MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrplusgpropd Structured version   Visualization version   GIF version

Theorem psrplusgpropd 22171
Description: Property deduction for power series addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
psrplusgpropd.b1 (𝜑𝐵 = (Base‘𝑅))
psrplusgpropd.b2 (𝜑𝐵 = (Base‘𝑆))
psrplusgpropd.p ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑆)𝑦))
Assertion
Ref Expression
psrplusgpropd (𝜑 → (+g‘(𝐼 mPwSer 𝑅)) = (+g‘(𝐼 mPwSer 𝑆)))
Distinct variable groups:   𝜑,𝑦,𝑥   𝑥,𝐵,𝑦   𝑦,𝑅,𝑥   𝑦,𝑆,𝑥
Allowed substitution hints:   𝐼(𝑥,𝑦)

Proof of Theorem psrplusgpropd
Dummy variables 𝑎 𝑏 𝑑 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → 𝜑)
2 eqid 2735 . . . . . . . . . . 11 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
3 eqid 2735 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2735 . . . . . . . . . . 11 {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} = {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}
5 eqid 2735 . . . . . . . . . . 11 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
6 simp2 1137 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → 𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)))
72, 3, 4, 5, 6psrelbas 21894 . . . . . . . . . 10 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → 𝑎:{𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
87ffvelcdmda 7074 . . . . . . . . 9 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → (𝑎𝑑) ∈ (Base‘𝑅))
9 psrplusgpropd.b1 . . . . . . . . . 10 (𝜑𝐵 = (Base‘𝑅))
101, 9syl 17 . . . . . . . . 9 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → 𝐵 = (Base‘𝑅))
118, 10eleqtrrd 2837 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → (𝑎𝑑) ∈ 𝐵)
12 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)))
132, 3, 4, 5, 12psrelbas 21894 . . . . . . . . . 10 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → 𝑏:{𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
1413ffvelcdmda 7074 . . . . . . . . 9 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → (𝑏𝑑) ∈ (Base‘𝑅))
1514, 10eleqtrrd 2837 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → (𝑏𝑑) ∈ 𝐵)
16 psrplusgpropd.p . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑆)𝑦))
1716oveqrspc2v 7432 . . . . . . . 8 ((𝜑 ∧ ((𝑎𝑑) ∈ 𝐵 ∧ (𝑏𝑑) ∈ 𝐵)) → ((𝑎𝑑)(+g𝑅)(𝑏𝑑)) = ((𝑎𝑑)(+g𝑆)(𝑏𝑑)))
181, 11, 15, 17syl12anc 836 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → ((𝑎𝑑)(+g𝑅)(𝑏𝑑)) = ((𝑎𝑑)(+g𝑆)(𝑏𝑑)))
1918mpteq2dva 5214 . . . . . 6 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → (𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ↦ ((𝑎𝑑)(+g𝑅)(𝑏𝑑))) = (𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ↦ ((𝑎𝑑)(+g𝑆)(𝑏𝑑))))
207ffnd 6707 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → 𝑎 Fn {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin})
2113ffnd 6707 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → 𝑏 Fn {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin})
22 ovex 7438 . . . . . . . . 9 (ℕ0m 𝐼) ∈ V
2322rabex 5309 . . . . . . . 8 {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ∈ V
2423a1i 11 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ∈ V)
25 inidm 4202 . . . . . . 7 ({𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ∩ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) = {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}
26 eqidd 2736 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → (𝑎𝑑) = (𝑎𝑑))
27 eqidd 2736 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → (𝑏𝑑) = (𝑏𝑑))
2820, 21, 24, 24, 25, 26, 27offval 7680 . . . . . 6 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → (𝑎f (+g𝑅)𝑏) = (𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ↦ ((𝑎𝑑)(+g𝑅)(𝑏𝑑))))
2920, 21, 24, 24, 25, 26, 27offval 7680 . . . . . 6 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → (𝑎f (+g𝑆)𝑏) = (𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ↦ ((𝑎𝑑)(+g𝑆)(𝑏𝑑))))
3019, 28, 293eqtr4d 2780 . . . . 5 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → (𝑎f (+g𝑅)𝑏) = (𝑎f (+g𝑆)𝑏))
3130mpoeq3dva 7484 . . . 4 (𝜑 → (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)) ↦ (𝑎f (+g𝑅)𝑏)) = (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)) ↦ (𝑎f (+g𝑆)𝑏)))
32 psrplusgpropd.b2 . . . . . . 7 (𝜑𝐵 = (Base‘𝑆))
339, 32eqtr3d 2772 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘𝑆))
3433psrbaspropd 22170 . . . . 5 (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
35 mpoeq12 7480 . . . . 5 (((Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)) ∧ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆))) → (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)) ↦ (𝑎f (+g𝑆)𝑏)) = (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑆)) ↦ (𝑎f (+g𝑆)𝑏)))
3634, 34, 35syl2anc 584 . . . 4 (𝜑 → (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)) ↦ (𝑎f (+g𝑆)𝑏)) = (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑆)) ↦ (𝑎f (+g𝑆)𝑏)))
3731, 36eqtrd 2770 . . 3 (𝜑 → (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)) ↦ (𝑎f (+g𝑅)𝑏)) = (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑆)) ↦ (𝑎f (+g𝑆)𝑏)))
38 ofmres 7983 . . 3 ( ∘f (+g𝑅) ↾ ((Base‘(𝐼 mPwSer 𝑅)) × (Base‘(𝐼 mPwSer 𝑅)))) = (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)) ↦ (𝑎f (+g𝑅)𝑏))
39 ofmres 7983 . . 3 ( ∘f (+g𝑆) ↾ ((Base‘(𝐼 mPwSer 𝑆)) × (Base‘(𝐼 mPwSer 𝑆)))) = (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑆)) ↦ (𝑎f (+g𝑆)𝑏))
4037, 38, 393eqtr4g 2795 . 2 (𝜑 → ( ∘f (+g𝑅) ↾ ((Base‘(𝐼 mPwSer 𝑅)) × (Base‘(𝐼 mPwSer 𝑅)))) = ( ∘f (+g𝑆) ↾ ((Base‘(𝐼 mPwSer 𝑆)) × (Base‘(𝐼 mPwSer 𝑆)))))
41 eqid 2735 . . 3 (+g𝑅) = (+g𝑅)
42 eqid 2735 . . 3 (+g‘(𝐼 mPwSer 𝑅)) = (+g‘(𝐼 mPwSer 𝑅))
432, 5, 41, 42psrplusg 21896 . 2 (+g‘(𝐼 mPwSer 𝑅)) = ( ∘f (+g𝑅) ↾ ((Base‘(𝐼 mPwSer 𝑅)) × (Base‘(𝐼 mPwSer 𝑅))))
44 eqid 2735 . . 3 (𝐼 mPwSer 𝑆) = (𝐼 mPwSer 𝑆)
45 eqid 2735 . . 3 (Base‘(𝐼 mPwSer 𝑆)) = (Base‘(𝐼 mPwSer 𝑆))
46 eqid 2735 . . 3 (+g𝑆) = (+g𝑆)
47 eqid 2735 . . 3 (+g‘(𝐼 mPwSer 𝑆)) = (+g‘(𝐼 mPwSer 𝑆))
4844, 45, 46, 47psrplusg 21896 . 2 (+g‘(𝐼 mPwSer 𝑆)) = ( ∘f (+g𝑆) ↾ ((Base‘(𝐼 mPwSer 𝑆)) × (Base‘(𝐼 mPwSer 𝑆))))
4940, 43, 483eqtr4g 2795 1 (𝜑 → (+g‘(𝐼 mPwSer 𝑅)) = (+g‘(𝐼 mPwSer 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  cmpt 5201   × cxp 5652  ccnv 5653  cres 5656  cima 5657  cfv 6531  (class class class)co 7405  cmpo 7407  f cof 7669  m cmap 8840  Fincfn 8959  cn 12240  0cn0 12501  Basecbs 17228  +gcplusg 17271   mPwSer cmps 21864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-tset 17290  df-psr 21869
This theorem is referenced by:  ply1plusgpropd  22179
  Copyright terms: Public domain W3C validator