| Step | Hyp | Ref
| Expression |
| 1 | | nffvmpt1 6917 |
. . . . 5
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤) |
| 2 | | nfcv 2905 |
. . . . 5
⊢
Ⅎ𝑥𝑘 |
| 3 | 1, 2 | nffv 6916 |
. . . 4
⊢
Ⅎ𝑥(((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑘) |
| 4 | | nfcv 2905 |
. . . . . . 7
⊢
Ⅎ𝑦𝑋 |
| 5 | | nfmpt1 5250 |
. . . . . . 7
⊢
Ⅎ𝑦(𝑦 ∈ 𝑌 ↦ 𝐴) |
| 6 | 4, 5 | nfmpt 5249 |
. . . . . 6
⊢
Ⅎ𝑦(𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) |
| 7 | | nfcv 2905 |
. . . . . 6
⊢
Ⅎ𝑦𝑤 |
| 8 | 6, 7 | nffv 6916 |
. . . . 5
⊢
Ⅎ𝑦((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤) |
| 9 | | nfcv 2905 |
. . . . 5
⊢
Ⅎ𝑦𝑘 |
| 10 | 8, 9 | nffv 6916 |
. . . 4
⊢
Ⅎ𝑦(((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑘) |
| 11 | | nfcv 2905 |
. . . 4
⊢
Ⅎ𝑤(((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑦) |
| 12 | | nfcv 2905 |
. . . 4
⊢
Ⅎ𝑘(((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑦) |
| 13 | | fveq2 6906 |
. . . . . 6
⊢ (𝑤 = 𝑥 → ((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤) = ((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)) |
| 14 | 13 | fveq1d 6908 |
. . . . 5
⊢ (𝑤 = 𝑥 → (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑘) = (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑘)) |
| 15 | | fveq2 6906 |
. . . . 5
⊢ (𝑘 = 𝑦 → (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑘) = (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑦)) |
| 16 | 14, 15 | sylan9eq 2797 |
. . . 4
⊢ ((𝑤 = 𝑥 ∧ 𝑘 = 𝑦) → (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑘) = (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑦)) |
| 17 | 3, 10, 11, 12, 16 | cbvmpo 7527 |
. . 3
⊢ (𝑤 ∈ 𝑋, 𝑘 ∈ 𝑌 ↦ (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑘)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑦)) |
| 18 | | simplr 769 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝑥 ∈ 𝑋) |
| 19 | | cnmptk1p.j |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 20 | | cnmptk1p.n |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally
Comp) |
| 21 | | nllytop 23481 |
. . . . . . . . . . . . 13
⊢ (𝐾 ∈ 𝑛-Locally Comp
→ 𝐾 ∈
Top) |
| 22 | 20, 21 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐾 ∈ Top) |
| 23 | | cnmptk1p.l |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
| 24 | | topontop 22919 |
. . . . . . . . . . . . 13
⊢ (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top) |
| 25 | 23, 24 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐿 ∈ Top) |
| 26 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝐿 ↑ko 𝐾) = (𝐿 ↑ko 𝐾) |
| 27 | 26 | xkotopon 23608 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
| 28 | 22, 25, 27 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
| 29 | | cnmptk2.a |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) |
| 30 | | cnf2 23257 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) |
| 31 | 19, 28, 29, 30 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) |
| 32 | 31 | fvmptelcdm 7133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
| 33 | 32 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
| 34 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) |
| 35 | 34 | fvmpt2 7027 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑋 ∧ (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) → ((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥) = (𝑦 ∈ 𝑌 ↦ 𝐴)) |
| 36 | 18, 33, 35 | syl2anc 584 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → ((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥) = (𝑦 ∈ 𝑌 ↦ 𝐴)) |
| 37 | 36 | fveq1d 6908 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑦) = ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝑦)) |
| 38 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝑦 ∈ 𝑌) |
