MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpstopnlem1 Structured version   Visualization version   GIF version

Theorem xpstopnlem1 22960
Description: The function 𝐹 used in xpsval 17281 is a homeomorphism from the binary product topology to the indexed product topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
xpstopnlem1.f 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
xpstopnlem1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
xpstopnlem1.k (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
xpstopnlem1 (𝜑𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xpstopnlem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 xpstopnlem1.f . . 3 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
2 xpstopnlem1.j . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 xpstopnlem1.k . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝑌))
4 txtopon 22742 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
52, 3, 4syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
6 eqid 2738 . . . . . . . . . . . . 13 (∏t‘{⟨∅, 𝐽⟩}) = (∏t‘{⟨∅, 𝐽⟩})
7 0ex 5231 . . . . . . . . . . . . . 14 ∅ ∈ V
87a1i 11 . . . . . . . . . . . . 13 (𝜑 → ∅ ∈ V)
96, 8, 2pt1hmeo 22957 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽Homeo(∏t‘{⟨∅, 𝐽⟩})))
10 hmeocn 22911 . . . . . . . . . . . 12 ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽Homeo(∏t‘{⟨∅, 𝐽⟩})) → (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽 Cn (∏t‘{⟨∅, 𝐽⟩})))
11 cntop2 22392 . . . . . . . . . . . 12 ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽 Cn (∏t‘{⟨∅, 𝐽⟩})) → (∏t‘{⟨∅, 𝐽⟩}) ∈ Top)
129, 10, 113syl 18 . . . . . . . . . . 11 (𝜑 → (∏t‘{⟨∅, 𝐽⟩}) ∈ Top)
13 toptopon2 22067 . . . . . . . . . . 11 ((∏t‘{⟨∅, 𝐽⟩}) ∈ Top ↔ (∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})))
1412, 13sylib 217 . . . . . . . . . 10 (𝜑 → (∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})))
15 eqid 2738 . . . . . . . . . . . . 13 (∏t‘{⟨1o, 𝐾⟩}) = (∏t‘{⟨1o, 𝐾⟩})
16 1on 8309 . . . . . . . . . . . . . 14 1o ∈ On
1716a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1o ∈ On)
1815, 17, 3pt1hmeo 22957 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) ∈ (𝐾Homeo(∏t‘{⟨1o, 𝐾⟩})))
19 hmeocn 22911 . . . . . . . . . . . 12 ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) ∈ (𝐾Homeo(∏t‘{⟨1o, 𝐾⟩})) → (𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) ∈ (𝐾 Cn (∏t‘{⟨1o, 𝐾⟩})))
20 cntop2 22392 . . . . . . . . . . . 12 ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) ∈ (𝐾 Cn (∏t‘{⟨1o, 𝐾⟩})) → (∏t‘{⟨1o, 𝐾⟩}) ∈ Top)
2118, 19, 203syl 18 . . . . . . . . . . 11 (𝜑 → (∏t‘{⟨1o, 𝐾⟩}) ∈ Top)
22 toptopon2 22067 . . . . . . . . . . 11 ((∏t‘{⟨1o, 𝐾⟩}) ∈ Top ↔ (∏t‘{⟨1o, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1o, 𝐾⟩})))
2321, 22sylib 217 . . . . . . . . . 10 (𝜑 → (∏t‘{⟨1o, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1o, 𝐾⟩})))
24 txtopon 22742 . . . . . . . . . 10 (((∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})) ∧ (∏t‘{⟨1o, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1o, 𝐾⟩}))) → ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩}))))
2514, 23, 24syl2anc 584 . . . . . . . . 9 (𝜑 → ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩}))))
26 opeq2 4805 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → ⟨∅, 𝑧⟩ = ⟨∅, 𝑥⟩)
2726sneqd 4573 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → {⟨∅, 𝑧⟩} = {⟨∅, 𝑥⟩})
28 eqid 2738 . . . . . . . . . . . . . . 15 (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) = (𝑧𝑋 ↦ {⟨∅, 𝑧⟩})
29 snex 5354 . . . . . . . . . . . . . . 15 {⟨∅, 𝑥⟩} ∈ V
3027, 28, 29fvmpt 6875 . . . . . . . . . . . . . 14 (𝑥𝑋 → ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥) = {⟨∅, 𝑥⟩})
31 opeq2 4805 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → ⟨1o, 𝑧⟩ = ⟨1o, 𝑦⟩)
3231sneqd 4573 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → {⟨1o, 𝑧⟩} = {⟨1o, 𝑦⟩})
33 eqid 2738 . . . . . . . . . . . . . . 15 (𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) = (𝑧𝑌 ↦ {⟨1o, 𝑧⟩})
34 snex 5354 . . . . . . . . . . . . . . 15 {⟨1o, 𝑦⟩} ∈ V
3532, 33, 34fvmpt 6875 . . . . . . . . . . . . . 14 (𝑦𝑌 → ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦) = {⟨1o, 𝑦⟩})
36 opeq12 4806 . . . . . . . . . . . . . 14 ((((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥) = {⟨∅, 𝑥⟩} ∧ ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦) = {⟨1o, 𝑦⟩}) → ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩ = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)
3730, 35, 36syl2an 596 . . . . . . . . . . . . 13 ((𝑥𝑋𝑦𝑌) → ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩ = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)
3837mpoeq3ia 7353 . . . . . . . . . . . 12 (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)
39 toponuni 22063 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
402, 39syl 17 . . . . . . . . . . . . 13 (𝜑𝑋 = 𝐽)
41 toponuni 22063 . . . . . . . . . . . . . 14 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
423, 41syl 17 . . . . . . . . . . . . 13 (𝜑𝑌 = 𝐾)
43 mpoeq12 7348 . . . . . . . . . . . . 13 ((𝑋 = 𝐽𝑌 = 𝐾) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩))
4440, 42, 43syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩))
4538, 44eqtr3id 2792 . . . . . . . . . . 11 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩))
46 eqid 2738 . . . . . . . . . . . 12 𝐽 = 𝐽
47 eqid 2738 . . . . . . . . . . . 12 𝐾 = 𝐾
4846, 47, 9, 18txhmeo 22954 . . . . . . . . . . 11 (𝜑 → (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))))
4945, 48eqeltrd 2839 . . . . . . . . . 10 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))))
50 hmeocn 22911 . . . . . . . . . 10 ((𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))))
5149, 50syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))))
52 cnf2 22400 . . . . . . . . 9 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩}))) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})))) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
535, 25, 51, 52syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
54 eqid 2738 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)
5554fmpo 7908 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})) ↔ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
5653, 55sylibr 233 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
5756r19.21bi 3134 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
5857r19.21bi 3134 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
5958anasss 467 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
60 eqidd 2739 . . . 4 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩))
61 vex 3436 . . . . . . . . 9 𝑥 ∈ V
62 vex 3436 . . . . . . . . 9 𝑦 ∈ V
6361, 62op1std 7841 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
6461, 62op2ndd 7842 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
6563, 64uneq12d 4098 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st𝑧) ∪ (2nd𝑧)) = (𝑥𝑦))
6665mpompt 7388 . . . . . 6 (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧))) = (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦))
6766eqcomi 2747 . . . . 5 (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) = (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧)))
6867a1i 11 . . . 4 (𝜑 → (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) = (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧))))
6929, 34op1std 7841 . . . . . 6 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ → (1st𝑧) = {⟨∅, 𝑥⟩})
7029, 34op2ndd 7842 . . . . . 6 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ → (2nd𝑧) = {⟨1o, 𝑦⟩})
7169, 70uneq12d 4098 . . . . 5 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ → ((1st𝑧) ∪ (2nd𝑧)) = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩}))
72 df-pr 4564 . . . . 5 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
7371, 72eqtr4di 2796 . . . 4 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ → ((1st𝑧) ∪ (2nd𝑧)) = {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
7459, 60, 68, 73fmpoco 7935 . . 3 (𝜑 → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
751, 74eqtr4id 2797 . 2 (𝜑𝐹 = ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)))
76 eqid 2738 . . . . 5 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) = (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}))
77 eqid 2738 . . . . 5 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) = (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}))
78 eqid 2738 . . . . 5 (∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}) = (∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})
79 eqid 2738 . . . . 5 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) = (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}))
80 eqid 2738 . . . . 5 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) = (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}))
81 eqid 2738 . . . . 5 (𝑥 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})), 𝑦 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) ↦ (𝑥𝑦)) = (𝑥 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})), 𝑦 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) ↦ (𝑥𝑦))
82 2on 8311 . . . . . 6 2o ∈ On
8382a1i 11 . . . . 5 (𝜑 → 2o ∈ On)
84 topontop 22062 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
852, 84syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
86 topontop 22062 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
873, 86syl 17 . . . . . 6 (𝜑𝐾 ∈ Top)
88 xpscf 17276 . . . . . 6 ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}:2o⟶Top ↔ (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
8985, 87, 88sylanbrc 583 . . . . 5 (𝜑 → {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}:2o⟶Top)
90 df2o3 8305 . . . . . . 7 2o = {∅, 1o}
91 df-pr 4564 . . . . . . 7 {∅, 1o} = ({∅} ∪ {1o})
9290, 91eqtri 2766 . . . . . 6 2o = ({∅} ∪ {1o})
9392a1i 11 . . . . 5 (𝜑 → 2o = ({∅} ∪ {1o}))
94 1n0 8318 . . . . . . 7 1o ≠ ∅
9594necomi 2998 . . . . . 6 ∅ ≠ 1o
96 disjsn2 4648 . . . . . 6 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
9795, 96mp1i 13 . . . . 5 (𝜑 → ({∅} ∩ {1o}) = ∅)
9876, 77, 78, 79, 80, 81, 83, 89, 93, 97ptunhmeo 22959 . . . 4 (𝜑 → (𝑥 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})), 𝑦 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) ↦ (𝑥𝑦)) ∈ (((∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) ×t (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
99 fnpr2o 17268 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} Fn 2o)
1002, 3, 99syl2anc 584 . . . . . . . . 9 (𝜑 → {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} Fn 2o)
1017prid1 4698 . . . . . . . . . 10 ∅ ∈ {∅, 1o}
102101, 90eleqtrri 2838 . . . . . . . . 9 ∅ ∈ 2o
103 fnressn 7030 . . . . . . . . 9 (({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} Fn 2o ∧ ∅ ∈ 2o) → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}) = {⟨∅, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅)⟩})
104100, 102, 103sylancl 586 . . . . . . . 8 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}) = {⟨∅, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅)⟩})
105 fvpr0o 17270 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅) = 𝐽)
1062, 105syl 17 . . . . . . . . . 10 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅) = 𝐽)
107106opeq2d 4811 . . . . . . . . 9 (𝜑 → ⟨∅, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅)⟩ = ⟨∅, 𝐽⟩)
108107sneqd 4573 . . . . . . . 8 (𝜑 → {⟨∅, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅)⟩} = {⟨∅, 𝐽⟩})
109104, 108eqtrd 2778 . . . . . . 7 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}) = {⟨∅, 𝐽⟩})
110109fveq2d 6778 . . . . . 6 (𝜑 → (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) = (∏t‘{⟨∅, 𝐽⟩}))
111110unieqd 4853 . . . . 5 (𝜑 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) = (∏t‘{⟨∅, 𝐽⟩}))
112 1oex 8307 . . . . . . . . . . 11 1o ∈ V
113112prid2 4699 . . . . . . . . . 10 1o ∈ {∅, 1o}
114113, 90eleqtrri 2838 . . . . . . . . 9 1o ∈ 2o
115 fnressn 7030 . . . . . . . . 9 (({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} Fn 2o ∧ 1o ∈ 2o) → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}) = {⟨1o, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o)⟩})
116100, 114, 115sylancl 586 . . . . . . . 8 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}) = {⟨1o, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o)⟩})
117 fvpr1o 17271 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o) = 𝐾)
1183, 117syl 17 . . . . . . . . . 10 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o) = 𝐾)
119118opeq2d 4811 . . . . . . . . 9 (𝜑 → ⟨1o, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o)⟩ = ⟨1o, 𝐾⟩)
120119sneqd 4573 . . . . . . . 8 (𝜑 → {⟨1o, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o)⟩} = {⟨1o, 𝐾⟩})
121116, 120eqtrd 2778 . . . . . . 7 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}) = {⟨1o, 𝐾⟩})
122121fveq2d 6778 . . . . . 6 (𝜑 → (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) = (∏t‘{⟨1o, 𝐾⟩}))
123122unieqd 4853 . . . . 5 (𝜑 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) = (∏t‘{⟨1o, 𝐾⟩}))
124 eqidd 2739 . . . . 5 (𝜑 → (𝑥𝑦) = (𝑥𝑦))
125111, 123, 124mpoeq123dv 7350 . . . 4 (𝜑 → (𝑥 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})), 𝑦 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) ↦ (𝑥𝑦)) = (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)))
126110, 122oveq12d 7293 . . . . 5 (𝜑 → ((∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) ×t (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}))) = ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})))
127126oveq1d 7290 . . . 4 (𝜑 → (((∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) ×t (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})) = (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
12898, 125, 1273eltr3d 2853 . . 3 (𝜑 → (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∈ (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
129 hmeoco 22923 . . 3 (((𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))) ∧ (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∈ (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}))) → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)) ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
13049, 128, 129syl2anc 584 . 2 (𝜑 → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)) ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
13175, 130eqeltrd 2839 1 (𝜑𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3432  cun 3885  cin 3886  c0 4256  {csn 4561  {cpr 4563  cop 4567   cuni 4839  cmpt 5157   × cxp 5587  cres 5591  ccom 5593  Oncon0 6266   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  1st c1st 7829  2nd c2nd 7830  1oc1o 8290  2oc2o 8291  tcpt 17149  Topctop 22042  TopOnctopon 22059   Cn ccn 22375   ×t ctx 22711  Homeochmeo 22904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-fin 8737  df-fi 9170  df-topgen 17154  df-pt 17155  df-top 22043  df-topon 22060  df-bases 22096  df-cn 22378  df-cnp 22379  df-tx 22713  df-hmeo 22906
This theorem is referenced by:  xpstopnlem2  22962
  Copyright terms: Public domain W3C validator