 𝑇 = (𝑅 ×s 𝑆)
2 xpsval.1 . . . 4 (𝜑𝑅𝑉)
32elexd 3462 . . 3 (𝜑𝑅 ∈ V)
4 xpsval.2 . . . 4 (𝜑𝑆𝑊)
54elexd 3462 . . 3 (𝜑𝑆 ∈ V)
6 fveq2 6826 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
7 xpsval.x . . . . . . . . 9 𝑋 = (Base‘𝑅)
86, 7eqtr4di 2782 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = 𝑋)
9 fveq2 6826 . . . . . . . . 9 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
10 xpsval.y . . . . . . . . 9 𝑌 = (Base‘𝑆)
119, 10eqtr4di 2782 . . . . . . . 8 (𝑠 = 𝑆 → (Base‘𝑠) = 𝑌)
12 mpoeq12 7426 . . . . . . . 8 (((Base‘𝑟) = 𝑋 ∧ (Base‘𝑠) = 𝑌) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
138, 11, 12syl2an 596 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
14 xpsval.f . . . . . . 7 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
1513, 14eqtr4di 2782 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = 𝐹)
1615cnveqd 5822 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = 𝐹)
17 fveq2 6826 . . . . . . . . 9 (𝑟 = 𝑅 → (Scalar‘𝑟) = (Scalar‘𝑅))
1817adantr 480 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → (Scalar‘𝑟) = (Scalar‘𝑅))
19 xpsval.k . . . . . . . 8 𝐺 = (Scalar‘𝑅)
2018, 19eqtr4di 2782 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (Scalar‘𝑟) = 𝐺)
21 simpl 482 . . . . . . . . 9 ((𝑟 = 𝑅𝑠 = 𝑆) → 𝑟 = 𝑅)
2221opeq2d 4834 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → ⟨∅, 𝑟⟩ = ⟨∅, 𝑅⟩)
23 simpr 484 . . . . . . . . 9 ((𝑟 = 𝑅𝑠 = 𝑆) → 𝑠 = 𝑆)
2423opeq2d 4834 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → ⟨1o, 𝑠⟩ = ⟨1o, 𝑆⟩)
2522, 24preq12d 4695 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → {⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩} = {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
2620, 25oveq12d 7371 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → ((Scalar‘𝑟)Xs{⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩}) = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
27 xpsval.u . . . . . 6 𝑈 = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
2826, 27eqtr4di 2782 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → ((Scalar‘𝑟)Xs{⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩}) = 𝑈)
2916, 28oveq12d 7371 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → ((𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑟)Xs{⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩})) = (𝐹s 𝑈))
30 df-xps 17432 . . . 4 ×s = (𝑟 ∈ V, 𝑠 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑟)Xs{⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩})))
31 ovex 7386 . . . 4 (𝐹s 𝑈) ∈ V
3229, 30, 31ovmpoa 7508 . . 3 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 ×s 𝑆) = (𝐹s 𝑈))
333, 5, 32syl2anc 584 . 2 (𝜑 → (𝑅 ×s 𝑆) = (𝐹s 𝑈))
341, 33eqtrid 2776 1 (𝜑𝑇 = (𝐹s 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  c0 4286  {cpr 4581  cop 4585  ccnv 5622  cfv 6486  (class class class)co 7353  cmpo 7355  1oc1o 8388  Basecbs 17138  Scalarcsca 17182  Xscprds 17367  s cimas 17426   ×s cxps 17428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-xps 17432
This theorem is referenced by:  xpsbas  17494  xpsadd  17496  xpsmul  17497  xpssca  17498  xpsvsca  17499  xpsless  17500  xpsle  17501  xpsmnd  18669  xpsgrp  18956  xpsrngd  20082  xpsringd  20235  xpstps  23713  xpstopnlem2  23714  xpsdsfn  24281  xpsxmet  24284  xpsdsval  24285  xpsmet  24286  xpsxms  24438  xpsms  24439
  Copyright terms: Public domain W3C validator