MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  d1mat2pmat Structured version   Visualization version   GIF version

Theorem d1mat2pmat 22040
Description: The transformation of a matrix of dimenson 1. (Contributed by AV, 4-Aug-2019.)
Hypotheses
Ref Expression
d1mat2pmat.t 𝑇 = (𝑁 matToPolyMat 𝑅)
d1mat2pmat.b 𝐵 = (Base‘(𝑁 Mat 𝑅))
d1mat2pmat.p 𝑃 = (Poly1𝑅)
d1mat2pmat.s 𝑆 = (algSc‘𝑃)
Assertion
Ref Expression
d1mat2pmat ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})

Proof of Theorem d1mat2pmat
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snfi 8947 . . . . . 6 {𝐴} ∈ Fin
2 eleq1 2826 . . . . . 6 (𝑁 = {𝐴} → (𝑁 ∈ Fin ↔ {𝐴} ∈ Fin))
31, 2mpbiri 258 . . . . 5 (𝑁 = {𝐴} → 𝑁 ∈ Fin)
43adantr 482 . . . 4 ((𝑁 = {𝐴} ∧ 𝐴𝑉) → 𝑁 ∈ Fin)
543ad2ant2 1135 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
6 simp1 1137 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → 𝑅𝑉)
7 simp3 1139 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → 𝑀𝐵)
8 d1mat2pmat.t . . . 4 𝑇 = (𝑁 matToPolyMat 𝑅)
9 eqid 2738 . . . 4 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
10 d1mat2pmat.b . . . 4 𝐵 = (Base‘(𝑁 Mat 𝑅))
11 d1mat2pmat.p . . . 4 𝑃 = (Poly1𝑅)
12 d1mat2pmat.s . . . 4 𝑆 = (algSc‘𝑃)
138, 9, 10, 11, 12mat2pmatval 22025 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉𝑀𝐵) → (𝑇𝑀) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))))
145, 6, 7, 13syl3anc 1372 . 2 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))))
15 id 22 . . . . . . 7 (𝐴𝑉𝐴𝑉)
16 fvexd 6855 . . . . . . 7 (𝐴𝑉 → (𝑆‘(𝐴𝑀𝐴)) ∈ V)
1715, 15, 163jca 1129 . . . . . 6 (𝐴𝑉 → (𝐴𝑉𝐴𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V))
1817adantl 483 . . . . 5 ((𝑁 = {𝐴} ∧ 𝐴𝑉) → (𝐴𝑉𝐴𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V))
19183ad2ant2 1135 . . . 4 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝐴𝑉𝐴𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V))
20 eqid 2738 . . . . 5 (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗)))
21 fvoveq1 7375 . . . . 5 (𝑖 = 𝐴 → (𝑆‘(𝑖𝑀𝑗)) = (𝑆‘(𝐴𝑀𝑗)))
22 oveq2 7360 . . . . . 6 (𝑗 = 𝐴 → (𝐴𝑀𝑗) = (𝐴𝑀𝐴))
2322fveq2d 6844 . . . . 5 (𝑗 = 𝐴 → (𝑆‘(𝐴𝑀𝑗)) = (𝑆‘(𝐴𝑀𝐴)))
2420, 21, 23mposn 8028 . . . 4 ((𝐴𝑉𝐴𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V) → (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
2519, 24syl 17 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
26 mpoeq12 7425 . . . . . . 7 ((𝑁 = {𝐴} ∧ 𝑁 = {𝐴}) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))))
2726eqeq1d 2740 . . . . . 6 ((𝑁 = {𝐴} ∧ 𝑁 = {𝐴}) → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩}))
2827anidms 568 . . . . 5 (𝑁 = {𝐴} → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩}))
2928adantr 482 . . . 4 ((𝑁 = {𝐴} ∧ 𝐴𝑉) → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩}))
30293ad2ant2 1135 . . 3 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → ((𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩}))
3125, 30mpbird 257 . 2 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
3214, 31eqtrd 2778 1 ((𝑅𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴𝑉) ∧ 𝑀𝐵) → (𝑇𝑀) = {⟨⟨𝐴, 𝐴⟩, (𝑆‘(𝐴𝑀𝐴))⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  Vcvv 3444  {csn 4585  cop 4591  cfv 6494  (class class class)co 7352  cmpo 7354  Fincfn 8842  Basecbs 17043  algSccascl 21211  Poly1cpl1 21500   Mat cmat 21706   matToPolyMat cmat2pmat 22005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7665
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-ral 3064  df-rex 3073  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7796  df-1st 7914  df-2nd 7915  df-1o 8405  df-en 8843  df-fin 8846  df-mat2pmat 22008
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator