Step | Hyp | Ref
| Expression |
1 | | nffvmpt1 6767 |
. . . . 5
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤) |
2 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑥𝑘 |
3 | 1, 2 | nffv 6766 |
. . . 4
⊢
Ⅎ𝑥(((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑘) |
4 | | nfcv 2906 |
. . . . . . 7
⊢
Ⅎ𝑦𝑋 |
5 | | nfmpt1 5178 |
. . . . . . 7
⊢
Ⅎ𝑦(𝑦 ∈ 𝑌 ↦ 𝐴) |
6 | 4, 5 | nfmpt 5177 |
. . . . . 6
⊢
Ⅎ𝑦(𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) |
7 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑦𝑤 |
8 | 6, 7 | nffv 6766 |
. . . . 5
⊢
Ⅎ𝑦((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤) |
9 | | nfcv 2906 |
. . . . 5
⊢
Ⅎ𝑦𝑘 |
10 | 8, 9 | nffv 6766 |
. . . 4
⊢
Ⅎ𝑦(((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑘) |
11 | | nfcv 2906 |
. . . 4
⊢
Ⅎ𝑤(((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑦) |
12 | | nfcv 2906 |
. . . 4
⊢
Ⅎ𝑘(((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑦) |
13 | | fveq2 6756 |
. . . . . 6
⊢ (𝑤 = 𝑥 → ((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤) = ((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)) |
14 | 13 | fveq1d 6758 |
. . . . 5
⊢ (𝑤 = 𝑥 → (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑘) = (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑘)) |
15 | | fveq2 6756 |
. . . . 5
⊢ (𝑘 = 𝑦 → (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑘) = (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑦)) |
16 | 14, 15 | sylan9eq 2799 |
. . . 4
⊢ ((𝑤 = 𝑥 ∧ 𝑘 = 𝑦) → (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑘) = (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑦)) |
17 | 3, 10, 11, 12, 16 | cbvmpo 7347 |
. . 3
⊢ (𝑤 ∈ 𝑋, 𝑘 ∈ 𝑌 ↦ (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑘)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑦)) |
18 | | simplr 765 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝑥 ∈ 𝑋) |
19 | | cnmptk1p.j |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
20 | | cnmptk1p.n |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally
Comp) |
21 | | nllytop 22532 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ 𝑛-Locally Comp
→ 𝐾 ∈
Top) |
22 | 20, 21 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ Top) |
23 | | cnmptk1p.l |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
24 | | topontop 21970 |
. . . . . . . . . . . . 13
⊢ (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top) |
25 | 23, 24 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐿 ∈ Top) |
26 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝐿 ↑ko 𝐾) = (𝐿 ↑ko 𝐾) |
27 | 26 | xkotopon 22659 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
28 | 22, 25, 27 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
29 | | cnmptk2.a |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) |
30 | | cnf2 22308 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) |
31 | 19, 28, 29, 30 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) |
32 | 31 | fvmptelrn 6969 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
33 | 32 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
34 | | eqid 2738 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) |
35 | 34 | fvmpt2 6868 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) → ((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥) = (𝑦 ∈ 𝑌 ↦ 𝐴)) |
36 | 18, 33, 35 | syl2anc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → ((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥) = (𝑦 ∈ 𝑌 ↦ 𝐴)) |
37 | 36 | fveq1d 6758 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑦) = ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝑦)) |
38 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑌) |
39 | | cnmptk1p.k |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
40 | 39 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
41 | 23 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐿 ∈ (TopOn‘𝑍)) |
42 | | cnf2 22308 |
. . . . . . . . 9
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) |
43 | 40, 41, 32, 42 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) |
44 | 43 | fvmptelrn 6969 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑍) |
45 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑦 ∈ 𝑌 ↦ 𝐴) |
46 | 45 | fvmpt2 6868 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝑌 ∧ 𝐴 ∈ 𝑍) → ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝑦) = 𝐴) |
47 | 38, 44, 46 | syl2anc 583 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝑦) = 𝐴) |
48 | 37, 47 | eqtrd 2778 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑦) = 𝐴) |
49 | 48 | 3impa 1108 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑦) = 𝐴) |
50 | 49 | mpoeq3dva 7330 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑦)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)) |
51 | 17, 50 | eqtrid 2790 |
. 2
⊢ (𝜑 → (𝑤 ∈ 𝑋, 𝑘 ∈ 𝑌 ↦ (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑘)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)) |
52 | 19, 39 | cnmpt1st 22727 |
. . . 4
⊢ (𝜑 → (𝑤 ∈ 𝑋, 𝑘 ∈ 𝑌 ↦ 𝑤) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
53 | 19, 39, 52, 29 | cnmpt21f 22731 |
. . 3
⊢ (𝜑 → (𝑤 ∈ 𝑋, 𝑘 ∈ 𝑌 ↦ ((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)) ∈ ((𝐽 ×t 𝐾) Cn (𝐿 ↑ko 𝐾))) |
54 | 19, 39 | cnmpt2nd 22728 |
. . 3
⊢ (𝜑 → (𝑤 ∈ 𝑋, 𝑘 ∈ 𝑌 ↦ 𝑘) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
55 | | eqid 2738 |
. . . . 5
⊢ (𝐾 Cn 𝐿) = (𝐾 Cn 𝐿) |
56 | | toponuni 21971 |
. . . . . 6
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
57 | 39, 56 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑌 = ∪ 𝐾) |
58 | | mpoeq12 7326 |
. . . . 5
⊢ (((𝐾 Cn 𝐿) = (𝐾 Cn 𝐿) ∧ 𝑌 = ∪ 𝐾) → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ 𝑌 ↦ (𝑓‘𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧))) |
59 | 55, 57, 58 | sylancr 586 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ 𝑌 ↦ (𝑓‘𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧))) |
60 | | eqid 2738 |
. . . . . 6
⊢ ∪ 𝐾 =
∪ 𝐾 |
61 | | eqid 2738 |
. . . . . 6
⊢ (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧)) |
62 | 60, 61 | xkofvcn 22743 |
. . . . 5
⊢ ((𝐾 ∈ 𝑛-Locally Comp
∧ 𝐿 ∈ Top) →
(𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧)) ∈ (((𝐿 ↑ko 𝐾) ×t 𝐾) Cn 𝐿)) |
63 | 20, 25, 62 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧)) ∈ (((𝐿 ↑ko 𝐾) ×t 𝐾) Cn 𝐿)) |
64 | 59, 63 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ 𝑌 ↦ (𝑓‘𝑧)) ∈ (((𝐿 ↑ko 𝐾) ×t 𝐾) Cn 𝐿)) |
65 | | fveq1 6755 |
. . . 4
⊢ (𝑓 = ((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤) → (𝑓‘𝑧) = (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑧)) |
66 | | fveq2 6756 |
. . . 4
⊢ (𝑧 = 𝑘 → (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑧) = (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑘)) |
67 | 65, 66 | sylan9eq 2799 |
. . 3
⊢ ((𝑓 = ((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤) ∧ 𝑧 = 𝑘) → (𝑓‘𝑧) = (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑘)) |
68 | 19, 39, 53, 54, 28, 39, 64, 67 | cnmpt22 22733 |
. 2
⊢ (𝜑 → (𝑤 ∈ 𝑋, 𝑘 ∈ 𝑌 ↦ (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑘)) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
69 | 51, 68 | eqeltrrd 2840 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |