MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpstopnlem1 Structured version   Visualization version   GIF version

Theorem xpstopnlem1 22868
Description: The function 𝐹 used in xpsval 17198 is a homeomorphism from the binary product topology to the indexed product topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
xpstopnlem1.f 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
xpstopnlem1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
xpstopnlem1.k (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
xpstopnlem1 (𝜑𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xpstopnlem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 xpstopnlem1.f . . 3 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
2 xpstopnlem1.j . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 xpstopnlem1.k . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝑌))
4 txtopon 22650 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
52, 3, 4syl2anc 583 . . . . . . . . 9 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
6 eqid 2738 . . . . . . . . . . . . 13 (∏t‘{⟨∅, 𝐽⟩}) = (∏t‘{⟨∅, 𝐽⟩})
7 0ex 5226 . . . . . . . . . . . . . 14 ∅ ∈ V
87a1i 11 . . . . . . . . . . . . 13 (𝜑 → ∅ ∈ V)
96, 8, 2pt1hmeo 22865 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽Homeo(∏t‘{⟨∅, 𝐽⟩})))
10 hmeocn 22819 . . . . . . . . . . . 12 ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽Homeo(∏t‘{⟨∅, 𝐽⟩})) → (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽 Cn (∏t‘{⟨∅, 𝐽⟩})))
11 cntop2 22300 . . . . . . . . . . . 12 ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽 Cn (∏t‘{⟨∅, 𝐽⟩})) → (∏t‘{⟨∅, 𝐽⟩}) ∈ Top)
129, 10, 113syl 18 . . . . . . . . . . 11 (𝜑 → (∏t‘{⟨∅, 𝐽⟩}) ∈ Top)
13 toptopon2 21975 . . . . . . . . . . 11 ((∏t‘{⟨∅, 𝐽⟩}) ∈ Top ↔ (∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})))
1412, 13sylib 217 . . . . . . . . . 10 (𝜑 → (∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})))
15 eqid 2738 . . . . . . . . . . . . 13 (∏t‘{⟨1o, 𝐾⟩}) = (∏t‘{⟨1o, 𝐾⟩})
16 1on 8274 . . . . . . . . . . . . . 14 1o ∈ On
1716a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1o ∈ On)
1815, 17, 3pt1hmeo 22865 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) ∈ (𝐾Homeo(∏t‘{⟨1o, 𝐾⟩})))
19 hmeocn 22819 . . . . . . . . . . . 12 ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) ∈ (𝐾Homeo(∏t‘{⟨1o, 𝐾⟩})) → (𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) ∈ (𝐾 Cn (∏t‘{⟨1o, 𝐾⟩})))
20 cntop2 22300 . . . . . . . . . . . 12 ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) ∈ (𝐾 Cn (∏t‘{⟨1o, 𝐾⟩})) → (∏t‘{⟨1o, 𝐾⟩}) ∈ Top)
2118, 19, 203syl 18 . . . . . . . . . . 11 (𝜑 → (∏t‘{⟨1o, 𝐾⟩}) ∈ Top)
22 toptopon2 21975 . . . . . . . . . . 11 ((∏t‘{⟨1o, 𝐾⟩}) ∈ Top ↔ (∏t‘{⟨1o, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1o, 𝐾⟩})))
2321, 22sylib 217 . . . . . . . . . 10 (𝜑 → (∏t‘{⟨1o, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1o, 𝐾⟩})))
24 txtopon 22650 . . . . . . . . . 10 (((∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})) ∧ (∏t‘{⟨1o, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1o, 𝐾⟩}))) → ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩}))))
2514, 23, 24syl2anc 583 . . . . . . . . 9 (𝜑 → ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩}))))
26 opeq2 4802 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → ⟨∅, 𝑧⟩ = ⟨∅, 𝑥⟩)
2726sneqd 4570 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → {⟨∅, 𝑧⟩} = {⟨∅, 𝑥⟩})
28 eqid 2738 . . . . . . . . . . . . . . 15 (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) = (𝑧𝑋 ↦ {⟨∅, 𝑧⟩})
29 snex 5349 . . . . . . . . . . . . . . 15 {⟨∅, 𝑥⟩} ∈ V
3027, 28, 29fvmpt 6857 . . . . . . . . . . . . . 14 (𝑥𝑋 → ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥) = {⟨∅, 𝑥⟩})
31 opeq2 4802 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → ⟨1o, 𝑧⟩ = ⟨1o, 𝑦⟩)
3231sneqd 4570 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → {⟨1o, 𝑧⟩} = {⟨1o, 𝑦⟩})
33 eqid 2738 . . . . . . . . . . . . . . 15 (𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) = (𝑧𝑌 ↦ {⟨1o, 𝑧⟩})
34 snex 5349 . . . . . . . . . . . . . . 15 {⟨1o, 𝑦⟩} ∈ V
3532, 33, 34fvmpt 6857 . . . . . . . . . . . . . 14 (𝑦𝑌 → ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦) = {⟨1o, 𝑦⟩})
36 opeq12 4803 . . . . . . . . . . . . . 14 ((((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥) = {⟨∅, 𝑥⟩} ∧ ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦) = {⟨1o, 𝑦⟩}) → ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩ = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)
3730, 35, 36syl2an 595 . . . . . . . . . . . . 13 ((𝑥𝑋𝑦𝑌) → ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩ = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)
3837mpoeq3ia 7331 . . . . . . . . . . . 12 (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)
39 toponuni 21971 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
402, 39syl 17 . . . . . . . . . . . . 13 (𝜑𝑋 = 𝐽)
41 toponuni 21971 . . . . . . . . . . . . . 14 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
423, 41syl 17 . . . . . . . . . . . . 13 (𝜑𝑌 = 𝐾)
43 mpoeq12 7326 . . . . . . . . . . . . 13 ((𝑋 = 𝐽𝑌 = 𝐾) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩))
4440, 42, 43syl2anc 583 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩))
4538, 44eqtr3id 2793 . . . . . . . . . . 11 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩))
46 eqid 2738 . . . . . . . . . . . 12 𝐽 = 𝐽
47 eqid 2738 . . . . . . . . . . . 12 𝐾 = 𝐾
4846, 47, 9, 18txhmeo 22862 . . . . . . . . . . 11 (𝜑 → (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))))
4945, 48eqeltrd 2839 . . . . . . . . . 10 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))))
50 hmeocn 22819 . . . . . . . . . 10 ((𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))))
5149, 50syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))))
52 cnf2 22308 . . . . . . . . 9 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩}))) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})))) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
535, 25, 51, 52syl3anc 1369 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
54 eqid 2738 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)
5554fmpo 7881 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})) ↔ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
5653, 55sylibr 233 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
5756r19.21bi 3132 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
5857r19.21bi 3132 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
5958anasss 466 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
60 eqidd 2739 . . . 4 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩))
61 vex 3426 . . . . . . . . 9 𝑥 ∈ V
62 vex 3426 . . . . . . . . 9 𝑦 ∈ V
6361, 62op1std 7814 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
6461, 62op2ndd 7815 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
6563, 64uneq12d 4094 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st𝑧) ∪ (2nd𝑧)) = (𝑥𝑦))
6665mpompt 7366 . . . . . 6 (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧))) = (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦))
6766eqcomi 2747 . . . . 5 (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) = (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧)))
6867a1i 11 . . . 4 (𝜑 → (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) = (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧))))
6929, 34op1std 7814 . . . . . 6 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ → (1st𝑧) = {⟨∅, 𝑥⟩})
7029, 34op2ndd 7815 . . . . . 6 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ → (2nd𝑧) = {⟨1o, 𝑦⟩})
7169, 70uneq12d 4094 . . . . 5 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ → ((1st𝑧) ∪ (2nd𝑧)) = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩}))
72 df-pr 4561 . . . . 5 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
7371, 72eqtr4di 2797 . . . 4 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ → ((1st𝑧) ∪ (2nd𝑧)) = {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
7459, 60, 68, 73fmpoco 7906 . . 3 (𝜑 → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
751, 74eqtr4id 2798 . 2 (𝜑𝐹 = ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)))
76 eqid 2738 . . . . 5 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) = (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}))
77 eqid 2738 . . . . 5 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) = (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}))
78 eqid 2738 . . . . 5 (∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}) = (∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})
79 eqid 2738 . . . . 5 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) = (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}))
80 eqid 2738 . . . . 5 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) = (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}))
81 eqid 2738 . . . . 5 (𝑥 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})), 𝑦 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) ↦ (𝑥𝑦)) = (𝑥 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})), 𝑦 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) ↦ (𝑥𝑦))
82 2on 8275 . . . . . 6 2o ∈ On
8382a1i 11 . . . . 5 (𝜑 → 2o ∈ On)
84 topontop 21970 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
852, 84syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
86 topontop 21970 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
873, 86syl 17 . . . . . 6 (𝜑𝐾 ∈ Top)
88 xpscf 17193 . . . . . 6 ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}:2o⟶Top ↔ (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
8985, 87, 88sylanbrc 582 . . . . 5 (𝜑 → {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}:2o⟶Top)
90 df2o3 8282 . . . . . . 7 2o = {∅, 1o}
91 df-pr 4561 . . . . . . 7 {∅, 1o} = ({∅} ∪ {1o})
9290, 91eqtri 2766 . . . . . 6 2o = ({∅} ∪ {1o})
9392a1i 11 . . . . 5 (𝜑 → 2o = ({∅} ∪ {1o}))
94 1n0 8286 . . . . . . 7 1o ≠ ∅
9594necomi 2997 . . . . . 6 ∅ ≠ 1o
96 disjsn2 4645 . . . . . 6 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
9795, 96mp1i 13 . . . . 5 (𝜑 → ({∅} ∩ {1o}) = ∅)
9876, 77, 78, 79, 80, 81, 83, 89, 93, 97ptunhmeo 22867 . . . 4 (𝜑 → (𝑥 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})), 𝑦 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) ↦ (𝑥𝑦)) ∈ (((∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) ×t (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
99 fnpr2o 17185 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} Fn 2o)
1002, 3, 99syl2anc 583 . . . . . . . . 9 (𝜑 → {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} Fn 2o)
1017prid1 4695 . . . . . . . . . 10 ∅ ∈ {∅, 1o}
102101, 90eleqtrri 2838 . . . . . . . . 9 ∅ ∈ 2o
103 fnressn 7012 . . . . . . . . 9 (({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} Fn 2o ∧ ∅ ∈ 2o) → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}) = {⟨∅, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅)⟩})
104100, 102, 103sylancl 585 . . . . . . . 8 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}) = {⟨∅, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅)⟩})
105 fvpr0o 17187 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅) = 𝐽)
1062, 105syl 17 . . . . . . . . . 10 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅) = 𝐽)
107106opeq2d 4808 . . . . . . . . 9 (𝜑 → ⟨∅, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅)⟩ = ⟨∅, 𝐽⟩)
108107sneqd 4570 . . . . . . . 8 (𝜑 → {⟨∅, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅)⟩} = {⟨∅, 𝐽⟩})
109104, 108eqtrd 2778 . . . . . . 7 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}) = {⟨∅, 𝐽⟩})
110109fveq2d 6760 . . . . . 6 (𝜑 → (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) = (∏t‘{⟨∅, 𝐽⟩}))
111110unieqd 4850 . . . . 5 (𝜑 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) = (∏t‘{⟨∅, 𝐽⟩}))
112 1oex 8280 . . . . . . . . . . 11 1o ∈ V
113112prid2 4696 . . . . . . . . . 10 1o ∈ {∅, 1o}
114113, 90eleqtrri 2838 . . . . . . . . 9 1o ∈ 2o
115 fnressn 7012 . . . . . . . . 9 (({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} Fn 2o ∧ 1o ∈ 2o) → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}) = {⟨1o, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o)⟩})
116100, 114, 115sylancl 585 . . . . . . . 8 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}) = {⟨1o, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o)⟩})
117 fvpr1o 17188 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o) = 𝐾)
1183, 117syl 17 . . . . . . . . . 10 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o) = 𝐾)
119118opeq2d 4808 . . . . . . . . 9 (𝜑 → ⟨1o, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o)⟩ = ⟨1o, 𝐾⟩)
120119sneqd 4570 . . . . . . . 8 (𝜑 → {⟨1o, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o)⟩} = {⟨1o, 𝐾⟩})
121116, 120eqtrd 2778 . . . . . . 7 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}) = {⟨1o, 𝐾⟩})
122121fveq2d 6760 . . . . . 6 (𝜑 → (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) = (∏t‘{⟨1o, 𝐾⟩}))
123122unieqd 4850 . . . . 5 (𝜑 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) = (∏t‘{⟨1o, 𝐾⟩}))
124 eqidd 2739 . . . . 5 (𝜑 → (𝑥𝑦) = (𝑥𝑦))
125111, 123, 124mpoeq123dv 7328 . . . 4 (𝜑 → (𝑥 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})), 𝑦 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) ↦ (𝑥𝑦)) = (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)))
126110, 122oveq12d 7273 . . . . 5 (𝜑 → ((∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) ×t (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}))) = ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})))
127126oveq1d 7270 . . . 4 (𝜑 → (((∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) ×t (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})) = (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
12898, 125, 1273eltr3d 2853 . . 3 (𝜑 → (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∈ (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
129 hmeoco 22831 . . 3 (((𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))) ∧ (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∈ (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}))) → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)) ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
13049, 128, 129syl2anc 583 . 2 (𝜑 → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)) ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
13175, 130eqeltrd 2839 1 (𝜑𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  cun 3881  cin 3882  c0 4253  {csn 4558  {cpr 4560  cop 4564   cuni 4836  cmpt 5153   × cxp 5578  cres 5582  ccom 5584  Oncon0 6251   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  1oc1o 8260  2oc2o 8261  tcpt 17066  Topctop 21950  TopOnctopon 21967   Cn ccn 22283   ×t ctx 22619  Homeochmeo 22812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-fin 8695  df-fi 9100  df-topgen 17071  df-pt 17072  df-top 21951  df-topon 21968  df-bases 22004  df-cn 22286  df-cnp 22287  df-tx 22621  df-hmeo 22814
This theorem is referenced by:  xpstopnlem2  22870
  Copyright terms: Public domain W3C validator