Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmod1zr Structured version   Visualization version   GIF version

Theorem lmod1zr 48482
Description: The (smallest) structure representing a zero module over a zero ring. (Contributed by AV, 29-Apr-2019.)
Hypotheses
Ref Expression
lmod1zr.r 𝑅 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
lmod1zr.m 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩})
Assertion
Ref Expression
lmod1zr ((𝐼𝑉𝑍𝑊) → 𝑀 ∈ LMod)

Proof of Theorem lmod1zr
Dummy variables 𝑎 𝑏 𝑖 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmod1zr.m . . 3 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩})
2 elsni 4606 . . . . . . . . . . 11 (𝑝 ∈ {⟨𝑍, 𝐼⟩} → 𝑝 = ⟨𝑍, 𝐼⟩)
3 fveq2 6858 . . . . . . . . . . . . 13 (𝑝 = ⟨𝑍, 𝐼⟩ → (2nd𝑝) = (2nd ‘⟨𝑍, 𝐼⟩))
43adantl 481 . . . . . . . . . . . 12 (((𝐼𝑉𝑍𝑊) ∧ 𝑝 = ⟨𝑍, 𝐼⟩) → (2nd𝑝) = (2nd ‘⟨𝑍, 𝐼⟩))
5 op2ndg 7981 . . . . . . . . . . . . . . 15 ((𝑍𝑊𝐼𝑉) → (2nd ‘⟨𝑍, 𝐼⟩) = 𝐼)
65ancoms 458 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑍𝑊) → (2nd ‘⟨𝑍, 𝐼⟩) = 𝐼)
7 snidg 4624 . . . . . . . . . . . . . . 15 (𝐼𝑉𝐼 ∈ {𝐼})
87adantr 480 . . . . . . . . . . . . . 14 ((𝐼𝑉𝑍𝑊) → 𝐼 ∈ {𝐼})
96, 8eqeltrd 2828 . . . . . . . . . . . . 13 ((𝐼𝑉𝑍𝑊) → (2nd ‘⟨𝑍, 𝐼⟩) ∈ {𝐼})
109adantr 480 . . . . . . . . . . . 12 (((𝐼𝑉𝑍𝑊) ∧ 𝑝 = ⟨𝑍, 𝐼⟩) → (2nd ‘⟨𝑍, 𝐼⟩) ∈ {𝐼})
114, 10eqeltrd 2828 . . . . . . . . . . 11 (((𝐼𝑉𝑍𝑊) ∧ 𝑝 = ⟨𝑍, 𝐼⟩) → (2nd𝑝) ∈ {𝐼})
122, 11sylan2 593 . . . . . . . . . 10 (((𝐼𝑉𝑍𝑊) ∧ 𝑝 ∈ {⟨𝑍, 𝐼⟩}) → (2nd𝑝) ∈ {𝐼})
1312fmpttd 7087 . . . . . . . . 9 ((𝐼𝑉𝑍𝑊) → (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)):{⟨𝑍, 𝐼⟩}⟶{𝐼})
14 opex 5424 . . . . . . . . . 10 𝑍, 𝐼⟩ ∈ V
15 simpl 482 . . . . . . . . . 10 ((𝐼𝑉𝑍𝑊) → 𝐼𝑉)
16 fsng 7109 . . . . . . . . . 10 ((⟨𝑍, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ((𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)):{⟨𝑍, 𝐼⟩}⟶{𝐼} ↔ (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}))
1714, 15, 16sylancr 587 . . . . . . . . 9 ((𝐼𝑉𝑍𝑊) → ((𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)):{⟨𝑍, 𝐼⟩}⟶{𝐼} ↔ (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}))
1813, 17mpbid 232 . . . . . . . 8 ((𝐼𝑉𝑍𝑊) → (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = {⟨⟨𝑍, 𝐼⟩, 𝐼⟩})
19 xpsng 7111 . . . . . . . . . . 11 ((𝑍𝑊𝐼𝑉) → ({𝑍} × {𝐼}) = {⟨𝑍, 𝐼⟩})
2019ancoms 458 . . . . . . . . . 10 ((𝐼𝑉𝑍𝑊) → ({𝑍} × {𝐼}) = {⟨𝑍, 𝐼⟩})
2120eqcomd 2735 . . . . . . . . 9 ((𝐼𝑉𝑍𝑊) → {⟨𝑍, 𝐼⟩} = ({𝑍} × {𝐼}))
2221mpteq1d 5197 . . . . . . . 8 ((𝐼𝑉𝑍𝑊) → (𝑝 ∈ {⟨𝑍, 𝐼⟩} ↦ (2nd𝑝)) = (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd𝑝)))
2318, 22eqtr3d 2766 . . . . . . 7 ((𝐼𝑉𝑍𝑊) → {⟨⟨𝑍, 𝐼⟩, 𝐼⟩} = (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd𝑝)))
24 vex 3451 . . . . . . . . . 10 𝑧 ∈ V
25 vex 3451 . . . . . . . . . 10 𝑖 ∈ V
2624, 25op2ndd 7979 . . . . . . . . 9 (𝑝 = ⟨𝑧, 𝑖⟩ → (2nd𝑝) = 𝑖)
2726mpompt 7503 . . . . . . . 8 (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd𝑝)) = (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖)
