MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpstopnlem1 Structured version   Visualization version   GIF version

Theorem xpstopnlem1 22678
Description: The function 𝐹 used in xpsval 17047 is a homeomorphism from the binary product topology to the indexed product topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
xpstopnlem1.f 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
xpstopnlem1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
xpstopnlem1.k (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
xpstopnlem1 (𝜑𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xpstopnlem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 xpstopnlem1.f . . 3 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
2 xpstopnlem1.j . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 xpstopnlem1.k . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝑌))
4 txtopon 22460 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
52, 3, 4syl2anc 587 . . . . . . . . 9 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
6 eqid 2734 . . . . . . . . . . . . 13 (∏t‘{⟨∅, 𝐽⟩}) = (∏t‘{⟨∅, 𝐽⟩})
7 0ex 5189 . . . . . . . . . . . . . 14 ∅ ∈ V
87a1i 11 . . . . . . . . . . . . 13 (𝜑 → ∅ ∈ V)
96, 8, 2pt1hmeo 22675 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽Homeo(∏t‘{⟨∅, 𝐽⟩})))
10 hmeocn 22629 . . . . . . . . . . . 12 ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽Homeo(∏t‘{⟨∅, 𝐽⟩})) → (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽 Cn (∏t‘{⟨∅, 𝐽⟩})))
11 cntop2 22110 . . . . . . . . . . . 12 ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽 Cn (∏t‘{⟨∅, 𝐽⟩})) → (∏t‘{⟨∅, 𝐽⟩}) ∈ Top)
129, 10, 113syl 18 . . . . . . . . . . 11 (𝜑 → (∏t‘{⟨∅, 𝐽⟩}) ∈ Top)
13 toptopon2 21787 . . . . . . . . . . 11 ((∏t‘{⟨∅, 𝐽⟩}) ∈ Top ↔ (∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})))
1412, 13sylib 221 . . . . . . . . . 10 (𝜑 → (∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})))
15 eqid 2734 . . . . . . . . . . . . 13 (∏t‘{⟨1o, 𝐾⟩}) = (∏t‘{⟨1o, 𝐾⟩})
16 1on 8198 . . . . . . . . . . . . . 14 1o ∈ On
1716a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1o ∈ On)
1815, 17, 3pt1hmeo 22675 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) ∈ (𝐾Homeo(∏t‘{⟨1o, 𝐾⟩})))
19 hmeocn 22629 . . . . . . . . . . . 12 ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) ∈ (𝐾Homeo(∏t‘{⟨1o, 𝐾⟩})) → (𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) ∈ (𝐾 Cn (∏t‘{⟨1o, 𝐾⟩})))
20 cntop2 22110 . . . . . . . . . . . 12 ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) ∈ (𝐾 Cn (∏t‘{⟨1o, 𝐾⟩})) → (∏t‘{⟨1o, 𝐾⟩}) ∈ Top)
2118, 19, 203syl 18 . . . . . . . . . . 11 (𝜑 → (∏t‘{⟨1o, 𝐾⟩}) ∈ Top)
22 toptopon2 21787 . . . . . . . . . . 11 ((∏t‘{⟨1o, 𝐾⟩}) ∈ Top ↔ (∏t‘{⟨1o, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1o, 𝐾⟩})))
2321, 22sylib 221 . . . . . . . . . 10 (𝜑 → (∏t‘{⟨1o, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1o, 𝐾⟩})))
24 txtopon 22460 . . . . . . . . . 10 (((∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})) ∧ (∏t‘{⟨1o, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1o, 𝐾⟩}))) → ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩}))))
2514, 23, 24syl2anc 587 . . . . . . . . 9 (𝜑 → ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩}))))
26 opeq2 4775 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → ⟨∅, 𝑧⟩ = ⟨∅, 𝑥⟩)
2726sneqd 4543 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → {⟨∅, 𝑧⟩} = {⟨∅, 𝑥⟩})
28 eqid 2734 . . . . . . . . . . . . . . 15 (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) = (𝑧𝑋 ↦ {⟨∅, 𝑧⟩})
29 snex 5313 . . . . . . . . . . . . . . 15 {⟨∅, 𝑥⟩} ∈ V
3027, 28, 29fvmpt 6807 . . . . . . . . . . . . . 14 (𝑥𝑋 → ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥) = {⟨∅, 𝑥⟩})
31 opeq2 4775 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → ⟨1o, 𝑧⟩ = ⟨1o, 𝑦⟩)
3231sneqd 4543 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → {⟨1o, 𝑧⟩} = {⟨1o, 𝑦⟩})
33 eqid 2734 . . . . . . . . . . . . . . 15 (𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) = (𝑧𝑌 ↦ {⟨1o, 𝑧⟩})
34 snex 5313 . . . . . . . . . . . . . . 15 {⟨1o, 𝑦⟩} ∈ V
3532, 33, 34fvmpt 6807 . . . . . . . . . . . . . 14 (𝑦𝑌 → ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦) = {⟨1o, 𝑦⟩})
36 opeq12 4776 . . . . . . . . . . . . . 14 ((((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥) = {⟨∅, 𝑥⟩} ∧ ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦) = {⟨1o, 𝑦⟩}) → ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩ = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)
3730, 35, 36syl2an 599 . . . . . . . . . . . . 13 ((𝑥𝑋𝑦𝑌) → ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩ = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)
3837mpoeq3ia 7278 . . . . . . . . . . . 12 (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)
39 toponuni 21783 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
402, 39syl 17 . . . . . . . . . . . . 13 (𝜑𝑋 = 𝐽)
41 toponuni 21783 . . . . . . . . . . . . . 14 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
423, 41syl 17 . . . . . . . . . . . . 13 (𝜑𝑌 = 𝐾)
43 mpoeq12 7273 . . . . . . . . . . . . 13 ((𝑋 = 𝐽𝑌 = 𝐾) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩))
4440, 42, 43syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩))
4538, 44eqtr3id 2788 . . . . . . . . . . 11 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩))
46 eqid 2734 . . . . . . . . . . . 12 𝐽 = 𝐽
47 eqid 2734 . . . . . . . . . . . 12 𝐾 = 𝐾
4846, 47, 9, 18txhmeo 22672 . . . . . . . . . . 11 (𝜑 → (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))))
4945, 48eqeltrd 2834 . . . . . . . . . 10 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))))
50 hmeocn 22629 . . . . . . . . . 10 ((𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))))
5149, 50syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))))
52 cnf2 22118 . . . . . . . . 9 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩}))) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})))) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
535, 25, 51, 52syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
54 eqid 2734 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)
5554fmpo 7827 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})) ↔ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
5653, 55sylibr 237 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
5756r19.21bi 3123 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
5857r19.21bi 3123 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
5958anasss 470 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
60 eqidd 2735 . . . 4 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩))
61 vex 3405 . . . . . . . . 9 𝑥 ∈ V
62 vex 3405 . . . . . . . . 9 𝑦 ∈ V
6361, 62op1std 7760 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
6461, 62op2ndd 7761 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
6563, 64uneq12d 4068 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st𝑧) ∪ (2nd𝑧)) = (𝑥𝑦))
6665mpompt 7313 . . . . . 6 (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧))) = (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦))
6766eqcomi 2743 . . . . 5 (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) = (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧)))
6867a1i 11 . . . 4 (𝜑 → (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) = (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧))))
6929, 34op1std 7760 . . . . . 6 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ → (1st𝑧) = {⟨∅, 𝑥⟩})
7029, 34op2ndd 7761 . . . . . 6 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ → (2nd𝑧) = {⟨1o, 𝑦⟩})
7169, 70uneq12d 4068 . . . . 5 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ → ((1st𝑧) ∪ (2nd𝑧)) = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩}))
72 df-pr 4534 . . . . 5 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
7371, 72eqtr4di 2792 . . . 4 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ → ((1st𝑧) ∪ (2nd𝑧)) = {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
7459, 60, 68, 73fmpoco 7852 . . 3 (𝜑 → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
751, 74eqtr4id 2793 . 2 (𝜑𝐹 = ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)))
76 eqid 2734 . . . . 5 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) = (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}))
77 eqid 2734 . . . . 5 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) = (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}))
78 eqid 2734 . . . . 5 (∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}) = (∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})
79 eqid 2734 . . . . 5 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) = (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}))
80 eqid 2734 . . . . 5 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) = (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}))
81 eqid 2734 . . . . 5 (𝑥 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})), 𝑦 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) ↦ (𝑥𝑦)) = (𝑥 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})), 𝑦 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) ↦ (𝑥𝑦))
82 2on 8199 . . . . . 6 2o ∈ On
8382a1i 11 . . . . 5 (𝜑 → 2o ∈ On)
84 topontop 21782 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
852, 84syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
86 topontop 21782 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
873, 86syl 17 . . . . . 6 (𝜑𝐾 ∈ Top)
88 xpscf 17042 . . . . . 6 ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}:2o⟶Top ↔ (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
8985, 87, 88sylanbrc 586 . . . . 5 (𝜑 → {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}:2o⟶Top)
90 df2o3 8206 . . . . . . 7 2o = {∅, 1o}
91 df-pr 4534 . . . . . . 7 {∅, 1o} = ({∅} ∪ {1o})
9290, 91eqtri 2762 . . . . . 6 2o = ({∅} ∪ {1o})
9392a1i 11 . . . . 5 (𝜑 → 2o = ({∅} ∪ {1o}))
94 1n0 8210 . . . . . . 7 1o ≠ ∅
9594necomi 2989 . . . . . 6 ∅ ≠ 1o
96 disjsn2 4618 . . . . . 6 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
9795, 96mp1i 13 . . . . 5 (𝜑 → ({∅} ∩ {1o}) = ∅)