| 39 | | cnmptk1p.k |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| 40 | 39 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
| 41 | 23 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐿 ∈ (TopOn‘𝑍)) |
| 42 | | cnf2 23257 |
. . . . . . . . 9
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) |
| 43 | 40, 41, 32, 42 | syl3anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) |
| 44 | 43 | fvmptelcdm 7133 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → 𝐴 ∈ 𝑍) |
| 45 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑦 ∈ 𝑌 ↦ 𝐴) |
| 46 | 45 | fvmpt2 7027 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝑌 ∧ 𝐴 ∈ 𝑍) → ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝑦) = 𝐴) |
| 47 | 38, 44, 46 | syl2anc 584 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝑦) = 𝐴) |
| 48 | 37, 47 | eqtrd 2777 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑌) → (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑦) = 𝐴) |
| 49 | 48 | 3impa 1110 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑌) → (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑦) = 𝐴) |
| 50 | 49 | mpoeq3dva 7510 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑥)‘𝑦)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)) |
| 51 | 17, 50 | eqtrid 2789 |
. 2
⊢ (𝜑 → (𝑤 ∈ 𝑋, 𝑘 ∈ 𝑌 ↦ (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑘)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴)) |
| 52 | 19, 39 | cnmpt1st 23676 |
. . . 4
⊢ (𝜑 → (𝑤 ∈ 𝑋, 𝑘 ∈ 𝑌 ↦ 𝑤) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
| 53 | 19, 39, 52, 29 | cnmpt21f 23680 |
. . 3
⊢ (𝜑 → (𝑤 ∈ 𝑋, 𝑘 ∈ 𝑌 ↦ ((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)) ∈ ((𝐽 ×t 𝐾) Cn (𝐿 ↑ko 𝐾))) |
| 54 | 19, 39 | cnmpt2nd 23677 |
. . 3
⊢ (𝜑 → (𝑤 ∈ 𝑋, 𝑘 ∈ 𝑌 ↦ 𝑘) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
| 55 | | eqid 2737 |
. . . . 5
⊢ (𝐾 Cn 𝐿) = (𝐾 Cn 𝐿) |
| 56 | | toponuni 22920 |
. . . . . 6
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
| 57 | 39, 56 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑌 = ∪ 𝐾) |
| 58 | | mpoeq12 7506 |
. . . . 5
⊢ (((𝐾 Cn 𝐿) = (𝐾 Cn 𝐿) ∧ 𝑌 = ∪ 𝐾) → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ 𝑌 ↦ (𝑓‘𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧))) |
| 59 | 55, 57, 58 | sylancr 587 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ 𝑌 ↦ (𝑓‘𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧))) |
| 60 | | eqid 2737 |
. . . . . 6
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 61 | | eqid 2737 |
. . . . . 6
⊢ (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧)) |
| 62 | 60, 61 | xkofvcn 23692 |
. . . . 5
⊢ ((𝐾 ∈ 𝑛-Locally Comp
∧ 𝐿 ∈ Top) →
(𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧)) ∈ (((𝐿 ↑ko 𝐾) ×t 𝐾) Cn 𝐿)) |
| 63 | 20, 25, 62 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧)) ∈ (((𝐿 ↑ko 𝐾) ×t 𝐾) Cn 𝐿)) |
| 64 | 59, 63 | eqeltrd 2841 |
. . 3
⊢ (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ 𝑌 ↦ (𝑓‘𝑧)) ∈ (((𝐿 ↑ko 𝐾) ×t 𝐾) Cn 𝐿)) |
| 65 | | fveq1 6905 |
. . . 4
⊢ (𝑓 = ((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤) → (𝑓‘𝑧) = (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑧)) |
| 66 | | fveq2 6906 |
. . . 4
⊢ (𝑧 = 𝑘 → (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑧) = (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑘)) |
| 67 | 65, 66 | sylan9eq 2797 |
. . 3
⊢ ((𝑓 = ((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤) ∧ 𝑧 = 𝑘) → (𝑓‘𝑧) = (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑘)) |
| 68 | 19, 39, 53, 54, 28, 39, 64, 67 | cnmpt22 23682 |
. 2
⊢ (𝜑 → (𝑤 ∈ 𝑋, 𝑘 ∈ 𝑌 ↦ (((𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴))‘𝑤)‘𝑘)) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| 69 | 51, 68 | eqeltrrd 2842 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |