MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpstopnlem1 Structured version   Visualization version   GIF version

Theorem xpstopnlem1 21833
Description: The function 𝐹 used in xpsval 16440 is a homeomorphism from the binary product topology to the indexed product topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
xpstopnlem1.f 𝐹 = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
xpstopnlem1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
xpstopnlem1.k (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
xpstopnlem1 (𝜑𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t({𝐽} +𝑐 {𝐾}))))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xpstopnlem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 xpstopnlem1.j . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 xpstopnlem1.k . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 txtopon 21615 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
41, 2, 3syl2anc 573 . . . . . . . . 9 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
5 eqid 2771 . . . . . . . . . . . . 13 (∏t‘{⟨∅, 𝐽⟩}) = (∏t‘{⟨∅, 𝐽⟩})
6 0ex 4924 . . . . . . . . . . . . . 14 ∅ ∈ V
76a1i 11 . . . . . . . . . . . . 13 (𝜑 → ∅ ∈ V)
85, 7, 1pt1hmeo 21830 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽Homeo(∏t‘{⟨∅, 𝐽⟩})))
9 hmeocn 21784 . . . . . . . . . . . 12 ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽Homeo(∏t‘{⟨∅, 𝐽⟩})) → (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽 Cn (∏t‘{⟨∅, 𝐽⟩})))
10 cntop2 21266 . . . . . . . . . . . 12 ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽 Cn (∏t‘{⟨∅, 𝐽⟩})) → (∏t‘{⟨∅, 𝐽⟩}) ∈ Top)
118, 9, 103syl 18 . . . . . . . . . . 11 (𝜑 → (∏t‘{⟨∅, 𝐽⟩}) ∈ Top)
12 eqid 2771 . . . . . . . . . . . 12 (∏t‘{⟨∅, 𝐽⟩}) = (∏t‘{⟨∅, 𝐽⟩})
1312toptopon 20942 . . . . . . . . . . 11 ((∏t‘{⟨∅, 𝐽⟩}) ∈ Top ↔ (∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})))
1411, 13sylib 208 . . . . . . . . . 10 (𝜑 → (∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})))
15 eqid 2771 . . . . . . . . . . . . 13 (∏t‘{⟨1𝑜, 𝐾⟩}) = (∏t‘{⟨1𝑜, 𝐾⟩})
16 1on 7720 . . . . . . . . . . . . . 14 1𝑜 ∈ On
1716a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1𝑜 ∈ On)
1815, 17, 2pt1hmeo 21830 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩}) ∈ (𝐾Homeo(∏t‘{⟨1𝑜, 𝐾⟩})))
19 hmeocn 21784 . . . . . . . . . . . 12 ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩}) ∈ (𝐾Homeo(∏t‘{⟨1𝑜, 𝐾⟩})) → (𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩}) ∈ (𝐾 Cn (∏t‘{⟨1𝑜, 𝐾⟩})))
20 cntop2 21266 . . . . . . . . . . . 12 ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩}) ∈ (𝐾 Cn (∏t‘{⟨1𝑜, 𝐾⟩})) → (∏t‘{⟨1𝑜, 𝐾⟩}) ∈ Top)
2118, 19, 203syl 18 . . . . . . . . . . 11 (𝜑 → (∏t‘{⟨1𝑜, 𝐾⟩}) ∈ Top)
22 eqid 2771 . . . . . . . . . . . 12 (∏t‘{⟨1𝑜, 𝐾⟩}) = (∏t‘{⟨1𝑜, 𝐾⟩})
2322toptopon 20942 . . . . . . . . . . 11 ((∏t‘{⟨1𝑜, 𝐾⟩}) ∈ Top ↔ (∏t‘{⟨1𝑜, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1𝑜, 𝐾⟩})))
2421, 23sylib 208 . . . . . . . . . 10 (𝜑 → (∏t‘{⟨1𝑜, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1𝑜, 𝐾⟩})))
25 txtopon 21615 . . . . . . . . . 10 (((∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})) ∧ (∏t‘{⟨1𝑜, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1𝑜, 𝐾⟩}))) → ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩}))))
2614, 24, 25syl2anc 573 . . . . . . . . 9 (𝜑 → ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩}))))
27 opeq2 4540 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → ⟨∅, 𝑧⟩ = ⟨∅, 𝑥⟩)
2827sneqd 4328 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → {⟨∅, 𝑧⟩} = {⟨∅, 𝑥⟩})
29 eqid 2771 . . . . . . . . . . . . . . 15 (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) = (𝑧𝑋 ↦ {⟨∅, 𝑧⟩})
30 snex 5036 . . . . . . . . . . . . . . 15 {⟨∅, 𝑥⟩} ∈ V
3128, 29, 30fvmpt 6424 . . . . . . . . . . . . . 14 (𝑥𝑋 → ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥) = {⟨∅, 𝑥⟩})
32 opeq2 4540 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → ⟨1𝑜, 𝑧⟩ = ⟨1𝑜, 𝑦⟩)
3332sneqd 4328 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → {⟨1𝑜, 𝑧⟩} = {⟨1𝑜, 𝑦⟩})
34 eqid 2771 . . . . . . . . . . . . . . 15 (𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩}) = (𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})
35 snex 5036 . . . . . . . . . . . . . . 15 {⟨1𝑜, 𝑦⟩} ∈ V
3633, 34, 35fvmpt 6424 . . . . . . . . . . . . . 14 (𝑦𝑌 → ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦) = {⟨1𝑜, 𝑦⟩})
37 opeq12 4541 . . . . . . . . . . . . . 14 ((((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥) = {⟨∅, 𝑥⟩} ∧ ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦) = {⟨1𝑜, 𝑦⟩}) → ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩ = ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)
3831, 36, 37syl2an 583 . . . . . . . . . . . . 13 ((𝑥𝑋𝑦𝑌) → ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩ = ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)
3938mpt2eq3ia 6867 . . . . . . . . . . . 12 (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)
40 toponuni 20939 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
411, 40syl 17 . . . . . . . . . . . . 13 (𝜑𝑋 = 𝐽)
42 toponuni 20939 . . . . . . . . . . . . . 14 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
432, 42syl 17 . . . . . . . . . . . . 13 (𝜑𝑌 = 𝐾)
44 mpt2eq12 6862 . . . . . . . . . . . . 13 ((𝑋 = 𝐽𝑌 = 𝐾) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩))
4541, 43, 44syl2anc 573 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩))
4639, 45syl5eqr 2819 . . . . . . . . . . 11 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩))
47 eqid 2771 . . . . . . . . . . . 12 𝐽 = 𝐽
48 eqid 2771 . . . . . . . . . . . 12 𝐾 = 𝐾
4947, 48, 8, 18txhmeo 21827 . . . . . . . . . . 11 (𝜑 → (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1𝑜, 𝑧⟩})‘𝑦)⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))))
5046, 49eqeltrd 2850 . . . . . . . . . 10 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))))
51 hmeocn 21784 . . . . . . . . . 10 ((𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))))
5250, 51syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))))
53 cnf2 21274 . . . . . . . . 9 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩}))) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩})))) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
544, 26, 52, 53syl3anc 1476 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
55 eqid 2771 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)
5655fmpt2 7387 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})) ↔ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
5754, 56sylibr 224 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
5857r19.21bi 3081 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
5958r19.21bi 3081 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
6059anasss 457 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})))
61 eqidd 2772 . . . 4 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩))
62 vex 3354 . . . . . . . . 9 𝑥 ∈ V
63 vex 3354 . . . . . . . . 9 𝑦 ∈ V
6462, 63op1std 7325 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
6562, 63op2ndd 7326 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
6664, 65uneq12d 3919 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st𝑧) ∪ (2nd𝑧)) = (𝑥𝑦))
6766mpt2mpt 6899 . . . . . 6 (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧))) = (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦))
6867eqcomi 2780 . . . . 5 (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) = (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧)))
6968a1i 11 . . . 4 (𝜑 → (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) = (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1𝑜, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧))))
