MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptk1p Structured version   Visualization version   GIF version

Theorem cnmptk1p 23628
Description: The evaluation of a curried function by a one-arg function is jointly continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptk1p.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptk1p.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptk1p.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmptk1p.n (𝜑𝐾 ∈ 𝑛-Locally Comp)
cnmptk1p.a (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
cnmptk1p.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
cnmptk1p.c (𝑦 = 𝐵𝐴 = 𝐶)
Assertion
Ref Expression
cnmptk1p (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝐿   𝑦,𝐵   𝑦,𝐶   𝑥,𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦   𝑦,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑥)   𝐽(𝑦)   𝐾(𝑦)   𝐿(𝑦)   𝑍(𝑥)

Proof of Theorem cnmptk1p
Dummy variables 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . 4 (𝑦𝑌𝐴) = (𝑦𝑌𝐴)
2 cnmptk1p.c . . . 4 (𝑦 = 𝐵𝐴 = 𝐶)
3 cnmptk1p.j . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
4 cnmptk1p.k . . . . . 6 (𝜑𝐾 ∈ (TopOn‘𝑌))
5 cnmptk1p.b . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
6 cnf2 23192 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐵):𝑋𝑌)
73, 4, 5, 6syl3anc 1373 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋𝑌)
87fvmptelcdm 7108 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑌)
92eleq1d 2820 . . . . 5 (𝑦 = 𝐵 → (𝐴𝑍𝐶𝑍))
104adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
11 cnmptk1p.l . . . . . . . 8 (𝜑𝐿 ∈ (TopOn‘𝑍))
1211adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐿 ∈ (TopOn‘𝑍))
13 cnmptk1p.n . . . . . . . . . . 11 (𝜑𝐾 ∈ 𝑛-Locally Comp)
14 nllytop 23416 . . . . . . . . . . 11 (𝐾 ∈ 𝑛-Locally Comp → 𝐾 ∈ Top)
1513, 14syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ Top)
16 topontop 22856 . . . . . . . . . . 11 (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top)
1711, 16syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ Top)
18 eqid 2736 . . . . . . . . . . 11 (𝐿ko 𝐾) = (𝐿ko 𝐾)
1918xkotopon 23543 . . . . . . . . . 10 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
2015, 17, 19syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
21 cnmptk1p.a . . . . . . . . 9 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
22 cnf2 23192 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾))) → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
233, 20, 21, 22syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
2423fvmptelcdm 7108 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
25 cnf2 23192 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐴):𝑌𝑍)
2610, 12, 24, 25syl3anc 1373 . . . . . 6 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴):𝑌𝑍)
271fmpt 7105 . . . . . 6 (∀𝑦𝑌 𝐴𝑍 ↔ (𝑦𝑌𝐴):𝑌𝑍)
2826, 27sylibr 234 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴𝑍)
299, 28, 8rspcdva 3607 . . . 4 ((𝜑𝑥𝑋) → 𝐶𝑍)
301, 2, 8, 29fvmptd3 7014 . . 3 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐴)‘𝐵) = 𝐶)
3130mpteq2dva 5219 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑦𝑌𝐴)‘𝐵)) = (𝑥𝑋𝐶))
32 eqid 2736 . . . . 5 (𝐾 Cn 𝐿) = (𝐾 Cn 𝐿)
33 toponuni 22857 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
344, 33syl 17 . . . . 5 (𝜑𝑌 = 𝐾)
35 mpoeq12 7485 . . . . 5 (((𝐾 Cn 𝐿) = (𝐾 Cn 𝐿) ∧ 𝑌 = 𝐾) → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧𝑌 ↦ (𝑓𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)))
3632, 34, 35sylancr 587 . . . 4 (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧𝑌 ↦ (𝑓𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)))
37 eqid 2736 . . . . . 6 𝐾 = 𝐾
38 eqid 2736 . . . . . 6 (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧))
3937, 38xkofvcn 23627 . . . . 5 ((𝐾 ∈ 𝑛-Locally Comp ∧ 𝐿 ∈ Top) → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)) ∈ (((𝐿ko 𝐾) ×t 𝐾) Cn 𝐿))
4013, 17, 39syl2anc 584 . . . 4 (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)) ∈ (((𝐿ko 𝐾) ×t 𝐾) Cn 𝐿))
4136, 40eqeltrd 2835 . . 3 (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧𝑌 ↦ (𝑓𝑧)) ∈ (((𝐿ko 𝐾) ×t 𝐾) Cn 𝐿))
42 fveq1 6880 . . . 4 (𝑓 = (𝑦𝑌𝐴) → (𝑓𝑧) = ((𝑦𝑌𝐴)‘𝑧))
43 fveq2 6881 . . . 4 (𝑧 = 𝐵 → ((𝑦𝑌𝐴)‘𝑧) = ((𝑦𝑌𝐴)‘𝐵))
4442, 43sylan9eq 2791 . . 3 ((𝑓 = (𝑦𝑌𝐴) ∧ 𝑧 = 𝐵) → (𝑓𝑧) = ((𝑦𝑌𝐴)‘𝐵))
453, 21, 5, 20, 4, 41, 44cnmpt12 23610 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑦𝑌𝐴)‘𝐵)) ∈ (𝐽 Cn 𝐿))
4631, 45eqeltrrd 2836 1 (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052   cuni 4888  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410  cmpo 7412  Topctop 22836  TopOnctopon 22853   Cn ccn 23167  Compccmp 23329  𝑛-Locally cnlly 23408   ×t ctx 23503  ko cxko 23504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-1o 8485  df-2o 8486  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-fin 8968  df-fi 9428  df-rest 17441  df-topgen 17462  df-pt 17463  df-top 22837  df-topon 22854  df-bases 22889  df-ntr 22963  df-nei 23041  df-cn 23170  df-cnp 23171  df-cmp 23330  df-nlly 23410  df-tx 23505  df-xko 23506
This theorem is referenced by:  xkohmeo  23758
  Copyright terms: Public domain W3C validator