MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrplusgpropd Structured version   Visualization version   GIF version

Theorem psrplusgpropd 20398
Description: Property deduction for power series addition. (Contributed by Stefan O'Rear, 27-Mar-2015.) (Revised by Mario Carneiro, 3-Oct-2015.)
Hypotheses
Ref Expression
psrplusgpropd.b1 (𝜑𝐵 = (Base‘𝑅))
psrplusgpropd.b2 (𝜑𝐵 = (Base‘𝑆))
psrplusgpropd.p ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑆)𝑦))
Assertion
Ref Expression
psrplusgpropd (𝜑 → (+g‘(𝐼 mPwSer 𝑅)) = (+g‘(𝐼 mPwSer 𝑆)))
Distinct variable groups:   𝜑,𝑦,𝑥   𝑥,𝐵,𝑦   𝑦,𝑅,𝑥   𝑦,𝑆,𝑥
Allowed substitution hints:   𝐼(𝑥,𝑦)

Proof of Theorem psrplusgpropd
Dummy variables 𝑎 𝑏 𝑑 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1187 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → 𝜑)
2 eqid 2821 . . . . . . . . . . 11 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
3 eqid 2821 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2821 . . . . . . . . . . 11 {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} = {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}
5 eqid 2821 . . . . . . . . . . 11 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
6 simp2 1133 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → 𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)))
72, 3, 4, 5, 6psrelbas 20153 . . . . . . . . . 10 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → 𝑎:{𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
87ffvelrnda 6845 . . . . . . . . 9 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → (𝑎𝑑) ∈ (Base‘𝑅))
9 psrplusgpropd.b1 . . . . . . . . . 10 (𝜑𝐵 = (Base‘𝑅))
101, 9syl 17 . . . . . . . . 9 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → 𝐵 = (Base‘𝑅))
118, 10eleqtrrd 2916 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → (𝑎𝑑) ∈ 𝐵)
12 simp3 1134 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)))
132, 3, 4, 5, 12psrelbas 20153 . . . . . . . . . 10 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → 𝑏:{𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
1413ffvelrnda 6845 . . . . . . . . 9 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → (𝑏𝑑) ∈ (Base‘𝑅))
1514, 10eleqtrrd 2916 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → (𝑏𝑑) ∈ 𝐵)
16 psrplusgpropd.p . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑆)𝑦))
1716oveqrspc2v 7177 . . . . . . . 8 ((𝜑 ∧ ((𝑎𝑑) ∈ 𝐵 ∧ (𝑏𝑑) ∈ 𝐵)) → ((𝑎𝑑)(+g𝑅)(𝑏𝑑)) = ((𝑎𝑑)(+g𝑆)(𝑏𝑑)))
181, 11, 15, 17syl12anc 834 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → ((𝑎𝑑)(+g𝑅)(𝑏𝑑)) = ((𝑎𝑑)(+g𝑆)(𝑏𝑑)))
1918mpteq2dva 5153 . . . . . 6 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → (𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ↦ ((𝑎𝑑)(+g𝑅)(𝑏𝑑))) = (𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ↦ ((𝑎𝑑)(+g𝑆)(𝑏𝑑))))
207ffnd 6509 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → 𝑎 Fn {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin})
2113ffnd 6509 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → 𝑏 Fn {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin})
22 ovex 7183 . . . . . . . . 9 (ℕ0m 𝐼) ∈ V
2322rabex 5227 . . . . . . . 8 {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ∈ V
2423a1i 11 . . . . . . 7 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ∈ V)
25 inidm 4194 . . . . . . 7 ({𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ∩ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) = {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}
26 eqidd 2822 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → (𝑎𝑑) = (𝑎𝑑))
27 eqidd 2822 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) ∧ 𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin}) → (𝑏𝑑) = (𝑏𝑑))
2820, 21, 24, 24, 25, 26, 27offval 7410 . . . . . 6 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → (𝑎f (+g𝑅)𝑏) = (𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ↦ ((𝑎𝑑)(+g𝑅)(𝑏𝑑))))
2920, 21, 24, 24, 25, 26, 27offval 7410 . . . . . 6 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → (𝑎f (+g𝑆)𝑏) = (𝑑 ∈ {𝑐 ∈ (ℕ0m 𝐼) ∣ (𝑐 “ ℕ) ∈ Fin} ↦ ((𝑎𝑑)(+g𝑆)(𝑏𝑑))))
3019, 28, 293eqtr4d 2866 . . . . 5 ((𝜑𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅))) → (𝑎f (+g𝑅)𝑏) = (𝑎f (+g𝑆)𝑏))
3130mpoeq3dva 7225 . . . 4 (𝜑 → (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)) ↦ (𝑎f (+g𝑅)𝑏)) = (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)) ↦ (𝑎f (+g𝑆)𝑏)))
32 psrplusgpropd.b2 . . . . . . 7 (𝜑𝐵 = (Base‘𝑆))
339, 32eqtr3d 2858 . . . . . 6 (𝜑 → (Base‘𝑅) = (Base‘𝑆))
3433psrbaspropd 20397 . . . . 5 (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)))
35 mpoeq12 7221 . . . . 5 (((Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆)) ∧ (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑆))) → (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)) ↦ (𝑎f (+g𝑆)𝑏)) = (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑆)) ↦ (𝑎f (+g𝑆)𝑏)))
3634, 34, 35syl2anc 586 . . . 4 (𝜑 → (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)) ↦ (𝑎f (+g𝑆)𝑏)) = (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑆)) ↦ (𝑎f (+g𝑆)𝑏)))
3731, 36eqtrd 2856 . . 3 (𝜑 → (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)) ↦ (𝑎f (+g𝑅)𝑏)) = (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑆)) ↦ (𝑎f (+g𝑆)𝑏)))
38 ofmres 7679 . . 3 ( ∘f (+g𝑅) ↾ ((Base‘(𝐼 mPwSer 𝑅)) × (Base‘(𝐼 mPwSer 𝑅)))) = (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑅)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑅)) ↦ (𝑎f (+g𝑅)𝑏))
39 ofmres 7679 . . 3 ( ∘f (+g𝑆) ↾ ((Base‘(𝐼 mPwSer 𝑆)) × (Base‘(𝐼 mPwSer 𝑆)))) = (𝑎 ∈ (Base‘(𝐼 mPwSer 𝑆)), 𝑏 ∈ (Base‘(𝐼 mPwSer 𝑆)) ↦ (𝑎f (+g𝑆)𝑏))
4037, 38, 393eqtr4g 2881 . 2 (𝜑 → ( ∘f (+g𝑅) ↾ ((Base‘(𝐼 mPwSer 𝑅)) × (Base‘(𝐼 mPwSer 𝑅)))) = ( ∘f (+g𝑆) ↾ ((Base‘(𝐼 mPwSer 𝑆)) × (Base‘(𝐼 mPwSer 𝑆)))))
41 eqid 2821 . . 3 (+g𝑅) = (+g𝑅)
42 eqid 2821 . . 3 (+g‘(𝐼 mPwSer 𝑅)) = (+g‘(𝐼 mPwSer 𝑅))
432, 5, 41, 42psrplusg 20155 . 2 (+g‘(𝐼 mPwSer 𝑅)) = ( ∘f (+g𝑅) ↾ ((Base‘(𝐼 mPwSer 𝑅)) × (Base‘(𝐼 mPwSer 𝑅))))
44 eqid 2821 . . 3 (𝐼 mPwSer 𝑆) = (𝐼 mPwSer 𝑆)
45 eqid 2821 . . 3 (Base‘(𝐼 mPwSer 𝑆)) = (Base‘(𝐼 mPwSer 𝑆))
46 eqid 2821 . . 3 (+g𝑆) = (+g𝑆)
47 eqid 2821 . . 3 (+g‘(𝐼 mPwSer 𝑆)) = (+g‘(𝐼 mPwSer 𝑆))
4844, 45, 46, 47psrplusg 20155 . 2 (+g‘(𝐼 mPwSer 𝑆)) = ( ∘f (+g𝑆) ↾ ((Base‘(𝐼 mPwSer 𝑆)) × (Base‘(𝐼 mPwSer 𝑆))))
4940, 43, 483eqtr4g 2881 1 (𝜑 → (+g‘(𝐼 mPwSer 𝑅)) = (+g‘(𝐼 mPwSer 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  {crab 3142  Vcvv 3494  cmpt 5138   × cxp 5547  ccnv 5548  cres 5551  cima 5552  cfv 6349  (class class class)co 7150  cmpo 7152  f cof 7401  m cmap 8400  Fincfn 8503  cn 11632  0cn0 11891  Basecbs 16477  +gcplusg 16559   mPwSer cmps 20125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-tset 16578  df-psr 20130
This theorem is referenced by:  ply1plusgpropd  20406
  Copyright terms: Public domain W3C validator