Step | Hyp | Ref
| Expression |
1 | | snfi 8788 |
. . . . . 6
⊢ {𝐴} ∈ Fin |
2 | | eleq1 2826 |
. . . . . 6
⊢ (𝑁 = {𝐴} → (𝑁 ∈ Fin ↔ {𝐴} ∈ Fin)) |
3 | 1, 2 | mpbiri 257 |
. . . . 5
⊢ (𝑁 = {𝐴} → 𝑁 ∈ Fin) |
4 | 3 | adantr 480 |
. . . 4
⊢ ((𝑁 = {𝐴} ∧ 𝐴 ∈ 𝑉) → 𝑁 ∈ Fin) |
5 | 4 | 3ad2ant2 1132 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) |
6 | | simp1 1134 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ 𝑉) |
7 | | simp3 1136 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) |
8 | | d1mat2pmat.t |
. . . 4
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
9 | | eqid 2738 |
. . . 4
⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) |
10 | | d1mat2pmat.b |
. . . 4
⊢ 𝐵 = (Base‘(𝑁 Mat 𝑅)) |
11 | | d1mat2pmat.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
12 | | d1mat2pmat.s |
. . . 4
⊢ 𝑆 = (algSc‘𝑃) |
13 | 8, 9, 10, 11, 12 | mat2pmatval 21781 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑆‘(𝑖𝑀𝑗)))) |
14 | 5, 6, 7, 13 | syl3anc 1369 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑆‘(𝑖𝑀𝑗)))) |
15 | | id 22 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) |
16 | | fvexd 6771 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑉 → (𝑆‘(𝐴𝑀𝐴)) ∈ V) |
17 | 15, 15, 16 | 3jca 1126 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V)) |
18 | 17 | adantl 481 |
. . . . 5
⊢ ((𝑁 = {𝐴} ∧ 𝐴 ∈ 𝑉) → (𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V)) |
19 | 18 | 3ad2ant2 1132 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V)) |
20 | | eqid 2738 |
. . . . 5
⊢ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) |
21 | | fvoveq1 7278 |
. . . . 5
⊢ (𝑖 = 𝐴 → (𝑆‘(𝑖𝑀𝑗)) = (𝑆‘(𝐴𝑀𝑗))) |
22 | | oveq2 7263 |
. . . . . 6
⊢ (𝑗 = 𝐴 → (𝐴𝑀𝑗) = (𝐴𝑀𝐴)) |
23 | 22 | fveq2d 6760 |
. . . . 5
⊢ (𝑗 = 𝐴 → (𝑆‘(𝐴𝑀𝑗)) = (𝑆‘(𝐴𝑀𝐴))) |
24 | 20, 21, 23 | mposn 7914 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ (𝑆‘(𝐴𝑀𝐴)) ∈ V) → (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {〈〈𝐴, 𝐴〉, (𝑆‘(𝐴𝑀𝐴))〉}) |
25 | 19, 24 | syl 17 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {〈〈𝐴, 𝐴〉, (𝑆‘(𝐴𝑀𝐴))〉}) |
26 | | mpoeq12 7326 |
. . . . . . 7
⊢ ((𝑁 = {𝐴} ∧ 𝑁 = {𝐴}) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗)))) |
27 | 26 | eqeq1d 2740 |
. . . . . 6
⊢ ((𝑁 = {𝐴} ∧ 𝑁 = {𝐴}) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {〈〈𝐴, 𝐴〉, (𝑆‘(𝐴𝑀𝐴))〉} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {〈〈𝐴, 𝐴〉, (𝑆‘(𝐴𝑀𝐴))〉})) |
28 | 27 | anidms 566 |
. . . . 5
⊢ (𝑁 = {𝐴} → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {〈〈𝐴, 𝐴〉, (𝑆‘(𝐴𝑀𝐴))〉} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {〈〈𝐴, 𝐴〉, (𝑆‘(𝐴𝑀𝐴))〉})) |
29 | 28 | adantr 480 |
. . . 4
⊢ ((𝑁 = {𝐴} ∧ 𝐴 ∈ 𝑉) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {〈〈𝐴, 𝐴〉, (𝑆‘(𝐴𝑀𝐴))〉} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {〈〈𝐴, 𝐴〉, (𝑆‘(𝐴𝑀𝐴))〉})) |
30 | 29 | 3ad2ant2 1132 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → ((𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {〈〈𝐴, 𝐴〉, (𝑆‘(𝐴𝑀𝐴))〉} ↔ (𝑖 ∈ {𝐴}, 𝑗 ∈ {𝐴} ↦ (𝑆‘(𝑖𝑀𝑗))) = {〈〈𝐴, 𝐴〉, (𝑆‘(𝐴𝑀𝐴))〉})) |
31 | 25, 30 | mpbird 256 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑆‘(𝑖𝑀𝑗))) = {〈〈𝐴, 𝐴〉, (𝑆‘(𝐴𝑀𝐴))〉}) |
32 | 14, 31 | eqtrd 2778 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑁 = {𝐴} ∧ 𝐴 ∈ 𝑉) ∧ 𝑀 ∈ 𝐵) → (𝑇‘𝑀) = {〈〈𝐴, 𝐴〉, (𝑆‘(𝐴𝑀𝐴))〉}) |