MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmptk1p Structured version   Visualization version   GIF version

Theorem cnmptk1p 23582
Description: The evaluation of a curried function by a one-arg function is jointly continuous. (Contributed by Mario Carneiro, 23-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptk1p.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmptk1p.k (𝜑𝐾 ∈ (TopOn‘𝑌))
cnmptk1p.l (𝜑𝐿 ∈ (TopOn‘𝑍))
cnmptk1p.n (𝜑𝐾 ∈ 𝑛-Locally Comp)
cnmptk1p.a (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
cnmptk1p.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
cnmptk1p.c (𝑦 = 𝐵𝐴 = 𝐶)
Assertion
Ref Expression
cnmptk1p (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝐿   𝑦,𝐵   𝑦,𝐶   𝑥,𝑦,𝑋   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦   𝑦,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥)   𝐶(𝑥)   𝐽(𝑦)   𝐾(𝑦)   𝐿(𝑦)   𝑍(𝑥)

Proof of Theorem cnmptk1p
Dummy variables 𝑓 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2728 . . . 4 (𝑦𝑌𝐴) = (𝑦𝑌𝐴)
2 cnmptk1p.c . . . 4 (𝑦 = 𝐵𝐴 = 𝐶)
3 cnmptk1p.j . . . . . 6 (𝜑𝐽 ∈ (TopOn‘𝑋))
4 cnmptk1p.k . . . . . 6 (𝜑𝐾 ∈ (TopOn‘𝑌))
5 cnmptk1p.b . . . . . 6 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))
6 cnf2 23146 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐵):𝑋𝑌)
73, 4, 5, 6syl3anc 1369 . . . . 5 (𝜑 → (𝑥𝑋𝐵):𝑋𝑌)
87fvmptelcdm 7117 . . . 4 ((𝜑𝑥𝑋) → 𝐵𝑌)
92eleq1d 2814 . . . . 5 (𝑦 = 𝐵 → (𝐴𝑍𝐶𝑍))
104adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐾 ∈ (TopOn‘𝑌))
11 cnmptk1p.l . . . . . . . 8 (𝜑𝐿 ∈ (TopOn‘𝑍))
1211adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐿 ∈ (TopOn‘𝑍))
13 cnmptk1p.n . . . . . . . . . . 11 (𝜑𝐾 ∈ 𝑛-Locally Comp)
14 nllytop 23370 . . . . . . . . . . 11 (𝐾 ∈ 𝑛-Locally Comp → 𝐾 ∈ Top)
1513, 14syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ Top)
16 topontop 22808 . . . . . . . . . . 11 (𝐿 ∈ (TopOn‘𝑍) → 𝐿 ∈ Top)
1711, 16syl 17 . . . . . . . . . 10 (𝜑𝐿 ∈ Top)
18 eqid 2728 . . . . . . . . . . 11 (𝐿ko 𝐾) = (𝐿ko 𝐾)
1918xkotopon 23497 . . . . . . . . . 10 ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
2015, 17, 19syl2anc 583 . . . . . . . . 9 (𝜑 → (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)))
21 cnmptk1p.a . . . . . . . . 9 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾)))
22 cnf2 23146 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (𝑥𝑋 ↦ (𝑦𝑌𝐴)) ∈ (𝐽 Cn (𝐿ko 𝐾))) → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
233, 20, 21, 22syl3anc 1369 . . . . . . . 8 (𝜑 → (𝑥𝑋 ↦ (𝑦𝑌𝐴)):𝑋⟶(𝐾 Cn 𝐿))
2423fvmptelcdm 7117 . . . . . . 7 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿))
25 cnf2 23146 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘𝑍) ∧ (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐿)) → (𝑦𝑌𝐴):𝑌𝑍)
2610, 12, 24, 25syl3anc 1369 . . . . . 6 ((𝜑𝑥𝑋) → (𝑦𝑌𝐴):𝑌𝑍)
271fmpt 7114 . . . . . 6 (∀𝑦𝑌 𝐴𝑍 ↔ (𝑦𝑌𝐴):𝑌𝑍)
2826, 27sylibr 233 . . . . 5 ((𝜑𝑥𝑋) → ∀𝑦𝑌 𝐴𝑍)
299, 28, 8rspcdva 3609 . . . 4 ((𝜑𝑥𝑋) → 𝐶𝑍)
301, 2, 8, 29fvmptd3 7022 . . 3 ((𝜑𝑥𝑋) → ((𝑦𝑌𝐴)‘𝐵) = 𝐶)
3130mpteq2dva 5242 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑦𝑌𝐴)‘𝐵)) = (𝑥𝑋𝐶))
32 eqid 2728 . . . . 5 (𝐾 Cn 𝐿) = (𝐾 Cn 𝐿)
33 toponuni 22809 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
344, 33syl 17 . . . . 5 (𝜑𝑌 = 𝐾)
35 mpoeq12 7487 . . . . 5 (((𝐾 Cn 𝐿) = (𝐾 Cn 𝐿) ∧ 𝑌 = 𝐾) → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧𝑌 ↦ (𝑓𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)))
3632, 34, 35sylancr 586 . . . 4 (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧𝑌 ↦ (𝑓𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)))
37 eqid 2728 . . . . . 6 𝐾 = 𝐾
38 eqid 2728 . . . . . 6 (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)) = (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧))
3937, 38xkofvcn 23581 . . . . 5 ((𝐾 ∈ 𝑛-Locally Comp ∧ 𝐿 ∈ Top) → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)) ∈ (((𝐿ko 𝐾) ×t 𝐾) Cn 𝐿))
4013, 17, 39syl2anc 583 . . . 4 (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧 𝐾 ↦ (𝑓𝑧)) ∈ (((𝐿ko 𝐾) ×t 𝐾) Cn 𝐿))
4136, 40eqeltrd 2829 . . 3 (𝜑 → (𝑓 ∈ (𝐾 Cn 𝐿), 𝑧𝑌 ↦ (𝑓𝑧)) ∈ (((𝐿ko 𝐾) ×t 𝐾) Cn 𝐿))
42 fveq1 6890 . . . 4 (𝑓 = (𝑦𝑌𝐴) → (𝑓𝑧) = ((𝑦𝑌𝐴)‘𝑧))
43 fveq2 6891 . . . 4 (𝑧 = 𝐵 → ((𝑦𝑌𝐴)‘𝑧) = ((𝑦𝑌𝐴)‘𝐵))
4442, 43sylan9eq 2788 . . 3 ((𝑓 = (𝑦𝑌𝐴) ∧ 𝑧 = 𝐵) → (𝑓𝑧) = ((𝑦𝑌𝐴)‘𝐵))
453, 21, 5, 20, 4, 41, 44cnmpt12 23564 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝑦𝑌𝐴)‘𝐵)) ∈ (𝐽 Cn 𝐿))
4631, 45eqeltrrd 2830 1 (𝜑 → (𝑥𝑋𝐶) ∈ (𝐽 Cn 𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wral 3057   cuni 4903  cmpt 5225  wf 6538  cfv 6542  (class class class)co 7414  cmpo 7416  Topctop 22788  TopOnctopon 22805   Cn ccn 23121  Compccmp 23283  𝑛-Locally cnlly 23362   ×t ctx 23457  ko cxko 23458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-1o 8480  df-er 8718  df-map 8840  df-ixp 8910  df-en 8958  df-dom 8959  df-fin 8961  df-fi 9428  df-rest 17397  df-topgen 17418  df-pt 17419  df-top 22789  df-topon 22806  df-bases 22842  df-ntr 22917  df-nei 22995  df-cn 23124  df-cnp 23125  df-cmp 23284  df-nlly 23364  df-tx 23459  df-xko 23460
This theorem is referenced by:  xkohmeo  23712
  Copyright terms: Public domain W3C validator