MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptk2 Structured version   Visualization version   GIF version

Theorem cnmptk2 23037
Description: The uncurrying of a curried function is continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptk1p.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptk1p.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptk1p.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmptk1p.n (𝜑𝐾 ∈ 𝑛-Locally Comp)
cnmptk2.a (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
Assertion
Ref Expression
cnmptk2 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝐿   𝑥,𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦   𝑦,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐽(𝑦)   𝐾(𝑦)   𝐿(𝑦)   𝑍(𝑥)

Proof of Theorem cnmptk2
Dummy variables 𝑓 𝑘 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nffvmpt1 6853 . . . . 5 𝑥((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)
2 nfcv 2907 . . . . 5 𝑥𝑘
31, 2nffv 6852 . . . 4 𝑥(((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘)
4 nfcv 2907 . . . . . . 7 𝑦𝑋
5 nfmpt1 5213 . . . . . . 7 𝑦(𝑦𝑌𝐴)
64, 5nfmpt 5212 . . . . . 6 𝑦(𝑥𝑋 ↦ (𝑦𝑌𝐴))
7 nfcv 2907 . . . . . 6 𝑦𝑤
86, 7nffv 6852 . . . . 5 𝑦((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)
9 nfcv 2907 . . . . 5 𝑦𝑘
108, 9nffv 6852 . . . 4 𝑦(((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘)
11 nfcv 2907 . . . 4 𝑤(((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦)
12 nfcv 2907 . . . 4 𝑘(((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦)
13 fveq2 6842 . . . . . 6 (𝑤 = 𝑥 → ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤) = ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥))
1413fveq1d 6844 . . . . 5 (𝑤 = 𝑥 → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘) = (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑘))
15 fveq2 6842 . . . . 5 (𝑘 = 𝑦 → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑘) = (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦))
1614, 15sylan9eq 2796 . . . 4 ((𝑤 = 𝑥𝑘 = 𝑦) → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘) = (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦))
173, 10, 11, 12, 16cbvmpo 7451 . . 3 (𝑤𝑋, 𝑘𝑌 ↦ (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘)) = (𝑥𝑋, 𝑦𝑌 ↦ (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦))
18 simplr 767 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝑥𝑋)
19 cnmptk1p.j . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
20 cnmptk1p.n . . . . . . . . . . . . 13 (𝜑𝐾 ∈ 𝑛-Locally Comp)
21 nllytop 22824 . . . . . . . . . . . . 13 (𝐾 ∈ 𝑛-Locally Comp → 𝐾 ∈ Top)
2220, 21syl 17 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Top)
23 cnmptk1p.l . . . . . . . . . . . . 13 (𝜑𝐿 ∈ (TopOn‘𝑍))
24 topontop 22262 . . . . . . . . . . . . 13 (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top)
2523, 24syl 17 . . . . . . . . . . . 12 (𝜑𝐿 ∈ Top)
26 eqid 2736 . . . . . . . . . . . . 13 (𝐿ko 𝐾) = (𝐿ko 𝐾)
2726xkotopon 22951 . . . . . . . . . . . 12 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
2822, 25, 27syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
29 cnmptk2.a . . . . . . . . . . 11 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
30 cnf2 22600 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾))) → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
3119, 28, 29, 30syl3anc 1371 . . . . . . . . . 10 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
3231fvmptelcdm 7061 . . . . . . . . 9 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
3332adantr 481 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
34 eqid 2736 . . . . . . . . 9 (𝑥𝑋 ↦ (𝑦𝑌𝐴)) = (𝑥𝑋 ↦ (𝑦𝑌𝐴))
3534fvmpt2 6959 . . . . . . . 8 ((𝑥𝑋 ∧ (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿)) → ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥) = (𝑦𝑌𝐴))
3618, 33, 35syl2anc 584 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥) = (𝑦𝑌𝐴))
3736fveq1d 6844 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦) = ((𝑦𝑌𝐴)‘𝑦))
38 simpr 485 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝑦𝑌)
39 cnmptk1p.k . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝑌))
4039adantr 481 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
4123adantr 481 . . . . . . . . 9 ((𝜑𝑥𝑋) → 𝐿 ∈ (TopOn‘𝑍))
42 cnf2 22600 . . . . . . . . 9 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐴):𝑌𝑍)
4340, 41, 32, 42syl3anc 1371 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴):𝑌𝑍)
4443fvmptelcdm 7061 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → 𝐴𝑍)
45 eqid 2736 . . . . . . . 8 (𝑦𝑌𝐴) = (𝑦𝑌𝐴)
4645fvmpt2 6959 . . . . . . 7 ((𝑦𝑌𝐴𝑍) → ((𝑦𝑌𝐴)‘𝑦) = 𝐴)
4738, 44, 46syl2anc 584 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ((𝑦𝑌𝐴)‘𝑦) = 𝐴)
4837, 47eqtrd 2776 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦) = 𝐴)
49483impa 1110 . . . 4 ((𝜑𝑥𝑋𝑦𝑌) → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦) = 𝐴)
5049mpoeq3dva 7434 . . 3 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑥)‘𝑦)) = (𝑥𝑋, 𝑦𝑌𝐴))
5117, 50eqtrid 2788 . 2 (𝜑 → (𝑤𝑋, 𝑘𝑌 ↦ (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘)) = (𝑥𝑋, 𝑦𝑌𝐴))
5219, 39cnmpt1st 23019 . . . 4 (𝜑 → (𝑤𝑋, 𝑘𝑌𝑤) ∈ ((𝐽 ×t 𝐾) Cn 𝐽))
5319, 39, 52, 29cnmpt21f 23023 . . 3 (𝜑 → (𝑤𝑋, 𝑘𝑌 ↦ ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)) ∈ ((𝐽 ×t 𝐾) Cn (𝐿ko 𝐾)))
5419, 39cnmpt2nd 23020 . . 3 (𝜑 → (𝑤𝑋, 𝑘𝑌𝑘) ∈ ((𝐽 ×t 𝐾) Cn 𝐾))
55 eqid 2736 . . . . 5 (𝐾 Cn 𝐿) = (𝐾 Cn 𝐿)
56 toponuni 22263 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
5739, 56syl 17 . . . . 5 (𝜑𝑌 = 𝐾)
58 mpoeq12 7430 . . . . 5 (((𝐾 Cn 𝐿) = (𝐾 Cn 𝐿) ∧ 𝑌 = 𝐾) → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧𝑌 ↦ (𝑓𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)))
5955, 57, 58sylancr 587 . . . 4 (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧𝑌 ↦ (𝑓𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)))
60 eqid 2736 . . . . . 6 𝐾 = 𝐾
61 eqid 2736 . . . . . 6 (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧))
6260, 61xkofvcn 23035 . . . . 5 ((𝐾 ∈ 𝑛-Locally Comp ∧ 𝐿 ∈ Top) → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)) ∈ (((𝐿ko 𝐾) ×t 𝐾) Cn 𝐿))
6320, 25, 62syl2anc 584 . . . 4 (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)) ∈ (((𝐿ko 𝐾) ×t 𝐾) Cn 𝐿))
6459, 63eqeltrd 2838 . . 3 (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧𝑌 ↦ (𝑓𝑧)) ∈ (((𝐿ko 𝐾) ×t 𝐾) Cn 𝐿))
65 fveq1 6841 . . . 4 (𝑓 = ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤) → (𝑓𝑧) = (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑧))
66 fveq2 6842 . . . 4 (𝑧 = 𝑘 → (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑧) = (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘))
6765, 66sylan9eq 2796 . . 3 ((𝑓 = ((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤) ∧ 𝑧 = 𝑘) → (𝑓𝑧) = (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘))
6819, 39, 53, 54, 28, 39, 64, 67cnmpt22 23025 . 2 (𝜑 → (𝑤𝑋, 𝑘𝑌 ↦ (((𝑥𝑋 ↦ (𝑦𝑌𝐴))‘𝑤)‘𝑘)) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
6951, 68eqeltrrd 2839 1 (𝜑 → (𝑥𝑋, 𝑦𝑌𝐴) ∈ ((𝐽 ×t 𝐾) Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106   cuni 4865  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  Topctop 22242  TopOnctopon 22259   Cn ccn 22575  Compccmp 22737  𝑛-Locally cnlly 22816   ×t ctx 22911  ko cxko 22912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-fin 8887  df-fi 9347  df-rest 17304  df-topgen 17325  df-pt 17326  df-top 22243  df-topon 22260  df-bases 22296  df-ntr 22371  df-nei 22449  df-cn 22578  df-cnp 22579  df-cmp 22738  df-nlly 22818  df-tx 22913  df-xko 22914
This theorem is referenced by:  xkocnv  23165
  Copyright terms: Public domain W3C validator