Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . 4
⊢ (𝑦 ∈ 𝑌 ↦ 𝐴) = (𝑦 ∈ 𝑌 ↦ 𝐴) |
2 | | cnmptk1p.c |
. . . 4
⊢ (𝑦 = 𝐵 → 𝐴 = 𝐶) |
3 | | cnmptk1p.j |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
4 | | cnmptk1p.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
5 | | cnmptk1p.b |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) |
6 | | cnf2 22308 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶𝑌) |
7 | 3, 4, 5, 6 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶𝑌) |
8 | 7 | fvmptelrn 6969 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑌) |
9 | 2 | eleq1d 2823 |
. . . . 5
⊢ (𝑦 = 𝐵 → (𝐴 ∈ 𝑍 ↔ 𝐶 ∈ 𝑍)) |
10 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ (TopOn‘𝑌)) |
11 | | cnmptk1p.l |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) |
12 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐿 ∈ (TopOn‘𝑍)) |
13 | | cnmptk1p.n |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally
Comp) |
14 | | nllytop 22532 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ 𝑛-Locally Comp
→ 𝐾 ∈
Top) |
15 | 13, 14 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ Top) |
16 | | topontop 21970 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top) |
17 | 11, 16 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐿 ∈ Top) |
18 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝐿 ↑ko 𝐾) = (𝐿 ↑ko 𝐾) |
19 | 18 | xkotopon 22659 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
20 | 15, 17, 19 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
21 | | cnmptk1p.a |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) |
22 | | cnf2 22308 |
. . . . . . . . 9
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿 ↑ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)) ∈ (𝐽 Cn (𝐿 ↑ko 𝐾))) → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) |
23 | 3, 20, 21, 22 | syl3anc 1369 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ 𝐴)):𝑋⟶(𝐾 Cn 𝐿)) |
24 | 23 | fvmptelrn 6969 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) |
25 | | cnf2 22308 |
. . . . . . 7
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑦 ∈ 𝑌 ↦ 𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) |
26 | 10, 12, 24, 25 | syl3anc 1369 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) |
27 | 1 | fmpt 6966 |
. . . . . 6
⊢
(∀𝑦 ∈
𝑌 𝐴 ∈ 𝑍 ↔ (𝑦 ∈ 𝑌 ↦ 𝐴):𝑌⟶𝑍) |
28 | 26, 27 | sylibr 233 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑌 𝐴 ∈ 𝑍) |
29 | 9, 28, 8 | rspcdva 3554 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ 𝑍) |
30 | 1, 2, 8, 29 | fvmptd3 6880 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝐵) = 𝐶) |
31 | 30 | mpteq2dva 5170 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝐵)) = (𝑥 ∈ 𝑋 ↦ 𝐶)) |
32 | | eqid 2738 |
. . . . 5
⊢ (𝐾 Cn 𝐿) = (𝐾 Cn 𝐿) |
33 | | toponuni 21971 |
. . . . . 6
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
34 | 4, 33 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑌 = ∪ 𝐾) |
35 | | mpoeq12 7326 |
. . . . 5
⊢ (((𝐾 Cn 𝐿) = (𝐾 Cn 𝐿) ∧ 𝑌 = ∪ 𝐾) → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ 𝑌 ↦ (𝑓‘𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧))) |
36 | 32, 34, 35 | sylancr 586 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ 𝑌 ↦ (𝑓‘𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧))) |
37 | | eqid 2738 |
. . . . . 6
⊢ ∪ 𝐾 =
∪ 𝐾 |
38 | | eqid 2738 |
. . . . . 6
⊢ (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧)) |
39 | 37, 38 | xkofvcn 22743 |
. . . . 5
⊢ ((𝐾 ∈ 𝑛-Locally Comp
∧ 𝐿 ∈ Top) →
(𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧)) ∈ (((𝐿 ↑ko 𝐾) ×t 𝐾) Cn 𝐿)) |
40 | 13, 17, 39 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ ∪ 𝐾 ↦ (𝑓‘𝑧)) ∈ (((𝐿 ↑ko 𝐾) ×t 𝐾) Cn 𝐿)) |
41 | 36, 40 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 ∈ 𝑌 ↦ (𝑓‘𝑧)) ∈ (((𝐿 ↑ko 𝐾) ×t 𝐾) Cn 𝐿)) |
42 | | fveq1 6755 |
. . . 4
⊢ (𝑓 = (𝑦 ∈ 𝑌 ↦ 𝐴) → (𝑓‘𝑧) = ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝑧)) |
43 | | fveq2 6756 |
. . . 4
⊢ (𝑧 = 𝐵 → ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝑧) = ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝐵)) |
44 | 42, 43 | sylan9eq 2799 |
. . 3
⊢ ((𝑓 = (𝑦 ∈ 𝑌 ↦ 𝐴) ∧ 𝑧 = 𝐵) → (𝑓‘𝑧) = ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝐵)) |
45 | 3, 21, 5, 20, 4, 41, 44 | cnmpt12 22726 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝑦 ∈ 𝑌 ↦ 𝐴)‘𝐵)) ∈ (𝐽 Cn 𝐿)) |
46 | 31, 45 | eqeltrrd 2840 |
1
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶) ∈ (𝐽 Cn 𝐿)) |