MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmpropd Structured version   Visualization version   GIF version

Theorem lsmpropd 19283
Description: If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 29-Jun-2015.) (Revised by AV, 25-Apr-2024.)
Hypotheses
Ref Expression
lsmpropd.b1 (𝜑𝐵 = (Base‘𝐾))
lsmpropd.b2 (𝜑𝐵 = (Base‘𝐿))
lsmpropd.p ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
lsmpropd.v1 (𝜑𝐾𝑉)
lsmpropd.v2 (𝜑𝐿𝑊)
Assertion
Ref Expression
lsmpropd (𝜑 → (LSSum‘𝐾) = (LSSum‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem lsmpropd
Dummy variables 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp11 1202 . . . . . . 7 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝜑)
2 simp12 1203 . . . . . . . . 9 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑡 ∈ 𝒫 𝐵)
32elpwid 4544 . . . . . . . 8 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑡𝐵)
4 simp2 1136 . . . . . . . 8 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑥𝑡)
53, 4sseldd 3922 . . . . . . 7 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑥𝐵)
6 simp13 1204 . . . . . . . . 9 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑢 ∈ 𝒫 𝐵)
76elpwid 4544 . . . . . . . 8 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑢𝐵)
8 simp3 1137 . . . . . . . 8 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑦𝑢)
97, 8sseldd 3922 . . . . . . 7 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → 𝑦𝐵)
10 lsmpropd.p . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
111, 5, 9, 10syl12anc 834 . . . . . 6 (((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) ∧ 𝑥𝑡𝑦𝑢) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
1211mpoeq3dva 7352 . . . . 5 ((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) → (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦)) = (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦)))
1312rneqd 5847 . . . 4 ((𝜑𝑡 ∈ 𝒫 𝐵𝑢 ∈ 𝒫 𝐵) → ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦)) = ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦)))
1413mpoeq3dva 7352 . . 3 (𝜑 → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
15 lsmpropd.b1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
1615pweqd 4552 . . . 4 (𝜑 → 𝒫 𝐵 = 𝒫 (Base‘𝐾))
17 mpoeq12 7348 . . . 4 ((𝒫 𝐵 = 𝒫 (Base‘𝐾) ∧ 𝒫 𝐵 = 𝒫 (Base‘𝐾)) → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))))
1816, 16, 17syl2anc 584 . . 3 (𝜑 → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))))
19 lsmpropd.b2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
2019pweqd 4552 . . . 4 (𝜑 → 𝒫 𝐵 = 𝒫 (Base‘𝐿))
21 mpoeq12 7348 . . . 4 ((𝒫 𝐵 = 𝒫 (Base‘𝐿) ∧ 𝒫 𝐵 = 𝒫 (Base‘𝐿)) → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
2220, 20, 21syl2anc 584 . . 3 (𝜑 → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
2314, 18, 223eqtr3d 2786 . 2 (𝜑 → (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
24 lsmpropd.v1 . . 3 (𝜑𝐾𝑉)
25 eqid 2738 . . . 4 (Base‘𝐾) = (Base‘𝐾)
26 eqid 2738 . . . 4 (+g𝐾) = (+g𝐾)
27 eqid 2738 . . . 4 (LSSum‘𝐾) = (LSSum‘𝐾)
2825, 26, 27lsmfval 19243 . . 3 (𝐾𝑉 → (LSSum‘𝐾) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))))
2924, 28syl 17 . 2 (𝜑 → (LSSum‘𝐾) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐾)𝑦))))
30 lsmpropd.v2 . . 3 (𝜑𝐿𝑊)
31 eqid 2738 . . . 4 (Base‘𝐿) = (Base‘𝐿)
32 eqid 2738 . . . 4 (+g𝐿) = (+g𝐿)
33 eqid 2738 . . . 4 (LSSum‘𝐿) = (LSSum‘𝐿)
3431, 32, 33lsmfval 19243 . . 3 (𝐿𝑊 → (LSSum‘𝐿) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
3530, 34syl 17 . 2 (𝜑 → (LSSum‘𝐿) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝐿)𝑦))))
3623, 29, 353eqtr4d 2788 1 (𝜑 → (LSSum‘𝐾) = (LSSum‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  𝒫 cpw 4533  ran crn 5590  cfv 6433  (class class class)co 7275  cmpo 7277  Basecbs 16912  +gcplusg 16962  LSSumclsm 19239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-lsm 19241
This theorem is referenced by:  hlhillsm  39974
  Copyright terms: Public domain W3C validator