Step | Hyp | Ref
| Expression |
1 | | simp11 1202 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢) → 𝜑) |
2 | | simp12 1203 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢) → 𝑡 ∈ 𝒫 𝐵) |
3 | 2 | elpwid 4544 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢) → 𝑡 ⊆ 𝐵) |
4 | | simp2 1136 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢) → 𝑥 ∈ 𝑡) |
5 | 3, 4 | sseldd 3922 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢) → 𝑥 ∈ 𝐵) |
6 | | simp13 1204 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢) → 𝑢 ∈ 𝒫 𝐵) |
7 | 6 | elpwid 4544 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢) → 𝑢 ⊆ 𝐵) |
8 | | simp3 1137 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢) → 𝑦 ∈ 𝑢) |
9 | 7, 8 | sseldd 3922 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢) → 𝑦 ∈ 𝐵) |
10 | | lsmpropd.p |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
11 | 1, 5, 9, 10 | syl12anc 834 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ 𝑡 ∧ 𝑦 ∈ 𝑢) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
12 | 11 | mpoeq3dva 7352 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) → (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐾)𝑦)) = (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐿)𝑦))) |
13 | 12 | rneqd 5847 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝒫 𝐵 ∧ 𝑢 ∈ 𝒫 𝐵) → ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐾)𝑦)) = ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐿)𝑦))) |
14 | 13 | mpoeq3dva 7352 |
. . 3
⊢ (𝜑 → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐾)𝑦))) = (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐿)𝑦)))) |
15 | | lsmpropd.b1 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
16 | 15 | pweqd 4552 |
. . . 4
⊢ (𝜑 → 𝒫 𝐵 = 𝒫 (Base‘𝐾)) |
17 | | mpoeq12 7348 |
. . . 4
⊢
((𝒫 𝐵 =
𝒫 (Base‘𝐾)
∧ 𝒫 𝐵 =
𝒫 (Base‘𝐾))
→ (𝑡 ∈ 𝒫
𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐾)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐾)𝑦)))) |
18 | 16, 16, 17 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐾)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐾)𝑦)))) |
19 | | lsmpropd.b2 |
. . . . 5
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
20 | 19 | pweqd 4552 |
. . . 4
⊢ (𝜑 → 𝒫 𝐵 = 𝒫 (Base‘𝐿)) |
21 | | mpoeq12 7348 |
. . . 4
⊢
((𝒫 𝐵 =
𝒫 (Base‘𝐿)
∧ 𝒫 𝐵 =
𝒫 (Base‘𝐿))
→ (𝑡 ∈ 𝒫
𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐿)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐿)𝑦)))) |
22 | 20, 20, 21 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑡 ∈ 𝒫 𝐵, 𝑢 ∈ 𝒫 𝐵 ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐿)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐿)𝑦)))) |
23 | 14, 18, 22 | 3eqtr3d 2786 |
. 2
⊢ (𝜑 → (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐾)𝑦))) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐿)𝑦)))) |
24 | | lsmpropd.v1 |
. . 3
⊢ (𝜑 → 𝐾 ∈ 𝑉) |
25 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐾) =
(Base‘𝐾) |
26 | | eqid 2738 |
. . . 4
⊢
(+g‘𝐾) = (+g‘𝐾) |
27 | | eqid 2738 |
. . . 4
⊢
(LSSum‘𝐾) =
(LSSum‘𝐾) |
28 | 25, 26, 27 | lsmfval 19243 |
. . 3
⊢ (𝐾 ∈ 𝑉 → (LSSum‘𝐾) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐾)𝑦)))) |
29 | 24, 28 | syl 17 |
. 2
⊢ (𝜑 → (LSSum‘𝐾) = (𝑡 ∈ 𝒫 (Base‘𝐾), 𝑢 ∈ 𝒫 (Base‘𝐾) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐾)𝑦)))) |
30 | | lsmpropd.v2 |
. . 3
⊢ (𝜑 → 𝐿 ∈ 𝑊) |
31 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐿) =
(Base‘𝐿) |
32 | | eqid 2738 |
. . . 4
⊢
(+g‘𝐿) = (+g‘𝐿) |
33 | | eqid 2738 |
. . . 4
⊢
(LSSum‘𝐿) =
(LSSum‘𝐿) |
34 | 31, 32, 33 | lsmfval 19243 |
. . 3
⊢ (𝐿 ∈ 𝑊 → (LSSum‘𝐿) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐿)𝑦)))) |
35 | 30, 34 | syl 17 |
. 2
⊢ (𝜑 → (LSSum‘𝐿) = (𝑡 ∈ 𝒫 (Base‘𝐿), 𝑢 ∈ 𝒫 (Base‘𝐿) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝐿)𝑦)))) |
36 | 23, 29, 35 | 3eqtr4d 2788 |
1
⊢ (𝜑 → (LSSum‘𝐾) = (LSSum‘𝐿)) |