MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsval Structured version   Visualization version   GIF version

Theorem xpsval 17474
Description: Value of the binary structure product function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Jim Kingdon, 25-Sep-2023.)
Hypotheses
Ref Expression
xpsval.t 𝑇 = (𝑅 ×s 𝑆)
xpsval.x 𝑋 = (Base‘𝑅)
xpsval.y 𝑌 = (Base‘𝑆)
xpsval.1 (𝜑𝑅𝑉)
xpsval.2 (𝜑𝑆𝑊)
xpsval.f 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
xpsval.k 𝐺 = (Scalar‘𝑅)
xpsval.u 𝑈 = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
Assertion
Ref Expression
xpsval (𝜑𝑇 = (𝐹s 𝑈))
Distinct variable groups:   𝑥,𝑦   𝑥,𝑊   𝑥,𝑋,𝑦   𝑥,𝑅   𝑥,𝑌,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑦)

Proof of Theorem xpsval
Dummy variables 𝑠 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsval.t . 2 𝑇 = (𝑅 ×s 𝑆)
2 xpsval.1 . . . 4 (𝜑𝑅𝑉)
32elexd 3460 . . 3 (𝜑𝑅 ∈ V)
4 xpsval.2 . . . 4 (𝜑𝑆𝑊)
54elexd 3460 . . 3 (𝜑𝑆 ∈ V)
6 fveq2 6822 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
7 xpsval.x . . . . . . . . 9 𝑋 = (Base‘𝑅)
86, 7eqtr4di 2784 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = 𝑋)
9 fveq2 6822 . . . . . . . . 9 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
10 xpsval.y . . . . . . . . 9 𝑌 = (Base‘𝑆)
119, 10eqtr4di 2784 . . . . . . . 8 (𝑠 = 𝑆 → (Base‘𝑠) = 𝑌)
12 mpoeq12 7419 . . . . . . . 8 (((Base‘𝑟) = 𝑋 ∧ (Base‘𝑠) = 𝑌) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
138, 11, 12syl2an 596 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
14 xpsval.f . . . . . . 7 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
1513, 14eqtr4di 2784 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = 𝐹)
1615cnveqd 5815 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = 𝐹)
17 fveq2 6822 . . . . . . . . 9 (𝑟 = 𝑅 → (Scalar‘𝑟) = (Scalar‘𝑅))
1817adantr 480 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → (Scalar‘𝑟) = (Scalar‘𝑅))
19 xpsval.k . . . . . . . 8 𝐺 = (Scalar‘𝑅)
2018, 19eqtr4di 2784 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → (Scalar‘𝑟) = 𝐺)
21 simpl 482 . . . . . . . . 9 ((𝑟 = 𝑅𝑠 = 𝑆) → 𝑟 = 𝑅)
2221opeq2d 4832 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → ⟨∅, 𝑟⟩ = ⟨∅, 𝑅⟩)
23 simpr 484 . . . . . . . . 9 ((𝑟 = 𝑅𝑠 = 𝑆) → 𝑠 = 𝑆)
2423opeq2d 4832 . . . . . . . 8 ((𝑟 = 𝑅𝑠 = 𝑆) → ⟨1o, 𝑠⟩ = ⟨1o, 𝑆⟩)
2522, 24preq12d 4694 . . . . . . 7 ((𝑟 = 𝑅𝑠 = 𝑆) → {⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩} = {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
2620, 25oveq12d 7364 . . . . . 6 ((𝑟 = 𝑅𝑠 = 𝑆) → ((Scalar‘𝑟)Xs{⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩}) = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
27 xpsval.u . . . . . 6 𝑈 = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
2826, 27eqtr4di 2784 . . . . 5 ((𝑟 = 𝑅𝑠 = 𝑆) → ((Scalar‘𝑟)Xs{⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩}) = 𝑈)
2916, 28oveq12d 7364 . . . 4 ((𝑟 = 𝑅𝑠 = 𝑆) → ((𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑟)Xs{⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩})) = (𝐹s 𝑈))
30 df-xps 17414 . . . 4 ×s = (𝑟 ∈ V, 𝑠 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑟)Xs{⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩})))
31 ovex 7379 . . . 4 (𝐹s 𝑈) ∈ V
3229, 30, 31ovmpoa 7501 . . 3 ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 ×s 𝑆) = (𝐹s 𝑈))
333, 5, 32syl2anc 584 . 2 (𝜑 → (𝑅 ×s 𝑆) = (𝐹s 𝑈))
341, 33eqtrid 2778 1 (𝜑𝑇 = (𝐹s 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  c0 4283  {cpr 4578  cop 4582  ccnv 5615  cfv 6481  (class class class)co 7346  cmpo 7348  1oc1o 8378  Basecbs 17120  Scalarcsca 17164  Xscprds 17349  s cimas 17408   ×s cxps 17410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-xps 17414
This theorem is referenced by:  xpsbas  17476  xpsadd  17478  xpsmul  17479  xpssca  17480  xpsvsca  17481  xpsless  17482  xpsle  17483  xpsmnd  18685  xpsgrp  18972  xpsrngd  20098  xpsringd  20251  xpstps  23726  xpstopnlem2  23727  xpsdsfn  24293  xpsxmet  24296  xpsdsval  24297  xpsmet  24298  xpsxms  24450  xpsms  24451
  Copyright terms: Public domain W3C validator