MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monpropd Structured version   Visualization version   GIF version

Theorem monpropd 16782
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same monomorphisms. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
monpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
monpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
monpropd.c (𝜑𝐶 ∈ Cat)
monpropd.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
monpropd (𝜑 → (Mono‘𝐶) = (Mono‘𝐷))

Proof of Theorem monpropd
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2778 . . . . . . . . . . . 12 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2778 . . . . . . . . . . . 12 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2778 . . . . . . . . . . . 12 (Hom ‘𝐷) = (Hom ‘𝐷)
4 monpropd.3 . . . . . . . . . . . . . 14 (𝜑 → (Homf𝐶) = (Homf𝐷))
54ad2antrr 716 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (Homf𝐶) = (Homf𝐷))
65ad2antrr 716 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (Homf𝐶) = (Homf𝐷))
7 simpr 479 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → 𝑐 ∈ (Base‘𝐶))
8 simp-4r 774 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → 𝑎 ∈ (Base‘𝐶))
91, 2, 3, 6, 7, 8homfeqval 16742 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (𝑐(Hom ‘𝐶)𝑎) = (𝑐(Hom ‘𝐷)𝑎))
10 eqid 2778 . . . . . . . . . . . 12 (comp‘𝐶) = (comp‘𝐶)
11 eqid 2778 . . . . . . . . . . . 12 (comp‘𝐷) = (comp‘𝐷)
124ad5antr 724 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → (Homf𝐶) = (Homf𝐷))
13 monpropd.4 . . . . . . . . . . . . 13 (𝜑 → (compf𝐶) = (compf𝐷))
1413ad5antr 724 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → (compf𝐶) = (compf𝐷))
15 simplr 759 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑐 ∈ (Base‘𝐶))
16 simp-5r 776 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑎 ∈ (Base‘𝐶))
17 simp-4r 774 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑏 ∈ (Base‘𝐶))
18 simpr 479 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎))
19 simpllr 766 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏))
201, 2, 10, 11, 12, 14, 15, 16, 17, 18, 19comfeqval 16753 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔) = (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))
219, 20mpteq12dva 4968 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔)) = (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔)))
2221cnveqd 5543 . . . . . . . . 9 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔)) = (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔)))
2322funeqd 6157 . . . . . . . 8 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔)) ↔ Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))))
2423ralbidva 3167 . . . . . . 7 ((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) → (∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔)) ↔ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))))
2524rabbidva 3385 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))} = {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))})
26 simplr 759 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → 𝑎 ∈ (Base‘𝐶))
27 simpr 479 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → 𝑏 ∈ (Base‘𝐶))
281, 2, 3, 5, 26, 27homfeqval 16742 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏))
294homfeqbas 16741 . . . . . . . . 9 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
3029ad2antrr 716 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐷))
3130raleqdv 3340 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔)) ↔ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))))
3228, 31rabeqbidv 3392 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))} = {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))})
3325, 32eqtrd 2814 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))} = {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))})
34333impa 1097 . . . 4 ((𝜑𝑎 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)) → {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))} = {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))})
3534mpt2eq3dva 6996 . . 3 (𝜑 → (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))}) = (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
36 mpt2eq12 6992 . . . 4 (((Base‘𝐶) = (Base‘𝐷) ∧ (Base‘𝐶) = (Base‘𝐷)) → (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}) = (𝑎 ∈ (Base‘𝐷), 𝑏 ∈ (Base‘𝐷) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
3729, 29, 36syl2anc 579 . . 3 (𝜑 → (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}) = (𝑎 ∈ (Base‘𝐷), 𝑏 ∈ (Base‘𝐷) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
3835, 37eqtrd 2814 . 2 (𝜑 → (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))}) = (𝑎 ∈ (Base‘𝐷), 𝑏 ∈ (Base‘𝐷) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
39 eqid 2778 . . 3 (Mono‘𝐶) = (Mono‘𝐶)
40 monpropd.c . . 3 (𝜑𝐶 ∈ Cat)
411, 2, 10, 39, 40monfval 16777 . 2 (𝜑 → (Mono‘𝐶) = (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))}))
42 eqid 2778 . . 3 (Base‘𝐷) = (Base‘𝐷)
43 eqid 2778 . . 3 (Mono‘𝐷) = (Mono‘𝐷)
44 monpropd.d . . 3 (𝜑𝐷 ∈ Cat)
4542, 3, 11, 43, 44monfval 16777 . 2 (𝜑 → (Mono‘𝐷) = (𝑎 ∈ (Base‘𝐷), 𝑏 ∈ (Base‘𝐷) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
4638, 41, 453eqtr4d 2824 1 (𝜑 → (Mono‘𝐶) = (Mono‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wral 3090  {crab 3094  cop 4404  cmpt 4965  ccnv 5354  Fun wfun 6129  cfv 6135  (class class class)co 6922  cmpt2 6924  Basecbs 16255  Hom chom 16349  compcco 16350  Catccat 16710  Homf chomf 16712  compfccomf 16713  Monocmon 16773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-1st 7445  df-2nd 7446  df-homf 16716  df-comf 16717  df-mon 16775
This theorem is referenced by:  oppcepi  16784
  Copyright terms: Public domain W3C validator