MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  d1mat2pmat Structured version   Visualization version   GIF version

Theorem d1mat2pmat 21347
Description: The transformation of a matrix of dimenson 1. (Contributed by AV, 4-Aug-2019.)
Hypotheses
Ref Expression
d1mat2pmat.t 𝑇 = (𝑁 matToPolyMat 𝑅)
d1mat2pmat.b 𝐵 = (Base‘(𝑁 Mat 𝑅))
d1mat2pmat.p 𝑃 = (Poly1𝑅)
d1mat2pmat.s 𝑆 = (algSc‘𝑃)
Assertion
Ref Expression
d1mat2pmat ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})

Proof of Theorem d1mat2pmat
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 8594 . . . . . 6 {𝐴} ∈ Fin
2 eleq1 2900 . . . . . 6 (𝑁 = {𝐴} → (𝑁 ∈ Fin ↔ {𝐴} ∈ Fin))
31, 2mpbiri 260 . . . . 5 (𝑁 = {𝐴} → 𝑁 ∈ Fin)
43adantr 483 . . . 4 ((𝑁 = {𝐴} ∧ 𝐴𝑉) → 𝑁 ∈ Fin)
543ad2ant2 1130 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
6 simp1 1132 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → 𝑅𝑉)
7 simp3 1134 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → 𝑀𝐵)
8 d1mat2pmat.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
9 eqid 2821 . . . 4 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
10 d1mat2pmat.b . . . 4 𝐵 = (Base‘(𝑁 Mat 𝑅))
11 d1mat2pmat.p . . . 4 𝑃 = (Poly1𝑅)
12 d1mat2pmat.s . . . 4 𝑆 = (algSc‘𝑃)
138, 9, 10, 11, 12mat2pmatval 21332 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))))
145, 6, 7, 13syl3anc 1367 . 2 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))))
15 id 22 . . . . . . 7 (𝐴𝑉𝐴𝑉)
16 fvexd 6685 . . . . . . 7 (𝐴𝑉 → (𝑆‘(𝐴𝑀𝐴)) ∈ V)
1715, 15, 163jca 1124 . . . . . 6 (𝐴𝑉 → (𝐴𝑉𝐴𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V))
1817adantl 484 . . . . 5 ((𝑁 = {𝐴} ∧ 𝐴𝑉) → (𝐴𝑉𝐴𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V))
19183ad2ant2 1130 . . . 4 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝐴𝑉𝐴𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V))
20 eqid 2821 . . . . 5 (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗)))
21 fvoveq1 7179 . . . . 5 (𝑖 = 𝐴 → (𝑆‘(𝑖𝑀𝑗)) = (𝑆‘(𝐴𝑀𝑗)))
22 oveq2 7164 . . . . . 6 (𝑗 = 𝐴 → (𝐴𝑀𝑗) = (𝐴𝑀𝐴))
2322fveq2d 6674 . . . . 5 (𝑗 = 𝐴 → (𝑆‘(𝐴𝑀𝑗)) = (𝑆‘(𝐴𝑀𝐴)))
2420, 21, 23mposn 7798 . . . 4 ((𝐴𝑉𝐴𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V) → (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
2519, 24syl 17 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
26 mpoeq12 7227 . . . . . . 7 ((𝑁 = {𝐴} ∧ 𝑁 = {𝐴}) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))))
2726eqeq1d 2823 . . . . . 6 ((𝑁 = {𝐴} ∧ 𝑁 = {𝐴}) → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩}))
2827anidms 569 . . . . 5 (𝑁 = {𝐴} → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩}))
2928adantr 483 . . . 4 ((𝑁 = {𝐴} ∧ 𝐴𝑉) → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩}))
30293ad2ant2 1130 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩}))
3125, 30mpbird 259 . 2 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
3214, 31eqtrd 2856 1 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3494  {csn 4567  cop 4573  cfv 6355  (class class class)co 7156  cmpo 7158  Fincfn 8509  Basecbs 16483  algSccascl 20084  Poly1cpl1 20345   Mat cmat 21016   matToPolyMat cmat2pmat 21312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-1o 8102  df-en 8510  df-fin 8513  df-mat2pmat 21315
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator