MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptk2 Structured version   Visualization version   GIF version

Theorem cnmptk2 23715
Description: The uncurrying of a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptk1p.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptk1p.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptk1p.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmptk1p.n (𝜑𝐾 ∈ 𝑛-Locally Comp)
cnmptk2.a (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
Assertion
Ref Expression
cnmptk2 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝐿   𝑥,𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦   𝑦,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐽(𝑦)   𝐾(𝑦)   𝐿(𝑦)   𝑍(𝑥)

Proof of Theorem cnmptk2
Dummy variables 𝑓 𝑘 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nffvmpt1 6931 . . . . 5 𝑥((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)
2 nfcv 2908 . . . . 5 𝑥𝑘
31, 2nffv 6930 . . . 4 𝑥(((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘)
4 nfcv 2908 . . . . . . 7 𝑦𝑋
5 nfmpt1 5274 . . . . . . 7 𝑦(𝑦𝑌𝐴)
64, 5nfmpt 5273 . . . . . 6 𝑦(𝑥𝑋 ↦ (𝑦𝑌𝐴))
7 nfcv 2908 . . . . . 6 𝑦𝑤
86, 7nffv 6930 . . . . 5 𝑦((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)
9 nfcv 2908 . . . . 5 𝑦𝑘
108, 9nffv 6930 . . . 4 𝑦(((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘)
11 nfcv 2908 . . . 4 𝑤(((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦)
12 nfcv 2908 . . . 4 𝑘(((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦)
13 fveq2 6920 . . . . . 6 (𝑤 = 𝑥 → ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥))
1413fveq1d 6922 . . . . 5 (𝑤 = 𝑥 → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘) = (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑘))
15 fveq2 6920 . . . . 5 (𝑘 = 𝑦 → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑘) = (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦))
1614, 15sylan9eq 2800 . . . 4 ((𝑤 = 𝑥𝑘 = 𝑦) → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘) = (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦))
173, 10, 11, 12, 16cbvmpo 7544 . . 3 (𝑤𝑋, 𝑘𝑌 ↦ (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘)) = (𝑥𝑋, 𝑦𝑌 ↦ (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦))
18 simplr 768 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝑥𝑋)
19 cnmptk1p.j . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
20 cnmptk1p.n . . . . . . . . . . . . 13 (𝜑𝐾 ∈ 𝑛-Locally Comp)
21 nllytop 23502 . . . . . . . . . . . . 13 (𝐾 ∈ 𝑛-Locally Comp → 𝐾 ∈ Top)
2220, 21syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Top)
23 cnmptk1p.l . . . . . . . . . . . . 13 (𝜑𝐿 ∈ (TopOn‘𝑍))
24 topontop 22940 . . . . . . . . . . . . 13 (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top)
2523, 24syl 17 . . . . . . . . . . . 12 (𝜑𝐿 ∈ Top)
26 eqid 2740 . . . . . . . . . . . . 13 (𝐿ko 𝐾) = (𝐿ko 𝐾)
2726xkotopon 23629 . . . . . . . . . . . 12 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
2822, 25, 27syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
29 cnmptk2.a . . . . . . . . . . 11 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
30 cnf2 23278 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾))) → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
3119, 28, 29, 30syl3anc 1371 . . . . . . . . . 10 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
3231fvmptelcdm 7147 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
3332adantr 480 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
34 eqid 2740 . . . . . . . . 9 (𝑥𝑋 ↦ (𝑦𝑌𝐴)) = (𝑥𝑋 ↦ (𝑦𝑌𝐴))
3534fvmpt2 7040 . . . . . . . 8 ((𝑥𝑋 ∧ (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿)) → ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥) = (𝑦𝑌𝐴))
3618, 33, 35syl2anc 583 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥) = (𝑦𝑌𝐴))
3736fveq1d 6922 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦) = ((𝑦𝑌𝐴)‘𝑦))
38 simpr 484 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝑦𝑌)
39 cnmptk1p.k . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝑌))
4039adantr 480 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
4123adantr 480 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐿 ∈ (TopOn‘𝑍))
42 cnf2 23278 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐴):𝑌𝑍)
4340, 41, 32, 42syl3anc 1371 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴):𝑌𝑍)
4443fvmptelcdm 7147 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐴𝑍)
45 eqid 2740 . . . . . . . 8 (𝑦𝑌𝐴) = (𝑦𝑌𝐴)
4645fvmpt2 7040 . . . . . . 7 ((𝑦𝑌𝐴𝑍) → ((𝑦𝑌𝐴)‘𝑦) = 𝐴)
4738, 44, 46syl2anc 583 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ((𝑦𝑌𝐴)‘𝑦) = 𝐴)
4837, 47eqtrd 2780 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦) = 𝐴)
49483impa 1110 . . . 4 ((𝜑𝑥𝑋𝑦𝑌) → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦) = 𝐴)
5049mpoeq3dva 7527 . . 3 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦)) = (𝑥𝑋, 𝑦𝑌𝐴))
5117, 50eqtrid 2792 . 2 (𝜑 → (𝑤𝑋, 𝑘𝑌 ↦ (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘)) = (𝑥𝑋, 𝑦𝑌𝐴))
5219, 39cnmpt1st 23697 . . . 4 (𝜑 → (𝑤𝑋, 𝑘𝑌𝑤) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
5319, 39, 52, 29cnmpt21f 23701 . . 3 (𝜑 → (𝑤𝑋, 𝑘𝑌 ↦ ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)) ∈ ((𝐽 ×t 𝐾) Cn (𝐿ko 𝐾)))
5419, 39cnmpt2nd 23698 . . 3 (𝜑 → (𝑤𝑋, 𝑘𝑌𝑘) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
55 eqid 2740 . . . . 5 (𝐾 Cn 𝐿) = (𝐾 Cn 𝐿)
56 toponuni 22941 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
5739, 56syl 17 . . . . 5 (𝜑𝑌 = 𝐾)
58 mpoeq12 7523 . . . . 5 (((𝐾 Cn 𝐿) = (𝐾 Cn 𝐿) ∧ 𝑌 = 𝐾) → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧𝑌 ↦ (𝑓𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)))
5955, 57, 58sylancr 586 . . . 4 (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧𝑌 ↦ (𝑓𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)))
60 eqid 2740 . . . . . 6 𝐾 = 𝐾
61 eqid 2740 . . . . . 6 (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧))
6260, 61xkofvcn 23713 . . . . 5 ((𝐾 ∈ 𝑛-Locally Comp ∧ 𝐿 ∈ Top) → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)) ∈ (((𝐿ko 𝐾) ×t 𝐾) Cn 𝐿))
6320, 25, 62syl2anc 583 . . . 4 (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)) ∈ (((𝐿ko 𝐾) ×t 𝐾) Cn 𝐿))
6459, 63eqeltrd 2844 . . 3 (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧𝑌 ↦ (𝑓𝑧)) ∈ (((𝐿ko 𝐾) ×t 𝐾) Cn 𝐿))
65 fveq1 6919 . . . 4 (𝑓 = ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤) → (𝑓𝑧) = (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑧))
66 fveq2 6920 . . . 4 (𝑧 = 𝑘 → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑧) = (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘))
6765, 66sylan9eq 2800 . . 3 ((𝑓 = ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤) ∧ 𝑧 = 𝑘) → (𝑓𝑧) = (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘))
6819, 39, 53, 54, 28, 39, 64, 67cnmpt22 23703 . 2 (𝜑 → (𝑤𝑋, 𝑘𝑌 ↦ (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘)) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
6951, 68eqeltrrd 2845 1 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108   cuni 4931  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  Topctop 22920  TopOnctopon 22937   Cn ccn 23253  Compccmp 23415  𝑛-Locally cnlly 23494   ×t ctx 23589  ko cxko 23590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-1o 8522  df-2o 8523  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-fin 9007  df-fi 9480  df-rest 17482  df-topgen 17503  df-pt 17504  df-top 22921  df-topon 22938  df-bases 22974  df-ntr 23049  df-nei 23127  df-cn 23256  df-cnp 23257  df-cmp 23416  df-nlly 23496  df-tx 23591  df-xko 23592
This theorem is referenced by:  xkocnv  23843
  Copyright terms: Public domain W3C validator