9876, 77, 78, 79, 80, 81, 83, 89, 93, 97ptunhmeo 22677 . . . 4 (𝜑 → (𝑥 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})), 𝑦 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) ↦ (𝑥𝑦)) ∈ (((∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) ×t (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
99 fnpr2o 17034 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} Fn 2o)
1002, 3, 99syl2anc 587 . . . . . . . . 9 (𝜑 → {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} Fn 2o)
1017prid1 4668 . . . . . . . . . 10 ∅ ∈ {∅, 1o}
102101, 90eleqtrri 2833 . . . . . . . . 9 ∅ ∈ 2o
103 fnressn 6962 . . . . . . . . 9 (({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} Fn 2o ∧ ∅ ∈ 2o) → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}) = {⟨∅, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅)⟩})
104100, 102, 103sylancl 589 . . . . . . . 8 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}) = {⟨∅, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅)⟩})
105 fvpr0o 17036 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅) = 𝐽)
1062, 105syl 17 . . . . . . . . . 10 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅) = 𝐽)
107106opeq2d 4781 . . . . . . . . 9 (𝜑 → ⟨∅, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅)⟩ = ⟨∅, 𝐽⟩)
108107sneqd 4543 . . . . . . . 8 (𝜑 → {⟨∅, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅)⟩} = {⟨∅, 𝐽⟩})
109104, 108eqtrd 2774 . . . . . . 7 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}) = {⟨∅, 𝐽⟩})
110109fveq2d 6710 . . . . . 6 (𝜑 → (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) = (∏t‘{⟨∅, 𝐽⟩}))
111110unieqd 4823 . . . . 5 (𝜑 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) = (∏t‘{⟨∅, 𝐽⟩}))
112 1oex 8204 . . . . . . . . . . 11 1o ∈ V
113112prid2 4669 . . . . . . . . . 10 1o ∈ {∅, 1o}
114113, 90eleqtrri 2833 . . . . . . . . 9 1o ∈ 2o
115 fnressn 6962 . . . . . . . . 9 (({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} Fn 2o ∧ 1o ∈ 2o) → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}) = {⟨1o, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o)⟩})
116100, 114, 115sylancl 589 . . . . . . . 8 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}) = {⟨1o, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o)⟩})
117 fvpr1o 17037 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o) = 𝐾)
1183, 117syl 17 . . . . . . . . . 10 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o) = 𝐾)
119118opeq2d 4781 . . . . . . . . 9 (𝜑 → ⟨1o, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o)⟩ = ⟨1o, 𝐾⟩)
120119sneqd 4543 . . . . . . . 8 (𝜑 → {⟨1o, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o)⟩} = {⟨1o, 𝐾⟩})
121116, 120eqtrd 2774 . . . . . . 7 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}) = {⟨1o, 𝐾⟩})
122121fveq2d 6710 . . . . . 6 (𝜑 → (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) = (∏t‘{⟨1o, 𝐾⟩}))
123122unieqd 4823 . . . . 5 (𝜑 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) = (∏t‘{⟨1o, 𝐾⟩}))
124 eqidd 2735 . . . . 5 (𝜑 → (𝑥𝑦) = (𝑥𝑦))
125111, 123, 124mpoeq123dv 7275 . . . 4 (𝜑 → (𝑥 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})), 𝑦 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) ↦ (𝑥𝑦)) = (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)))
126110, 122oveq12d 7220 . . . . 5 (𝜑 → ((∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) ×t (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}))) = ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})))
127126oveq1d 7217 . . . 4 (𝜑 → (((∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) ×t (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})) = (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
12898, 125, 1273eltr3d 2848 . . 3 (𝜑 → (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∈ (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
129 hmeoco 22641 . . 3 (((𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))) ∧ (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∈ (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}))) → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)) ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
13049, 128, 129syl2anc 587 . 2 (𝜑 → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)) ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
13175, 130eqeltrd 2834 1 (𝜑𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2935  wral 3054  Vcvv 3401  cun 3855  cin 3856  c0 4227  {csn 4531  {cpr 4533  cop 4537   cuni 4809  cmpt 5124   × cxp 5538  cres 5542  ccom 5544  Oncon0 6202   Fn wfn 6364  wf 6365  cfv 6369  (class class class)co 7202  cmpo 7204  1st c1st 7748  2nd c2nd 7749  1oc1o 8184  2oc2o 8185  tcpt 16915  Topctop 21762  TopOnctopon 21779   Cn ccn 22093   ×t ctx 22429  Homeochmeo 22622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-1o 8191  df-2o 8192  df-er 8380  df-map 8499  df-ixp 8568  df-en 8616  df-dom 8617  df-fin 8619  df-fi 9016  df-topgen 16920  df-pt 16921  df-top 21763  df-topon 21780  df-bases 21815  df-cn 22096  df-cnp 22097  df-tx 22431  df-hmeo 22624
This theorem is referenced by:  xpstopnlem2  22680
  Copyright terms: Public domain W3C validator