MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monpropd Structured version   Visualization version   GIF version

Theorem monpropd 17781
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same monomorphisms. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
monpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
monpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
monpropd.c (𝜑𝐶 ∈ Cat)
monpropd.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
monpropd (𝜑 → (Mono‘𝐶) = (Mono‘𝐷))

Proof of Theorem monpropd
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . . . . . . . . 12 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2737 . . . . . . . . . . . 12 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2737 . . . . . . . . . . . 12 (Hom ‘𝐷) = (Hom ‘𝐷)
4 monpropd.3 . . . . . . . . . . . . . 14 (𝜑 → (Homf𝐶) = (Homf𝐷))
54ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (Homf𝐶) = (Homf𝐷))
65ad2antrr 726 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (Homf𝐶) = (Homf𝐷))
7 simpr 484 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → 𝑐 ∈ (Base‘𝐶))
8 simp-4r 784 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → 𝑎 ∈ (Base‘𝐶))
91, 2, 3, 6, 7, 8homfeqval 17740 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (𝑐(Hom ‘𝐶)𝑎) = (𝑐(Hom ‘𝐷)𝑎))
10 eqid 2737 . . . . . . . . . . . 12 (comp‘𝐶) = (comp‘𝐶)
11 eqid 2737 . . . . . . . . . . . 12 (comp‘𝐷) = (comp‘𝐷)
124ad5antr 734 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → (Homf𝐶) = (Homf𝐷))
13 monpropd.4 . . . . . . . . . . . . 13 (𝜑 → (compf𝐶) = (compf𝐷))
1413ad5antr 734 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → (compf𝐶) = (compf𝐷))
15 simplr 769 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑐 ∈ (Base‘𝐶))
16 simp-5r 786 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑎 ∈ (Base‘𝐶))
17 simp-4r 784 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑏 ∈ (Base‘𝐶))
18 simpr 484 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎))
19 simpllr 776 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏))
201, 2, 10, 11, 12, 14, 15, 16, 17, 18, 19comfeqval 17751 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔) = (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))
219, 20mpteq12dva 5231 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔)) = (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔)))
2221cnveqd 5886 . . . . . . . . 9 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔)) = (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔)))
2322funeqd 6588 . . . . . . . 8 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔)) ↔ Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))))
2423ralbidva 3176 . . . . . . 7 ((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) → (∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔)) ↔ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))))
2524rabbidva 3443 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))} = {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))})
26 simplr 769 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → 𝑎 ∈ (Base‘𝐶))
27 simpr 484 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → 𝑏 ∈ (Base‘𝐶))
281, 2, 3, 5, 26, 27homfeqval 17740 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏))
294homfeqbas 17739 . . . . . . . . 9 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
3029ad2antrr 726 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐷))
3130raleqdv 3326 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔)) ↔ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))))
3228, 31rabeqbidv 3455 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))} = {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))})
3325, 32eqtrd 2777 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))} = {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))})
34333impa 1110 . . . 4 ((𝜑𝑎 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)) → {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))} = {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))})
3534mpoeq3dva 7510 . . 3 (𝜑 → (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))}) = (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
36 mpoeq12 7506 . . . 4 (((Base‘𝐶) = (Base‘𝐷) ∧ (Base‘𝐶) = (Base‘𝐷)) → (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}) = (𝑎 ∈ (Base‘𝐷), 𝑏 ∈ (Base‘𝐷) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
3729, 29, 36syl2anc 584 . . 3 (𝜑 → (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}) = (𝑎 ∈ (Base‘𝐷), 𝑏 ∈ (Base‘𝐷) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
3835, 37eqtrd 2777 . 2 (𝜑 → (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))}) = (𝑎 ∈ (Base‘𝐷), 𝑏 ∈ (Base‘𝐷) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
39 eqid 2737 . . 3 (Mono‘𝐶) = (Mono‘𝐶)
40 monpropd.c . . 3 (𝜑𝐶 ∈ Cat)
411, 2, 10, 39, 40monfval 17776 . 2 (𝜑 → (Mono‘𝐶) = (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))}))
42 eqid 2737 . . 3 (Base‘𝐷) = (Base‘𝐷)
43 eqid 2737 . . 3 (Mono‘𝐷) = (Mono‘𝐷)
44 monpropd.d . . 3 (𝜑𝐷 ∈ Cat)
4542, 3, 11, 43, 44monfval 17776 . 2 (𝜑 → (Mono‘𝐷) = (𝑎 ∈ (Base‘𝐷), 𝑏 ∈ (Base‘𝐷) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
4638, 41, 453eqtr4d 2787 1 (𝜑 → (Mono‘𝐶) = (Mono‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  {crab 3436  cop 4632  cmpt 5225  ccnv 5684  Fun wfun 6555  cfv 6561  (class class class)co 7431  cmpo 7433  Basecbs 17247  Hom chom 17308  compcco 17309  Catccat 17707  Homf chomf 17709  compfccomf 17710  Monocmon 17772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-homf 17713  df-comf 17714  df-mon 17774
This theorem is referenced by:  oppcepi  17783
  Copyright terms: Public domain W3C validator