Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madjusmdetlem1 Structured version   Visualization version   GIF version

Theorem madjusmdetlem1 33863
Description: Lemma for madjusmdet 33867. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypotheses
Ref Expression
madjusmdet.b 𝐵 = (Base‘𝐴)
madjusmdet.a 𝐴 = ((1...𝑁) Mat 𝑅)
madjusmdet.d 𝐷 = ((1...𝑁) maDet 𝑅)
madjusmdet.k 𝐾 = ((1...𝑁) maAdju 𝑅)
madjusmdet.t · = (.r𝑅)
madjusmdet.z 𝑍 = (ℤRHom‘𝑅)
madjusmdet.e 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
madjusmdet.n (𝜑𝑁 ∈ ℕ)
madjusmdet.r (𝜑𝑅 ∈ CRing)
madjusmdet.i (𝜑𝐼 ∈ (1...𝑁))
madjusmdet.j (𝜑𝐽 ∈ (1...𝑁))
madjusmdet.m (𝜑𝑀𝐵)
madjusmdetlem1.g 𝐺 = (Base‘(SymGrp‘(1...𝑁)))
madjusmdetlem1.s 𝑆 = (pmSgn‘(1...𝑁))
madjusmdetlem1.u 𝑈 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)
madjusmdetlem1.w 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)𝑈(𝑄𝑗)))
madjusmdetlem1.p (𝜑𝑃𝐺)
madjusmdetlem1.q (𝜑𝑄𝐺)
madjusmdetlem1.1 (𝜑 → (𝑃𝑁) = 𝐼)
madjusmdetlem1.2 (𝜑 → (𝑄𝑁) = 𝐽)
madjusmdetlem1.3 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
Assertion
Ref Expression
madjusmdetlem1 (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐼,𝑗   𝑖,𝐽,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑄,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗   𝑖,𝐺,𝑗   𝑖,𝑊,𝑗   𝑈,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   𝑆(𝑖,𝑗)   · (𝑖,𝑗)   𝐸(𝑖,𝑗)   𝐾(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem madjusmdetlem1
StepHypRef Expression
1 madjusmdet.m . . . 4 (𝜑𝑀𝐵)
2 madjusmdet.j . . . 4 (𝜑𝐽 ∈ (1...𝑁))
3 madjusmdet.i . . . 4 (𝜑𝐼 ∈ (1...𝑁))
4 madjusmdet.a . . . . 5 𝐴 = ((1...𝑁) Mat 𝑅)
5 madjusmdet.b . . . . 5 𝐵 = (Base‘𝐴)
6 madjusmdet.d . . . . 5 𝐷 = ((1...𝑁) maDet 𝑅)
7 madjusmdet.k . . . . 5 𝐾 = ((1...𝑁) maAdju 𝑅)
84, 5, 6, 7maducoevalmin1 22595 . . . 4 ((𝑀𝐵𝐽 ∈ (1...𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐽(𝐾𝑀)𝐼) = (𝐷‘(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)))
91, 2, 3, 8syl3anc 1373 . . 3 (𝜑 → (𝐽(𝐾𝑀)𝐼) = (𝐷‘(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)))
10 madjusmdetlem1.u . . . 4 𝑈 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)
1110fveq2i 6884 . . 3 (𝐷𝑈) = (𝐷‘(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽))
129, 11eqtr4di 2789 . 2 (𝜑 → (𝐽(𝐾𝑀)𝐼) = (𝐷𝑈))
13 madjusmdetlem1.g . . 3 𝐺 = (Base‘(SymGrp‘(1...𝑁)))
14 madjusmdetlem1.s . . 3 𝑆 = (pmSgn‘(1...𝑁))
15 madjusmdet.z . . 3 𝑍 = (ℤRHom‘𝑅)
16 madjusmdet.t . . 3 · = (.r𝑅)
17 madjusmdetlem1.w . . 3 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)𝑈(𝑄𝑗)))
18 madjusmdet.r . . 3 (𝜑𝑅 ∈ CRing)
19 fzfid 13996 . . 3 (𝜑 → (1...𝑁) ∈ Fin)
20 crngring 20210 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2118, 20syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
224, 5minmar1cl 22594 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁))) → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ∈ 𝐵)
2321, 1, 3, 2, 22syl22anc 838 . . . 4 (𝜑 → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ∈ 𝐵)
2410, 23eqeltrid 2839 . . 3 (𝜑𝑈𝐵)
25 madjusmdetlem1.p . . 3 (𝜑𝑃𝐺)
26 madjusmdetlem1.q . . 3 (𝜑𝑄𝐺)
274, 5, 6, 13, 14, 15, 16, 17, 18, 19, 24, 25, 26mdetpmtr12 33861 . 2 (𝜑 → (𝐷𝑈) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝑊)))
28 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → 𝑖 = 𝑁)
2928fveq2d 6885 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑃𝑖) = (𝑃𝑁))
30 madjusmdetlem1.1 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃𝑁) = 𝐼)
31303ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑃𝑁) = 𝐼)
3231ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑃𝑁) = 𝐼)
3329, 32eqtrd 2771 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑃𝑖) = 𝐼)
34 simpr 484 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → 𝑗 = 𝑁)
3534fveq2d 6885 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑄𝑗) = (𝑄𝑁))
36 madjusmdetlem1.2 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄𝑁) = 𝐽)
37363ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄𝑁) = 𝐽)
3837ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑄𝑁) = 𝐽)
3935, 38eqtrd 2771 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑄𝑗) = 𝐽)
4033, 39oveq12d 7428 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) = (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)𝐽))
4113ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑀𝐵)
4241ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → 𝑀𝐵)
4333ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝐼 ∈ (1...𝑁))
4443ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → 𝐼 ∈ (1...𝑁))
4523ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝐽 ∈ (1...𝑁))
4645ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → 𝐽 ∈ (1...𝑁))
47 eqid 2736 . . . . . . . . . . . . 13 ((1...𝑁) minMatR1 𝑅) = ((1...𝑁) minMatR1 𝑅)
48 eqid 2736 . . . . . . . . . . . . 13 (1r𝑅) = (1r𝑅)
49 eqid 2736 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
504, 5, 47, 48, 49minmar1eval 22592 . . . . . . . . . . . 12 ((𝑀𝐵 ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁)) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁))) → (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)𝐽) = if(𝐼 = 𝐼, if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀𝐽)))
5142, 44, 46, 44, 46, 50syl122anc 1381 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)𝐽) = if(𝐼 = 𝐼, if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀𝐽)))
52 eqid 2736 . . . . . . . . . . . . . 14 𝐼 = 𝐼
5352iftruei 4512 . . . . . . . . . . . . 13 if(𝐼 = 𝐼, if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀𝐽)) = if(𝐽 = 𝐽, (1r𝑅), (0g𝑅))
54 eqid 2736 . . . . . . . . . . . . . 14 𝐽 = 𝐽
5554iftruei 4512 . . . . . . . . . . . . 13 if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)) = (1r𝑅)
5653, 55eqtri 2759 . . . . . . . . . . . 12 if(𝐼 = 𝐼, if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀𝐽)) = (1r𝑅)
5756a1i 11 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → if(𝐼 = 𝐼, if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀𝐽)) = (1r𝑅))
5840, 51, 573eqtrrd 2776 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (1r𝑅) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
59 simplr 768 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → 𝑖 = 𝑁)
6059fveq2d 6885 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (𝑃𝑖) = (𝑃𝑁))
6131ad2antrr 726 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (𝑃𝑁) = 𝐼)
6260, 61eqtrd 2771 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (𝑃𝑖) = 𝐼)
6362oveq1d 7425 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) = (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
6441ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → 𝑀𝐵)
6543ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → 𝐼 ∈ (1...𝑁))
6645ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → 𝐽 ∈ (1...𝑁))
67263ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑄𝐺)
68 simp3 1138 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
69 eqid 2736 . . . . . . . . . . . . . . 15 (SymGrp‘(1...𝑁)) = (SymGrp‘(1...𝑁))
7069, 13symgfv 19366 . . . . . . . . . . . . . 14 ((𝑄𝐺𝑗 ∈ (1...𝑁)) → (𝑄𝑗) ∈ (1...𝑁))
7167, 68, 70syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄𝑗) ∈ (1...𝑁))
7271ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (𝑄𝑗) ∈ (1...𝑁))
734, 5, 47, 48, 49minmar1eval 22592 . . . . . . . . . . . 12 ((𝑀𝐵 ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁)) ∧ (𝐼 ∈ (1...𝑁) ∧ (𝑄𝑗) ∈ (1...𝑁))) → (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) = if(𝐼 = 𝐼, if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀(𝑄𝑗))))
7464, 65, 66, 65, 72, 73syl122anc 1381 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) = if(𝐼 = 𝐼, if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀(𝑄𝑗))))
7552a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → 𝐼 = 𝐼)
7675iftrued 4513 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → if(𝐼 = 𝐼, if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀(𝑄𝑗))) = if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)))
77 simpr 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → (𝑄𝑗) = 𝐽)
7877fveq2d 6885 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → (𝑄‘(𝑄𝑗)) = (𝑄𝐽))
7969, 13symgbasf1o 19361 . . . . . . . . . . . . . . . . . . . 20 (𝑄𝐺𝑄:(1...𝑁)–1-1-onto→(1...𝑁))
8067, 79syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑄:(1...𝑁)–1-1-onto→(1...𝑁))
8180ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → 𝑄:(1...𝑁)–1-1-onto→(1...𝑁))
8268ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → 𝑗 ∈ (1...𝑁))
83 f1ocnvfv1 7274 . . . . . . . . . . . . . . . . . 18 ((𝑄:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄‘(𝑄𝑗)) = 𝑗)
8481, 82, 83syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → (𝑄‘(𝑄𝑗)) = 𝑗)
8536fveq2d 6885 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑄‘(𝑄𝑁)) = (𝑄𝐽))
8626, 79syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑄:(1...𝑁)–1-1-onto→(1...𝑁))
87 madjusmdet.n . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑁 ∈ ℕ)
88 nnuz 12900 . . . . . . . . . . . . . . . . . . . . . . 23 ℕ = (ℤ‘1)
8987, 88eleqtrdi 2845 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑁 ∈ (ℤ‘1))
90 eluzfz2 13554 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
9189, 90syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑁 ∈ (1...𝑁))
92 f1ocnvfv1 7274 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → (𝑄‘(𝑄𝑁)) = 𝑁)
9386, 91, 92syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑄‘(𝑄𝑁)) = 𝑁)
9485, 93eqtr3d 2773 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑄𝐽) = 𝑁)
95943ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄𝐽) = 𝑁)
9695ad2antrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → (𝑄𝐽) = 𝑁)
9778, 84, 963eqtr3d 2779 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → 𝑗 = 𝑁)
9897ex 412 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) → ((𝑄𝑗) = 𝐽𝑗 = 𝑁))
9998con3d 152 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) → (¬ 𝑗 = 𝑁 → ¬ (𝑄𝑗) = 𝐽))
10099imp 406 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → ¬ (𝑄𝑗) = 𝐽)
101100iffalsed 4516 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)) = (0g𝑅))
10276, 101eqtrd 2771 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → if(𝐼 = 𝐼, if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀(𝑄𝑗))) = (0g𝑅))
10363, 74, 1023eqtrrd 2776 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (0g𝑅) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
10458, 103ifeqda 4542 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) → if(𝑗 = 𝑁, (1r𝑅), (0g𝑅)) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
105 simp2 1137 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁))
106105adantr 480 . . . . . . . . . 10 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ ¬ 𝑖 = 𝑁) → 𝑖 ∈ (1...𝑁))
10768adantr 480 . . . . . . . . . 10 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ ¬ 𝑖 = 𝑁) → 𝑗 ∈ (1...𝑁))
108 ovexd 7445 . . . . . . . . . 10 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ ¬ 𝑖 = 𝑁) → ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) ∈ V)
10910oveqi 7423 . . . . . . . . . . . . . 14 ((𝑃𝑖)𝑈(𝑄𝑗)) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗))
110109a1i 11 . . . . . . . . . . . . 13 ((𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑃𝑖)𝑈(𝑄𝑗)) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
111110mpoeq3ia 7490 . . . . . . . . . . . 12 (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)𝑈(𝑄𝑗))) = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
11217, 111eqtri 2759 . . . . . . . . . . 11 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
113112ovmpt4g 7559 . . . . . . . . . 10 ((𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁) ∧ ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) ∈ V) → (𝑖𝑊𝑗) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