7030, 35op1std 7325 . . . . . 6 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ → (1st𝑧) = {⟨∅, 𝑥⟩})
7130, 35op2ndd 7326 . . . . . 6 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ → (2nd𝑧) = {⟨1𝑜, 𝑦⟩})
7270, 71uneq12d 3919 . . . . 5 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ → ((1st𝑧) ∪ (2nd𝑧)) = ({⟨∅, 𝑥⟩} ∪ {⟨1𝑜, 𝑦⟩}))
73 xpscg 16426 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥} +𝑐 {𝑦}) = {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩})
7462, 63, 73mp2an 672 . . . . . 6 ({𝑥} +𝑐 {𝑦}) = {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩}
75 df-pr 4319 . . . . . 6 {⟨∅, 𝑥⟩, ⟨1𝑜, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1𝑜, 𝑦⟩})
7674, 75eqtri 2793 . . . . 5 ({𝑥} +𝑐 {𝑦}) = ({⟨∅, 𝑥⟩} ∪ {⟨1𝑜, 𝑦⟩})
7772, 76syl6eqr 2823 . . . 4 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩ → ((1st𝑧) ∪ (2nd𝑧)) = ({𝑥} +𝑐 {𝑦}))
7860, 61, 69, 77fmpt2co 7411 . . 3 (𝜑 → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)) = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))
79 xpstopnlem1.f . . 3 𝐹 = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
8078, 79syl6reqr 2824 . 2 (𝜑𝐹 = ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)))
81 eqid 2771 . . . . 5 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) = (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅}))
82 eqid 2771 . . . . 5 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) = (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}))
83 eqid 2771 . . . . 5 (∏t({𝐽} +𝑐 {𝐾})) = (∏t({𝐽} +𝑐 {𝐾}))
84 eqid 2771 . . . . 5 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) = (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅}))
85 eqid 2771 . . . . 5 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) = (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}))
86 eqid 2771 . . . . 5 (𝑥 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})), 𝑦 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) ↦ (𝑥𝑦)) = (𝑥 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})), 𝑦 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) ↦ (𝑥𝑦))
87 2on 7722 . . . . . 6 2𝑜 ∈ On
8887a1i 11 . . . . 5 (𝜑 → 2𝑜 ∈ On)
89 topontop 20938 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
901, 89syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
91 topontop 20938 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
922, 91syl 17 . . . . . 6 (𝜑𝐾 ∈ Top)
93 xpscf 16434 . . . . . 6 (({𝐽} +𝑐 {𝐾}):2𝑜⟶Top ↔ (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
9490, 92, 93sylanbrc 572 . . . . 5 (𝜑({𝐽} +𝑐 {𝐾}):2𝑜⟶Top)
95 df2o3 7727 . . . . . . 7 2𝑜 = {∅, 1𝑜}
96 df-pr 4319 . . . . . . 7 {∅, 1𝑜} = ({∅} ∪ {1𝑜})
9795, 96eqtri 2793 . . . . . 6 2𝑜 = ({∅} ∪ {1𝑜})
9897a1i 11 . . . . 5 (𝜑 → 2𝑜 = ({∅} ∪ {1𝑜}))
99 1n0 7729 . . . . . . 7 1𝑜 ≠ ∅
10099necomi 2997 . . . . . 6 ∅ ≠ 1𝑜
101 disjsn2 4384 . . . . . 6 (∅ ≠ 1𝑜 → ({∅} ∩ {1𝑜}) = ∅)
102100, 101mp1i 13 . . . . 5 (𝜑 → ({∅} ∩ {1𝑜}) = ∅)
10381, 82, 83, 84, 85, 86, 88, 94, 98, 102ptunhmeo 21832 . . . 4 (𝜑 → (𝑥 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})), 𝑦 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) ↦ (𝑥𝑦)) ∈ (((∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) ×t (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})))Homeo(∏t({𝐽} +𝑐 {𝐾}))))
104 xpscfn 16427 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → ({𝐽} +𝑐 {𝐾}) Fn 2𝑜)
1051, 2, 104syl2anc 573 . . . . . . . . 9 (𝜑({𝐽} +𝑐 {𝐾}) Fn 2𝑜)
1066prid1 4433 . . . . . . . . . 10 ∅ ∈ {∅, 1𝑜}
107106, 95eleqtrri 2849 . . . . . . . . 9 ∅ ∈ 2𝑜
108 fnressn 6568 . . . . . . . . 9 ((({𝐽} +𝑐 {𝐾}) Fn 2𝑜 ∧ ∅ ∈ 2𝑜) → (({𝐽} +𝑐 {𝐾}) ↾ {∅}) = {⟨∅, (({𝐽} +𝑐 {𝐾})‘∅)⟩})
109105, 107, 108sylancl 574 . . . . . . . 8 (𝜑 → (({𝐽} +𝑐 {𝐾}) ↾ {∅}) = {⟨∅, (({𝐽} +𝑐 {𝐾})‘∅)⟩})
110 xpsc0 16428 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → (({𝐽} +𝑐 {𝐾})‘∅) = 𝐽)
1111, 110syl 17 . . . . . . . . . 10 (𝜑 → (({𝐽} +𝑐 {𝐾})‘∅) = 𝐽)
112111opeq2d 4546 . . . . . . . . 9 (𝜑 → ⟨∅, (({𝐽} +𝑐 {𝐾})‘∅)⟩ = ⟨∅, 𝐽⟩)
113112sneqd 4328 . . . . . . . 8 (𝜑 → {⟨∅, (({𝐽} +𝑐 {𝐾})‘∅)⟩} = {⟨∅, 𝐽⟩})
114109, 113eqtrd 2805 . . . . . . 7 (𝜑 → (({𝐽} +𝑐 {𝐾}) ↾ {∅}) = {⟨∅, 𝐽⟩})
115114fveq2d 6336 . . . . . 6 (𝜑 → (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) = (∏t‘{⟨∅, 𝐽⟩}))
116115unieqd 4584 . . . . 5 (𝜑 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) = (∏t‘{⟨∅, 𝐽⟩}))
117 1oex 7721 . . . . . . . . . . 11 1𝑜 ∈ V
118117prid2 4434 . . . . . . . . . 10 1𝑜 ∈ {∅, 1𝑜}
119118, 95eleqtrri 2849 . . . . . . . . 9 1𝑜 ∈ 2𝑜
120 fnressn 6568 . . . . . . . . 9 ((({𝐽} +𝑐 {𝐾}) Fn 2𝑜 ∧ 1𝑜 ∈ 2𝑜) → (({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}) = {⟨1𝑜, (({𝐽} +𝑐 {𝐾})‘1𝑜)⟩})
121105, 119, 120sylancl 574 . . . . . . . 8 (𝜑 → (({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}) = {⟨1𝑜, (({𝐽} +𝑐 {𝐾})‘1𝑜)⟩})
122 xpsc1 16429 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) → (({𝐽} +𝑐 {𝐾})‘1𝑜) = 𝐾)
1232, 122syl 17 . . . . . . . . . 10 (𝜑 → (({𝐽} +𝑐 {𝐾})‘1𝑜) = 𝐾)
124123opeq2d 4546 . . . . . . . . 9 (𝜑 → ⟨1𝑜, (({𝐽} +𝑐 {𝐾})‘1𝑜)⟩ = ⟨1𝑜, 𝐾⟩)
125124sneqd 4328 . . . . . . . 8 (𝜑 → {⟨1𝑜, (({𝐽} +𝑐 {𝐾})‘1𝑜)⟩} = {⟨1𝑜, 𝐾⟩})
126121, 125eqtrd 2805 . . . . . . 7 (𝜑 → (({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}) = {⟨1𝑜, 𝐾⟩})
127126fveq2d 6336 . . . . . 6 (𝜑 → (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) = (∏t‘{⟨1𝑜, 𝐾⟩}))
128127unieqd 4584 . . . . 5 (𝜑 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) = (∏t‘{⟨1𝑜, 𝐾⟩}))
129 eqidd 2772 . . . . 5 (𝜑 → (𝑥𝑦) = (𝑥𝑦))
130116, 128, 129mpt2eq123dv 6864 . . . 4 (𝜑 → (𝑥 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})), 𝑦 (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})) ↦ (𝑥𝑦)) = (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)))
131115, 127oveq12d 6811 . . . . 5 (𝜑 → ((∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) ×t (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜}))) = ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩})))
132131oveq1d 6808 . . . 4 (𝜑 → (((∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {∅})) ×t (∏t‘(({𝐽} +𝑐 {𝐾}) ↾ {1𝑜})))Homeo(∏t({𝐽} +𝑐 {𝐾}))) = (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))Homeo(∏t({𝐽} +𝑐 {𝐾}))))
133103, 130, 1323eltr3d 2864 . . 3 (𝜑 → (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) ∈ (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))Homeo(∏t({𝐽} +𝑐 {𝐾}))))
134 hmeoco 21796 . . 3 (((𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))) ∧ (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) ∈ (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1𝑜, 𝐾⟩}))Homeo(∏t({𝐽} +𝑐 {𝐾})))) → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)) ∈ ((𝐽 ×t 𝐾)Homeo(∏t({𝐽} +𝑐 {𝐾}))))
13550, 133, 134syl2anc 573 . 2 (𝜑 → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1𝑜, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1𝑜, 𝑦⟩}⟩)) ∈ ((𝐽 ×t 𝐾)Homeo(∏t({𝐽} +𝑐 {𝐾}))))
13680, 135eqeltrd 2850 1 (𝜑𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t({𝐽} +𝑐 {𝐾}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  wral 3061  Vcvv 3351  cun 3721  cin 3722  c0 4063  {csn 4316  {cpr 4318  cop 4322   cuni 4574  cmpt 4863   × cxp 5247  ccnv 5248  cres 5251  ccom 5253  Oncon0 5866   Fn wfn 6026  wf 6027  cfv 6031  (class class class)co 6793  cmpt2 6795  1st c1st 7313  2nd c2nd 7314  1𝑜c1o 7706  2𝑜c2o 7707   +𝑐 ccda 9191  tcpt 16307  Topctop 20918  TopOnctopon 20935   Cn ccn 21249   ×t ctx 21584  Homeochmeo 21777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fi 8473  df-cda 9192  df-topgen 16312  df-pt 16313  df-top 20919  df-topon 20936  df-bases 20971  df-cn 21252  df-cnp 21253  df-tx 21586  df-hmeo 21779
This theorem is referenced by:  xpstopnlem2  21835
  Copyright terms: Public domain W3C validator