MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monpropd Structured version   Visualization version   GIF version

Theorem monpropd 17547
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same monomorphisms. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
monpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
monpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
monpropd.c (𝜑𝐶 ∈ Cat)
monpropd.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
monpropd (𝜑 → (Mono‘𝐶) = (Mono‘𝐷))

Proof of Theorem monpropd
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . . . . . . . 12 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2736 . . . . . . . . . . . 12 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2736 . . . . . . . . . . . 12 (Hom ‘𝐷) = (Hom ‘𝐷)
4 monpropd.3 . . . . . . . . . . . . . 14 (𝜑 → (Homf𝐶) = (Homf𝐷))
54ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (Homf𝐶) = (Homf𝐷))
65ad2antrr 723 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (Homf𝐶) = (Homf𝐷))
7 simpr 485 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → 𝑐 ∈ (Base‘𝐶))
8 simp-4r 781 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → 𝑎 ∈ (Base‘𝐶))
91, 2, 3, 6, 7, 8homfeqval 17504 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (𝑐(Hom ‘𝐶)𝑎) = (𝑐(Hom ‘𝐷)𝑎))
10 eqid 2736 . . . . . . . . . . . 12 (comp‘𝐶) = (comp‘𝐶)
11 eqid 2736 . . . . . . . . . . . 12 (comp‘𝐷) = (comp‘𝐷)
124ad5antr 731 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → (Homf𝐶) = (Homf𝐷))
13 monpropd.4 . . . . . . . . . . . . 13 (𝜑 → (compf𝐶) = (compf𝐷))
1413ad5antr 731 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → (compf𝐶) = (compf𝐷))
15 simplr 766 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑐 ∈ (Base‘𝐶))
16 simp-5r 783 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑎 ∈ (Base‘𝐶))
17 simp-4r 781 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑏 ∈ (Base‘𝐶))
18 simpr 485 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎))
19 simpllr 773 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏))
201, 2, 10, 11, 12, 14, 15, 16, 17, 18, 19comfeqval 17515 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔) = (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))
219, 20mpteq12dva 5182 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔)) = (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔)))
2221cnveqd 5818 . . . . . . . . 9 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔)) = (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔)))
2322funeqd 6507 . . . . . . . 8 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔)) ↔ Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))))
2423ralbidva 3168 . . . . . . 7 ((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) → (∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔)) ↔ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))))
2524rabbidva 3410 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))} = {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))})
26 simplr 766 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → 𝑎 ∈ (Base‘𝐶))
27 simpr 485 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → 𝑏 ∈ (Base‘𝐶))
281, 2, 3, 5, 26, 27homfeqval 17504 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏))
294homfeqbas 17503 . . . . . . . . 9 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
3029ad2antrr 723 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐷))
3130raleqdv 3309 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔)) ↔ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))))
3228, 31rabeqbidv 3420 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))} = {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))})
3325, 32eqtrd 2776 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))} = {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))})
34333impa 1109 . . . 4 ((𝜑𝑎 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)) → {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))} = {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))})
3534mpoeq3dva 7415 . . 3 (𝜑 → (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))}) = (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
36 mpoeq12 7411 . . . 4 (((Base‘𝐶) = (Base‘𝐷) ∧ (Base‘𝐶) = (Base‘𝐷)) → (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}) = (𝑎 ∈ (Base‘𝐷), 𝑏 ∈ (Base‘𝐷) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
3729, 29, 36syl2anc 584 . . 3 (𝜑 → (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}) = (𝑎 ∈ (Base‘𝐷), 𝑏 ∈ (Base‘𝐷) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
3835, 37eqtrd 2776 . 2 (𝜑 → (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))}) = (𝑎 ∈ (Base‘𝐷), 𝑏 ∈ (Base‘𝐷) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
39 eqid 2736 . . 3 (Mono‘𝐶) = (Mono‘𝐶)
40 monpropd.c . . 3 (𝜑𝐶 ∈ Cat)
411, 2, 10, 39, 40monfval 17542 . 2 (𝜑 → (Mono‘𝐶) = (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))}))
42 eqid 2736 . . 3 (Base‘𝐷) = (Base‘𝐷)
43 eqid 2736 . . 3 (Mono‘𝐷) = (Mono‘𝐷)
44 monpropd.d . . 3 (𝜑𝐷 ∈ Cat)
4542, 3, 11, 43, 44monfval 17542 . 2 (𝜑 → (Mono‘𝐷) = (𝑎 ∈ (Base‘𝐷), 𝑏 ∈ (Base‘𝐷) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
4638, 41, 453eqtr4d 2786 1 (𝜑 → (Mono‘𝐶) = (Mono‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3061  {crab 3403  cop 4580  cmpt 5176  ccnv 5620  Fun wfun 6474  cfv 6480  (class class class)co 7338  cmpo 7340  Basecbs 17010  Hom chom 17071  compcco 17072  Catccat 17471  Homf chomf 17473  compfccomf 17474  Monocmon 17538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-ov 7341  df-oprab 7342  df-mpo 7343  df-1st 7900  df-2nd 7901  df-homf 17477  df-comf 17478  df-mon 17540
This theorem is referenced by:  oppcepi  17549
  Copyright terms: Public domain W3C validator