MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrplusgpropd Structured version   Visualization version   GIF version

Theorem psrplusgpropd 22120
Description: Property deduction for power series addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
psrplusgpropd.b1 (𝜑𝐵 = (Base‘𝑅))
psrplusgpropd.b2 (𝜑𝐵 = (Base‘𝑆))
psrplusgpropd.p ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑆)𝑦))
Assertion
Ref Expression
psrplusgpropd (𝜑 → (+g‘(𝐼 mPwSer 𝑅)) = (+g‘(𝐼 mPwSer 𝑆)))
Distinct variable groups:   𝜑,𝑦,𝑥   𝑥,𝐵,𝑦   𝑦,𝑅,𝑥   𝑦,𝑆,𝑥
Allowed substitution hints:   𝐼(𝑥,𝑦)

Proof of Theorem psrplusgpropd
Dummy variables 𝑎 𝑏 𝑑 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → 𝜑)
2 eqid 2729 . . . . . . . . . . 11 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
3 eqid 2729 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2729 . . . . . . . . . . 11 {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} = {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}
5 eqid 2729 . . . . . . . . . . 11 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
6 simp2 1137 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → 𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)))
72, 3, 4, 5, 6psrelbas 21843 . . . . . . . . . 10 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → 𝑎:{𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
87ffvelcdmda 7056 . . . . . . . . 9 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → (𝑎𝑑) ∈ (Base‘𝑅))
9 psrplusgpropd.b1 . . . . . . . . . 10 (𝜑𝐵 = (Base‘𝑅))
101, 9syl 17 . . . . . . . . 9 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → 𝐵 = (Base‘𝑅))
118, 10eleqtrrd 2831 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → (𝑎𝑑) ∈ 𝐵)
12 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)))
132, 3, 4, 5, 12psrelbas 21843 . . . . . . . . . 10 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → 𝑏:{𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
1413ffvelcdmda 7056 . . . . . . . . 9 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → (𝑏𝑑) ∈ (Base‘𝑅))
1514, 10eleqtrrd 2831 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → (𝑏𝑑) ∈ 𝐵)
16 psrplusgpropd.p . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑆)𝑦))
1716oveqrspc2v 7414 . . . . . . . 8 ((𝜑 ∧ ((𝑎𝑑) ∈ 𝐵 ∧ (𝑏𝑑) ∈ 𝐵)) → ((𝑎𝑑)(+g𝑅)(𝑏𝑑)) = ((𝑎𝑑)(+g𝑆)(𝑏𝑑)))
181, 11, 15, 17syl12anc 836 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → ((𝑎𝑑)(+g𝑅)(𝑏𝑑)) = ((𝑎𝑑)(+g𝑆)(𝑏𝑑)))
1918mpteq2dva 5200 . . . . . 6 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → (𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ↦ ((𝑎𝑑)(+g𝑅)(𝑏𝑑))) = (𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ↦ ((𝑎𝑑)(+g𝑆)(𝑏𝑑))))
207ffnd 6689 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → 𝑎 Fn {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin})
2113ffnd 6689 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → 𝑏 Fn {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin})
22 ovex 7420 . . . . . . . . 9 (ℕ0m 𝐼) ∈ V
2322rabex 5294 . . . . . . . 8 {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ∈ V
2423a1i 11 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ∈ V)
25 inidm 4190 . . . . . . 7 ({𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ∩ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) = {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}
