| Step | Hyp | Ref
| Expression |
| 1 | | simp11 1204 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢) → 𝜑) |
| 2 | | simp12 1205 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢) → 𝑡 ∈ 𝒫 𝐵) |
| 3 | 2 | elpwid 4589 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢) → 𝑡 ⊆ 𝐵) |
| 4 | | simp2 1137 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢) → 𝑥 ∈ 𝑡) |
| 5 | 3, 4 | sseldd 3964 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢) → 𝑥 ∈ 𝐵) |
| 6 | | simp13 1206 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢) → 𝑢 ∈ 𝒫 𝐵) |
| 7 | 6 | elpwid 4589 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢) → 𝑢 ⊆ 𝐵) |
| 8 | | simp3 1138 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢) → 𝑦 ∈ 𝑢) |
| 9 | 7, 8 | sseldd 3964 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢) → 𝑦 ∈ 𝐵) |
| 10 | | lsmpropd.p |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 11 | 1, 5, 9, 10 | syl12anc 836 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| 12 | 11 | mpoeq3dva 7489 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) → (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐾)𝑦)) = (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐿)𝑦))) |
| 13 | 12 | rneqd 5923 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) → ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐾)𝑦)) = ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐿)𝑦))) |
| 14 | 13 | mpoeq3dva 7489 |
. . 3
⊢ (𝜑 → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐾)𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐿)𝑦)))) |
| 15 | | lsmpropd.b1 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| 16 | 15 | pweqd 4597 |
. . . 4
⊢ (𝜑 → 𝒫 𝐵 = 𝒫 (Base‘𝐾)) |
| 17 | | mpoeq12 7485 |
. . . 4
⊢
((𝒫 𝐵 =
𝒫 (Base‘𝐾)
∧ 𝒫 𝐵 =
𝒫 (Base‘𝐾))
→ (𝑡 ∈ 𝒫
𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐾)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐾)𝑦)))) |
| 18 | 16, 16, 17 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐾)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐾)𝑦)))) |
| 19 | | lsmpropd.b2 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| 20 | 19 | pweqd 4597 |
. . . 4
⊢ (𝜑 → 𝒫 𝐵 = 𝒫 (Base‘𝐿)) |
| 21 | | mpoeq12 7485 |
. . . 4
⊢
((𝒫 𝐵 =
𝒫 (Base‘𝐿)
∧ 𝒫 𝐵 =
𝒫 (Base‘𝐿))
→ (𝑡 ∈ 𝒫
𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐿)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐿)𝑦)))) |
| 22 | 20, 20, 21 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐿)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐿)𝑦)))) |
| 23 | 14, 18, 22 | 3eqtr3d 2779 |
. 2
⊢ (𝜑 → (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐾)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐿)𝑦)))) |
| 24 | | lsmpropd.v1 |
. . 3
⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| 25 | | eqid 2736 |
. . . 4
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 26 | | eqid 2736 |
. . . 4
⊢
(+g‘𝐾) = (+g‘𝐾) |
| 27 | | eqid 2736 |
. . . 4
⊢
(LSSum‘𝐾) =
(LSSum‘𝐾) |
| 28 | 25, 26, 27 | lsmfval 19624 |
. . 3
⊢ (𝐾 ∈ 𝑉 → (LSSum‘𝐾) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐾)𝑦)))) |
| 29 | 24, 28 | syl 17 |
. 2
⊢ (𝜑 → (LSSum‘𝐾) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐾)𝑦)))) |
| 30 | | lsmpropd.v2 |
. . 3
⊢ (𝜑 → 𝐿 ∈ 𝑊) |
| 31 | | eqid 2736 |
. . . 4
⊢
(Base‘𝐿) =
(Base‘𝐿) |
| 32 | | eqid 2736 |
. . . 4
⊢
(+g‘𝐿) = (+g‘𝐿) |
| 33 | | eqid 2736 |
. . . 4
⊢
(LSSum‘𝐿) =
(LSSum‘𝐿) |
| 34 | 31, 32, 33 | lsmfval 19624 |
. . 3
⊢ (𝐿 ∈ 𝑊 → (LSSum‘𝐿) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐿)𝑦)))) |
| 35 | 30, 34 | syl 17 |
. 2
⊢ (𝜑 → (LSSum‘𝐿) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐿)𝑦)))) |
| 36 | 23, 29, 35 | 3eqtr4d 2781 |
1
⊢ (𝜑 → (LSSum‘𝐾) = (LSSum‘𝐿)) |