MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsval Structured version   Visualization version   GIF version

Theorem xpsval 17513
Description: Value of the binary structure product function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.)
Hypotheses
Ref Expression
xpsval.t 𝑇 = (𝑅 Γ—s 𝑆)
xpsval.x 𝑋 = (Baseβ€˜π‘…)
xpsval.y π‘Œ = (Baseβ€˜π‘†)
xpsval.1 (πœ‘ β†’ 𝑅 ∈ 𝑉)
xpsval.2 (πœ‘ β†’ 𝑆 ∈ π‘Š)
xpsval.f 𝐹 = (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})
xpsval.k 𝐺 = (Scalarβ€˜π‘…)
xpsval.u π‘ˆ = (𝐺Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})
Assertion
Ref Expression
xpsval (πœ‘ β†’ 𝑇 = (◑𝐹 β€œs π‘ˆ))
Distinct variable groups:   π‘₯,𝑦   π‘₯,π‘Š   π‘₯,𝑋,𝑦   π‘₯,𝑅   π‘₯,π‘Œ,𝑦
Allowed substitution hints:   πœ‘(π‘₯,𝑦)   𝑅(𝑦)   𝑆(π‘₯,𝑦)   𝑇(π‘₯,𝑦)   π‘ˆ(π‘₯,𝑦)   𝐹(π‘₯,𝑦)   𝐺(π‘₯,𝑦)   𝑉(π‘₯,𝑦)   π‘Š(𝑦)

Proof of Theorem xpsval
Dummy variables 𝑠 π‘Ÿ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsval.t . 2 𝑇 = (𝑅 Γ—s 𝑆)
2 xpsval.1 . . . 4 (πœ‘ β†’ 𝑅 ∈ 𝑉)
32elexd 3495 . . 3 (πœ‘ β†’ 𝑅 ∈ V)
4 xpsval.2 . . . 4 (πœ‘ β†’ 𝑆 ∈ π‘Š)
54elexd 3495 . . 3 (πœ‘ β†’ 𝑆 ∈ V)
6 fveq2 6889 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ (Baseβ€˜π‘Ÿ) = (Baseβ€˜π‘…))
7 xpsval.x . . . . . . . . 9 𝑋 = (Baseβ€˜π‘…)
86, 7eqtr4di 2791 . . . . . . . 8 (π‘Ÿ = 𝑅 β†’ (Baseβ€˜π‘Ÿ) = 𝑋)
9 fveq2 6889 . . . . . . . . 9 (𝑠 = 𝑆 β†’ (Baseβ€˜π‘ ) = (Baseβ€˜π‘†))
10 xpsval.y . . . . . . . . 9 π‘Œ = (Baseβ€˜π‘†)
119, 10eqtr4di 2791 . . . . . . . 8 (𝑠 = 𝑆 β†’ (Baseβ€˜π‘ ) = π‘Œ)
12 mpoeq12 7479 . . . . . . . 8 (((Baseβ€˜π‘Ÿ) = 𝑋 ∧ (Baseβ€˜π‘ ) = π‘Œ) β†’ (π‘₯ ∈ (Baseβ€˜π‘Ÿ), 𝑦 ∈ (Baseβ€˜π‘ ) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) = (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}))
138, 11, 12syl2an 597 . . . . . . 7 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ (π‘₯ ∈ (Baseβ€˜π‘Ÿ), 𝑦 ∈ (Baseβ€˜π‘ ) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) = (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}))
14 xpsval.f . . . . . . 7 𝐹 = (π‘₯ ∈ 𝑋, 𝑦 ∈ π‘Œ ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©})
1513, 14eqtr4di 2791 . . . . . 6 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ (π‘₯ ∈ (Baseβ€˜π‘Ÿ), 𝑦 ∈ (Baseβ€˜π‘ ) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) = 𝐹)
1615cnveqd 5874 . . . . 5 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ β—‘(π‘₯ ∈ (Baseβ€˜π‘Ÿ), 𝑦 ∈ (Baseβ€˜π‘ ) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) = ◑𝐹)
17 fveq2 6889 . . . . . . . . 9 (π‘Ÿ = 𝑅 β†’ (Scalarβ€˜π‘Ÿ) = (Scalarβ€˜π‘…))
1817adantr 482 . . . . . . . 8 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ (Scalarβ€˜π‘Ÿ) = (Scalarβ€˜π‘…))
19 xpsval.k . . . . . . . 8 𝐺 = (Scalarβ€˜π‘…)
2018, 19eqtr4di 2791 . . . . . . 7 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ (Scalarβ€˜π‘Ÿ) = 𝐺)
21 simpl 484 . . . . . . . . 9 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ π‘Ÿ = 𝑅)
2221opeq2d 4880 . . . . . . . 8 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ βŸ¨βˆ…, π‘ŸβŸ© = βŸ¨βˆ…, π‘…βŸ©)
23 simpr 486 . . . . . . . . 9 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ 𝑠 = 𝑆)
2423opeq2d 4880 . . . . . . . 8 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ ⟨1o, π‘ βŸ© = ⟨1o, π‘†βŸ©)
2522, 24preq12d 4745 . . . . . . 7 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ {βŸ¨βˆ…, π‘ŸβŸ©, ⟨1o, π‘ βŸ©} = {βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})
2620, 25oveq12d 7424 . . . . . 6 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ ((Scalarβ€˜π‘Ÿ)Xs{βŸ¨βˆ…, π‘ŸβŸ©, ⟨1o, π‘ βŸ©}) = (𝐺Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©}))
27 xpsval.u . . . . . 6 π‘ˆ = (𝐺Xs{βŸ¨βˆ…, π‘…βŸ©, ⟨1o, π‘†βŸ©})
2826, 27eqtr4di 2791 . . . . 5 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ ((Scalarβ€˜π‘Ÿ)Xs{βŸ¨βˆ…, π‘ŸβŸ©, ⟨1o, π‘ βŸ©}) = π‘ˆ)
2916, 28oveq12d 7424 . . . 4 ((π‘Ÿ = 𝑅 ∧ 𝑠 = 𝑆) β†’ (β—‘(π‘₯ ∈ (Baseβ€˜π‘Ÿ), 𝑦 ∈ (Baseβ€˜π‘ ) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) β€œs ((Scalarβ€˜π‘Ÿ)Xs{βŸ¨βˆ…, π‘ŸβŸ©, ⟨1o, π‘ βŸ©})) = (◑𝐹 β€œs π‘ˆ))
30 df-xps 17453 . . . 4 Γ—s = (π‘Ÿ ∈ V, 𝑠 ∈ V ↦ (β—‘(π‘₯ ∈ (Baseβ€˜π‘Ÿ), 𝑦 ∈ (Baseβ€˜π‘ ) ↦ {βŸ¨βˆ…, π‘₯⟩, ⟨1o, π‘¦βŸ©}) β€œs ((Scalarβ€˜π‘Ÿ)Xs{βŸ¨βˆ…, π‘ŸβŸ©, ⟨1o, π‘ βŸ©})))
31 ovex 7439 . . . 4 (◑𝐹 β€œs π‘ˆ) ∈ V
3229, 30, 31ovmpoa 7560 . . 3 ((𝑅 ∈ V ∧ 𝑆 ∈ V) β†’ (𝑅 Γ—s 𝑆) = (◑𝐹 β€œs π‘ˆ))
333, 5, 32syl2anc 585 . 2 (πœ‘ β†’ (𝑅 Γ—s 𝑆) = (◑𝐹 β€œs π‘ˆ))
341, 33eqtrid 2785 1 (πœ‘ β†’ 𝑇 = (◑𝐹 β€œs π‘ˆ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  Vcvv 3475  βˆ…c0 4322  {cpr 4630  βŸ¨cop 4634  β—‘ccnv 5675  β€˜cfv 6541  (class class class)co 7406   ∈ cmpo 7408  1oc1o 8456  Basecbs 17141  Scalarcsca 17197  Xscprds 17388   β€œs cimas 17447   Γ—s cxps 17449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6493  df-fun 6543  df-fv 6549  df-ov 7409  df-oprab 7410  df-mpo 7411  df-xps 17453
This theorem is referenced by:  xpsbas  17515  xpsadd  17517  xpsmul  17518  xpssca  17519  xpsvsca  17520  xpsless  17521  xpsle  17522  xpsmnd  18662  xpsgrp  18939  xpsringd  20139  xpstps  23306  xpstopnlem2  23307  xpsdsfn  23875  xpsxmet  23878  xpsdsval  23879  xpsmet  23880  xpsxms  24035  xpsms  24036  xpsrngd  46667
  Copyright terms: Public domain W3C validator