26 eqidd 2730 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → (𝑎𝑑) = (𝑎𝑑))
27 eqidd 2730 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → (𝑏𝑑) = (𝑏𝑑))
2820, 21, 24, 24, 25, 26, 27offval 7662 . . . . . 6 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → (𝑎f (+g𝑅)𝑏) = (𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ↦ ((𝑎𝑑)(+g𝑅)(𝑏𝑑))))
2920, 21, 24, 24, 25, 26, 27offval 7662 . . . . . 6 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → (𝑎f (+g𝑆)𝑏) = (𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ↦ ((𝑎𝑑)(+g𝑆)(𝑏𝑑))))
3019, 28, 293eqtr4d 2774 . . . . 5 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → (𝑎f (+g𝑅)𝑏) = (𝑎f (+g𝑆)𝑏))
3130mpoeq3dva 7466 . . . 4 (𝜑 → (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)) ↦ (𝑎f (+g𝑅)𝑏)) = (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)) ↦ (𝑎f (+g𝑆)𝑏)))
32 psrplusgpropd.b2 . . . . . . 7 (𝜑𝐵 = (Base‘𝑆))
339, 32eqtr3d 2766 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘𝑆))
3433psrbaspropd 22119 . . . . 5 (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
35 mpoeq12 7462 . . . . 5 (((Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)) ∧ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆))) → (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)) ↦ (𝑎f (+g𝑆)𝑏)) = (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑆)) ↦ (𝑎f (+g𝑆)𝑏)))
3634, 34, 35syl2anc 584 . . . 4 (𝜑 → (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)) ↦ (𝑎f (+g𝑆)𝑏)) = (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑆)) ↦ (𝑎f (+g𝑆)𝑏)))
3731, 36eqtrd 2764 . . 3 (𝜑 → (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)) ↦ (𝑎f (+g𝑅)𝑏)) = (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑆)) ↦ (𝑎f (+g𝑆)𝑏)))
38 ofmres 7963 . . 3 ( ∘f (+g𝑅) ↾ ((Base‘(𝐼 mPwSer 𝑅)) × (Base‘(𝐼 mPwSer 𝑅)))) = (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)) ↦ (𝑎f (+g𝑅)𝑏))
39 ofmres 7963 . . 3 ( ∘f (+g𝑆) ↾ ((Base‘(𝐼 mPwSer 𝑆)) × (Base‘(𝐼 mPwSer 𝑆)))) = (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑆)) ↦ (𝑎f (+g𝑆)𝑏))
4037, 38, 393eqtr4g 2789 . 2 (𝜑 → ( ∘f (+g𝑅) ↾ ((Base‘(𝐼 mPwSer 𝑅)) × (Base‘(𝐼 mPwSer 𝑅)))) = ( ∘f (+g𝑆) ↾ ((Base‘(𝐼 mPwSer 𝑆)) × (Base‘(𝐼 mPwSer 𝑆)))))
41 eqid 2729 . . 3 (+g𝑅) = (+g𝑅)
42 eqid 2729 . . 3 (+g‘(𝐼 mPwSer 𝑅)) = (+g‘(𝐼 mPwSer 𝑅))
432, 5, 41, 42psrplusg 21845 . 2 (+g‘(𝐼 mPwSer 𝑅)) = ( ∘f (+g𝑅) ↾ ((Base‘(𝐼 mPwSer 𝑅)) × (Base‘(𝐼 mPwSer 𝑅))))
44 eqid 2729 . . 3 (𝐼 mPwSer 𝑆) = (𝐼 mPwSer 𝑆)
45 eqid 2729 . . 3 (Base‘(𝐼 mPwSer 𝑆)) = (Base‘(𝐼 mPwSer 𝑆))
46 eqid 2729 . . 3 (+g𝑆) = (+g𝑆)
47 eqid 2729 . . 3 (+g‘(𝐼 mPwSer 𝑆)) = (+g‘(𝐼 mPwSer 𝑆))
4844, 45, 46, 47psrplusg 21845 . 2 (+g‘(𝐼 mPwSer 𝑆)) = ( ∘f (+g𝑆) ↾ ((Base‘(𝐼 mPwSer 𝑆)) × (Base‘(𝐼 mPwSer 𝑆))))
4940, 43, 483eqtr4g 2789 1 (𝜑 → (+g‘(𝐼 mPwSer 𝑅)) = (+g‘(𝐼 mPwSer 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cmpt 5188   × cxp 5636  ccnv 5637  cres 5640  cima 5641  cfv 6511  (class class class)co 7387  cmpo 7389  f cof 7651  m cmap 8799  Fincfn 8918  cn 12186  0cn0 12442  Basecbs 17179  +gcplusg 17220   mPwSer cmps 21813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-tset 17239  df-psr 21818
This theorem is referenced by:  ply1plusgpropd  22128
  Copyright terms: Public domain W3C validator