2827a1i 11 . . . . . . 7 ((𝐼𝑉𝑍𝑊) → (𝑝 ∈ ({𝑍} × {𝐼}) ↦ (2nd𝑝)) = (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖))
29 snex 5391 . . . . . . . . 9 {𝑍} ∈ V
30 lmod1zr.r . . . . . . . . . 10 𝑅 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}
3130rngbase 17262 . . . . . . . . 9 ({𝑍} ∈ V → {𝑍} = (Base‘𝑅))
3229, 31mp1i 13 . . . . . . . 8 ((𝐼𝑉𝑍𝑊) → {𝑍} = (Base‘𝑅))
33 eqidd 2730 . . . . . . . 8 ((𝐼𝑉𝑍𝑊) → {𝐼} = {𝐼})
34 mpoeq12 7462 . . . . . . . 8 (({𝑍} = (Base‘𝑅) ∧ {𝐼} = {𝐼}) → (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖) = (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖))
3532, 33, 34syl2anc 584 . . . . . . 7 ((𝐼𝑉𝑍𝑊) → (𝑧 ∈ {𝑍}, 𝑖 ∈ {𝐼} ↦ 𝑖) = (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖))
3623, 28, 353eqtrd 2768 . . . . . 6 ((𝐼𝑉𝑍𝑊) → {⟨⟨𝑍, 𝐼⟩, 𝐼⟩} = (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖))
3736opeq2d 4844 . . . . 5 ((𝐼𝑉𝑍𝑊) → ⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩ = ⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩)
3837sneqd 4601 . . . 4 ((𝐼𝑉𝑍𝑊) → {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩} = {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩})
3938uneq2d 4131 . . 3 ((𝐼𝑉𝑍𝑊) → ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), {⟨⟨𝑍, 𝐼⟩, 𝐼⟩}⟩}) = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}))
401, 39eqtrid 2776 . 2 ((𝐼𝑉𝑍𝑊) → 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}))
4130ring1 20219 . . 3 (𝑍𝑊𝑅 ∈ Ring)
42 eqidd 2730 . . . . . . . 8 (𝑧 = 𝑎𝑖 = 𝑖)
43 id 22 . . . . . . . 8 (𝑖 = 𝑏𝑖 = 𝑏)
4442, 43cbvmpov 7484 . . . . . . 7 (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖) = (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)
4544opeq2i 4841 . . . . . 6 ⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩ = ⟨( ·𝑠 ‘ndx), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)⟩
4645sneqi 4600 . . . . 5 {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩} = {⟨( ·𝑠 ‘ndx), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)⟩}
4746uneq2i 4128 . . . 4 ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}) = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑎 ∈ (Base‘𝑅), 𝑏 ∈ {𝐼} ↦ 𝑏)⟩})
4847lmod1 48481 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}) ∈ LMod)
4941, 48sylan2 593 . 2 ((𝐼𝑉𝑍𝑊) → ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑧 ∈ (Base‘𝑅), 𝑖 ∈ {𝐼} ↦ 𝑖)⟩}) ∈ LMod)
5040, 49eqeltrd 2828 1 ((𝐼𝑉𝑍𝑊) → 𝑀 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  cun 3912  {csn 4589  {ctp 4593  cop 4595  cmpt 5188   × cxp 5636  wf 6507  cfv 6511  cmpo 7389  2nd c2nd 7967  ndxcnx 17163  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  Ringcrg 20142  LModclmod 20766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-mgp 20050  df-ur 20091  df-ring 20144  df-lmod 20768
This theorem is referenced by:  lmodn0  48484  lvecpsslmod  48496
  Copyright terms: Public domain W3C validator