MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpstopnlem1 Structured version   Visualization version   GIF version

Theorem xpstopnlem1 23043
Description: The function 𝐹 used in xpsval 17358 is a homeomorphism from the binary product topology to the indexed product topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
xpstopnlem1.f 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
xpstopnlem1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
xpstopnlem1.k (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
xpstopnlem1 (𝜑𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xpstopnlem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 xpstopnlem1.f . . 3 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
2 xpstopnlem1.j . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 xpstopnlem1.k . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝑌))
4 txtopon 22825 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
52, 3, 4syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
6 eqid 2737 . . . . . . . . . . . . 13 (∏t‘{⟨∅, 𝐽⟩}) = (∏t‘{⟨∅, 𝐽⟩})
7 0ex 5246 . . . . . . . . . . . . . 14 ∅ ∈ V
87a1i 11 . . . . . . . . . . . . 13 (𝜑 → ∅ ∈ V)
96, 8, 2pt1hmeo 23040 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽Homeo(∏t‘{⟨∅, 𝐽⟩})))
10 hmeocn 22994 . . . . . . . . . . . 12 ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽Homeo(∏t‘{⟨∅, 𝐽⟩})) → (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽 Cn (∏t‘{⟨∅, 𝐽⟩})))
11 cntop2 22475 . . . . . . . . . . . 12 ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽 Cn (∏t‘{⟨∅, 𝐽⟩})) → (∏t‘{⟨∅, 𝐽⟩}) ∈ Top)
129, 10, 113syl 18 . . . . . . . . . . 11 (𝜑 → (∏t‘{⟨∅, 𝐽⟩}) ∈ Top)
13 toptopon2 22150 . . . . . . . . . . 11 ((∏t‘{⟨∅, 𝐽⟩}) ∈ Top ↔ (∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})))
1412, 13sylib 217 . . . . . . . . . 10 (𝜑 → (∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})))
15 eqid 2737 . . . . . . . . . . . . 13 (∏t‘{⟨1o, 𝐾⟩}) = (∏t‘{⟨1o, 𝐾⟩})
16 1on 8358 . . . . . . . . . . . . . 14 1o ∈ On
1716a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1o ∈ On)
1815, 17, 3pt1hmeo 23040 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) ∈ (𝐾Homeo(∏t‘{⟨1o, 𝐾⟩})))
19 hmeocn 22994 . . . . . . . . . . . 12 ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) ∈ (𝐾Homeo(∏t‘{⟨1o, 𝐾⟩})) → (𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) ∈ (𝐾 Cn (∏t‘{⟨1o, 𝐾⟩})))
20 cntop2 22475 . . . . . . . . . . . 12 ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) ∈ (𝐾 Cn (∏t‘{⟨1o, 𝐾⟩})) → (∏t‘{⟨1o, 𝐾⟩}) ∈ Top)
2118, 19, 203syl 18 . . . . . . . . . . 11 (𝜑 → (∏t‘{⟨1o, 𝐾⟩}) ∈ Top)
22 toptopon2 22150 . . . . . . . . . . 11 ((∏t‘{⟨1o, 𝐾⟩}) ∈ Top ↔ (∏t‘{⟨1o, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1o, 𝐾⟩})))
2321, 22sylib 217 . . . . . . . . . 10 (𝜑 → (∏t‘{⟨1o, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1o, 𝐾⟩})))
24 txtopon 22825 . . . . . . . . . 10 (((∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})) ∧ (∏t‘{⟨1o, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1o, 𝐾⟩}))) → ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩}))))
2514, 23, 24syl2anc 584 . . . . . . . . 9 (𝜑 → ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩}))))
26 opeq2 4816 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → ⟨∅, 𝑧⟩ = ⟨∅, 𝑥⟩)
2726sneqd 4583 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → {⟨∅, 𝑧⟩} = {⟨∅, 𝑥⟩})
28 eqid 2737 . . . . . . . . . . . . . . 15 (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) = (𝑧𝑋 ↦ {⟨∅, 𝑧⟩})
29 snex 5369 . . . . . . . . . . . . . . 15 {⟨∅, 𝑥⟩} ∈ V
3027, 28, 29fvmpt 6915 . . . . . . . . . . . . . 14 (𝑥𝑋 → ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥) = {⟨∅, 𝑥⟩})
31 opeq2 4816 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → ⟨1o, 𝑧⟩ = ⟨1o, 𝑦⟩)
3231sneqd 4583 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → {⟨1o, 𝑧⟩} = {⟨1o, 𝑦⟩})
33 eqid 2737 . . . . . . . . . . . . . . 15 (𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) = (𝑧𝑌 ↦ {⟨1o, 𝑧⟩})
34 snex 5369 . . . . . . . . . . . . . . 15 {⟨1o, 𝑦⟩} ∈ V
3532, 33, 34fvmpt 6915 . . . . . . . . . . . . . 14 (𝑦𝑌 → ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦) = {⟨1o, 𝑦⟩})
36 opeq12 4817 . . . . . . . . . . . . . 14 ((((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥) = {⟨∅, 𝑥⟩} ∧ ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦) = {⟨1o, 𝑦⟩}) → ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩ = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)
3730, 35, 36syl2an 596 . . . . . . . . . . . . 13 ((𝑥𝑋𝑦𝑌) → ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩ = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)
3837mpoeq3ia 7395 . . . . . . . . . . . 12 (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)
39 toponuni 22146 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
402, 39syl 17 . . . . . . . . . . . . 13 (𝜑𝑋 = 𝐽)
41 toponuni 22146 . . . . . . . . . . . . . 14 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
423, 41syl 17 . . . . . . . . . . . . 13 (𝜑𝑌 = 𝐾)
43 mpoeq12 7390 . . . . . . . . . . . . 13 ((𝑋 = 𝐽𝑌 = 𝐾) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩))
4440, 42, 43syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩))
4538, 44eqtr3id 2791 . . . . . . . . . . 11 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩))
46 eqid 2737 . . . . . . . . . . . 12 𝐽 = 𝐽
47 eqid 2737 . . . . . . . . . . . 12 𝐾 = 𝐾
4846, 47, 9, 18txhmeo 23037 . . . . . . . . . . 11 (𝜑 → (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))))
4945, 48eqeltrd 2838 . . . . . . . . . 10 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))))
50 hmeocn 22994 . . . . . . . . . 10 ((𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))))
5149, 50syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))))
52 cnf2 22483 . . . . . . . . 9 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩}))) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})))) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
535, 25, 51, 52syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
54 eqid 2737 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)
5554fmpo 7955 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})) ↔ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
5653, 55sylibr 233 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
5756r19.21bi 3231 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
5857r19.21bi 3231 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
5958anasss 467 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
60 eqidd 2738 . . . 4 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩))
61 vex 3445 . . . . . . . . 9 𝑥 ∈ V
62 vex 3445 . . . . . . . . 9 𝑦 ∈ V
6361, 62op1std 7888 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
6461, 62op2ndd 7889 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
6563, 64uneq12d 4109 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st𝑧) ∪ (2nd𝑧)) = (𝑥𝑦))
6665mpompt 7430 . . . . . 6 (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧))) = (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦))
6766eqcomi 2746 . . . . 5 (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) = (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧)))
6867a1i 11 . . . 4 (𝜑 → (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) = (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧))))
6929, 34op1std 7888 . . . . . 6 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ → (1st𝑧) = {⟨∅, 𝑥⟩})
7029, 34op2ndd 7889 . . . . . 6 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ → (2nd𝑧) = {⟨1o, 𝑦⟩})
7169, 70uneq12d 4109 . . . . 5 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ → ((1st𝑧) ∪ (2nd𝑧)) = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩}))
72 df-pr 4574 . . . . 5 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
7371, 72eqtr4di 2795 . . . 4 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ → ((1st𝑧) ∪ (2nd𝑧)) = {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
7459, 60, 68, 73fmpoco 7982 . . 3 (𝜑 → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
751, 74eqtr4id 2796 . 2 (𝜑𝐹 = ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)))
76 eqid 2737 . . . . 5 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) = (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}))
77 eqid 2737 . . . . 5 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) = (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}))
78 eqid 2737 . . . . 5 (∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}) = (∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})
79 eqid 2737 . . . . 5 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) = (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}))
80 eqid 2737 . . . . 5 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) = (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}))
81 eqid 2737 . . . . 5 (𝑥 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})), 𝑦 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) ↦ (𝑥𝑦)) = (𝑥 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})), 𝑦 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) ↦ (𝑥𝑦))
82 2on 8360 . . . . . 6 2o ∈ On
8382a1i 11 . . . . 5 (𝜑 → 2o ∈ On)
84 topontop 22145 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
852, 84syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
86 topontop 22145 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
873, 86syl 17 . . . . . 6 (𝜑𝐾 ∈ Top)
88 xpscf 17353 . . . . . 6 ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}:2o⟶Top ↔ (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
8985, 87, 88sylanbrc 583 . . . . 5 (𝜑 → {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}:2o⟶Top)
90 df2o3 8354 . . . . . . 7 2o = {∅, 1o}
91 df-pr 4574 . . . . . . 7 {∅, 1o} = ({∅} ∪ {1o})
9290, 91eqtri 2765 . . . . . 6 2o = ({∅} ∪ {1o})
9392a1i 11 . . . . 5 (𝜑 → 2o = ({∅} ∪ {1o}))
94 1n0 8368 . . . . . . 7 1o ≠ ∅
9594necomi 2996 . . . . . 6 ∅ ≠ 1o
96 disjsn2 4658 . . . . . 6 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
9795, 96mp1i 13 . . . . 5 (𝜑 → ({∅} ∩ {1o}) = ∅)
9876, 77, 78, 79, 80, 81, 83, 89, 93, 97ptunhmeo 23042 . . . 4 (𝜑 → (𝑥 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})), 𝑦 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) ↦ (𝑥𝑦)) ∈ (((∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) ×t (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
99 fnpr2o 17345 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} Fn 2o)
1002, 3, 99syl2anc 584 . . . . . . . . 9 (𝜑 → {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} Fn 2o)
1017prid1 4708 . . . . . . . . . 10 ∅ ∈ {∅, 1o}
102101, 90eleqtrri 2837 . . . . . . . . 9 ∅ ∈ 2o
103 fnressn 7070 . . . . . . . . 9 (({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} Fn 2o ∧ ∅ ∈ 2o) → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}) = {⟨∅, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅)⟩})
104100, 102, 103sylancl 586 . . . . . . . 8 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}) = {⟨∅, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅)⟩})
105 fvpr0o 17347 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅) = 𝐽)
1062, 105syl 17 . . . . . . . . . 10 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅) = 𝐽)
107106opeq2d 4822 . . . . . . . . 9 (𝜑 → ⟨∅, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅)⟩ = ⟨∅, 𝐽⟩)
108107sneqd 4583 . . . . . . . 8 (𝜑 → {⟨∅, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅)⟩} = {⟨∅, 𝐽⟩})
109104, 108eqtrd 2777 . . . . . . 7 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}) = {⟨∅, 𝐽⟩})
110109fveq2d 6816 . . . . . 6 (𝜑 → (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) = (∏t‘{⟨∅, 𝐽⟩}))
111110unieqd 4864 . . . . 5 (𝜑 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) = (∏t‘{⟨∅, 𝐽⟩}))
112 1oex 8356 . . . . . . . . . . 11 1o ∈ V
113112prid2 4709 . . . . . . . . . 10 1o ∈ {∅, 1o}
114113, 90eleqtrri 2837 . . . . . . . . 9 1o ∈ 2o
115 fnressn 7070 . . . . . . . . 9 (({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} Fn 2o ∧ 1o ∈ 2o) → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}) = {⟨1o, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o)⟩})
116100, 114, 115sylancl 586 . . . . . . . 8 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}) = {⟨1o, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o)⟩})
117 fvpr1o 17348 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o) = 𝐾)
1183, 117syl 17 . . . . . . . . . 10 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o) = 𝐾)
119118opeq2d 4822 . . . . . . . . 9 (𝜑 → ⟨1o, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o)⟩ = ⟨1o, 𝐾⟩)
120119sneqd 4583 . . . . . . . 8 (𝜑 → {⟨1o, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o)⟩} = {⟨1o, 𝐾⟩})
121116, 120eqtrd 2777 . . . . . . 7 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}) = {⟨1o, 𝐾⟩})
122121fveq2d 6816 . . . . . 6 (𝜑 → (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) = (∏t‘{⟨1o, 𝐾⟩}))
123122unieqd 4864 . . . . 5 (𝜑 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) = (∏t‘{⟨1o, 𝐾⟩}))
124 eqidd 2738 . . . . 5 (𝜑 → (𝑥𝑦) = (𝑥𝑦))
125111, 123, 124mpoeq123dv 7392 . . . 4 (𝜑 → (𝑥 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})), 𝑦 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) ↦ (𝑥𝑦)) = (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)))
126110, 122oveq12d 7335 . . . . 5 (𝜑 → ((∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) ×t (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}))) = ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})))
127126oveq1d 7332 . . . 4 (𝜑 → (((∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) ×t (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})) = (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
12898, 125, 1273eltr3d 2852 . . 3 (𝜑 → (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∈ (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
129 hmeoco 23006 . . 3 (((𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))) ∧ (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∈ (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}))) → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)) ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
13049, 128, 129syl2anc 584 . 2 (𝜑 → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)) ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
13175, 130eqeltrd 2838 1 (𝜑𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wne 2941  wral 3062  Vcvv 3441  cun 3895  cin 3896  c0 4267  {csn 4571  {cpr 4573  cop 4577   cuni 4850  cmpt 5170   × cxp 5606  cres 5610  ccom 5612  Oncon0 6289   Fn wfn 6461  wf 6462  cfv 6466  (class class class)co 7317  cmpo 7319  1st c1st 7876  2nd c2nd 7877  1oc1o 8339  2oc2o 8340  tcpt 17226  Topctop 22125  TopOnctopon 22142   Cn ccn 22458   ×t ctx 22794  Homeochmeo 22987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-iin 4940  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-ov 7320  df-oprab 7321  df-mpo 7322  df-om 7760  df-1st 7878  df-2nd 7879  df-1o 8346  df-2o 8347  df-er 8548  df-map 8667  df-ixp 8736  df-en 8784  df-dom 8785  df-fin 8787  df-fi 9247  df-topgen 17231  df-pt 17232  df-top 22126  df-topon 22143  df-bases 22179  df-cn 22461  df-cnp 22462  df-tx 22796  df-hmeo 22989
This theorem is referenced by:  xpstopnlem2  23045
  Copyright terms: Public domain W3C validator