114106, 107, 108, 113syl3anc 1373 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ ¬ 𝑖 = 𝑁) → (𝑖𝑊𝑗) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
115104, 114ifeqda 4542 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → if(𝑖 = 𝑁, if(𝑗 = 𝑁, (1r𝑅), (0g𝑅)), (𝑖𝑊𝑗)) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
116115mpoeq3dva 7489 . . . . . . 7 (𝜑 → (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ if(𝑖 = 𝑁, if(𝑗 = 𝑁, (1r𝑅), (0g𝑅)), (𝑖𝑊𝑗))) = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗))))
117 eqid 2736 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
118253ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑃𝐺)
11969, 13symgfv 19366 . . . . . . . . . . . 12 ((𝑃𝐺𝑖 ∈ (1...𝑁)) → (𝑃𝑖) ∈ (1...𝑁))
120118, 105, 119syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑃𝑖) ∈ (1...𝑁))
121243ad2ant1 1133 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑈𝐵)
1224, 117, 5, 120, 71, 121matecld 22369 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑃𝑖)𝑈(𝑄𝑗)) ∈ (Base‘𝑅))
1234, 117, 5, 19, 18, 122matbas2d 22366 . . . . . . . . 9 (𝜑 → (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)𝑈(𝑄𝑗))) ∈ 𝐵)
12417, 123eqeltrid 2839 . . . . . . . 8 (𝜑𝑊𝐵)
125117, 48ringidcl 20230 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
12621, 125syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
127 eqid 2736 . . . . . . . . 9 ((1...𝑁) matRRep 𝑅) = ((1...𝑁) matRRep 𝑅)
1284, 5, 127, 49marrepval 22505 . . . . . . . 8 (((𝑊𝐵 ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ (𝑁 ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁))) → (𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁) = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ if(𝑖 = 𝑁, if(𝑗 = 𝑁, (1r𝑅), (0g𝑅)), (𝑖𝑊𝑗))))
129124, 126, 91, 91, 128syl22anc 838 . . . . . . 7 (𝜑 → (𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁) = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ if(𝑖 = 𝑁, if(𝑗 = 𝑁, (1r𝑅), (0g𝑅)), (𝑖𝑊𝑗))))
130112a1i 11 . . . . . . 7 (𝜑𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗))))
131116, 129, 1303eqtr4d 2781 . . . . . 6 (𝜑 → (𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁) = 𝑊)
132131fveq2d 6885 . . . . 5 (𝜑 → (𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = (𝐷𝑊))
133 eqid 2736 . . . . . . . . . . . 12 ((1...𝑁) subMat 𝑅) = ((1...𝑁) subMat 𝑅)
1344, 133, 5submaval 22524 . . . . . . . . . . 11 ((𝑊𝐵𝑁 ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑊𝑗)))
135124, 91, 91, 134syl3anc 1373 . . . . . . . . . 10 (𝜑 → (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑊𝑗)))
136 fzdif2 32772 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
13789, 136syl 17 . . . . . . . . . . 11 (𝜑 → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
138 mpoeq12 7485 . . . . . . . . . . 11 ((((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)) ∧ ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑊𝑗)) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑊𝑗)))
139137, 137, 138syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑊𝑗)) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑊𝑗)))
140135, 139eqtrd 2771 . . . . . . . . 9 (𝜑 → (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑊𝑗)))
141 difssd 4117 . . . . . . . . . . 11 (𝜑 → ((1...𝑁) ∖ {𝑁}) ⊆ (1...𝑁))
142137, 141eqsstrrd 3999 . . . . . . . . . 10 (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁))
1434, 5submabas 22521 . . . . . . . . . 10 ((𝑊𝐵 ∧ (1...(𝑁 − 1)) ⊆ (1...𝑁)) → (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑊𝑗)) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
144124, 142, 143syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑊𝑗)) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
145140, 144eqeltrd 2835 . . . . . . . 8 (𝜑 → (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
146 madjusmdet.e . . . . . . . . 9 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
147 eqid 2736 . . . . . . . . 9 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
148 eqid 2736 . . . . . . . . 9 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
149146, 147, 148, 117mdetcl 22539 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) → (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)) ∈ (Base‘𝑅))
15018, 145, 149syl2anc 584 . . . . . . 7 (𝜑 → (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)) ∈ (Base‘𝑅))
151117, 16, 48ringlidm 20234 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)) ∈ (Base‘𝑅)) → ((1r𝑅) · (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))) = (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)))
15221, 150, 151syl2anc 584 . . . . . 6 (𝜑 → ((1r𝑅) · (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))) = (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)))
1534fveq2i 6884 . . . . . . . . . . 11 (Base‘𝐴) = (Base‘((1...𝑁) Mat 𝑅))
1545, 153eqtri 2759 . . . . . . . . . 10 𝐵 = (Base‘((1...𝑁) Mat 𝑅))
155124, 154eleqtrdi 2845 . . . . . . . . 9 (𝜑𝑊 ∈ (Base‘((1...𝑁) Mat 𝑅)))
156 smadiadetr 22618 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑊 ∈ (Base‘((1...𝑁) Mat 𝑅))) ∧ (𝑁 ∈ (1...𝑁) ∧ (1r𝑅) ∈ (Base‘𝑅))) → (((1...𝑁) maDet 𝑅)‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅)(.r𝑅)((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
15718, 155, 91, 126, 156syl22anc 838 . . . . . . . 8 (𝜑 → (((1...𝑁) maDet 𝑅)‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅)(.r𝑅)((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
1586fveq1i 6882 . . . . . . . . 9 (𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = (((1...𝑁) maDet 𝑅)‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁))
15916oveqi 7423 . . . . . . . . 9 ((1r𝑅) · ((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))) = ((1r𝑅)(.r𝑅)((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)))
160158, 159eqeq12i 2754 . . . . . . . 8 ((𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅) · ((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))) ↔ (((1...𝑁) maDet 𝑅)‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅)(.r𝑅)((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
161157, 160sylibr 234 . . . . . . 7 (𝜑 → (𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅) · ((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
162137oveq1d 7425 . . . . . . . . . 10 (𝜑 → (((1...𝑁) ∖ {𝑁}) maDet 𝑅) = ((1...(𝑁 − 1)) maDet 𝑅))
163162, 146eqtr4di 2789 . . . . . . . . 9 (𝜑 → (((1...𝑁) ∖ {𝑁}) maDet 𝑅) = 𝐸)
164163fveq1d 6883 . . . . . . . 8 (𝜑 → ((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)) = (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)))
165164oveq2d 7426 . . . . . . 7 (𝜑 → ((1r𝑅) · ((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))) = ((1r𝑅) · (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
166161, 165eqtrd 2771 . . . . . 6 (𝜑 → (𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅) · (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
1674, 5submat1n 33841 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑊𝐵) → (𝑁(subMat1‘𝑊)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))
16887, 124, 167syl2anc 584 . . . . . . 7 (𝜑 → (𝑁(subMat1‘𝑊)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))
169168fveq2d 6885 . . . . . 6 (𝜑 → (𝐸‘(𝑁(subMat1‘𝑊)𝑁)) = (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)))
170152, 166, 1693eqtr4d 2781 . . . . 5 (𝜑 → (𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = (𝐸‘(𝑁(subMat1‘𝑊)𝑁)))
171132, 170eqtr3d 2773 . . . 4 (𝜑 → (𝐷𝑊) = (𝐸‘(𝑁(subMat1‘𝑊)𝑁)))
1724, 5, 87, 3, 2, 21, 1, 10submatminr1 33846 . . . . . 6 (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝑈)𝐽))
173 madjusmdetlem1.3 . . . . . 6 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
174172, 173eqtrd 2771 . . . . 5 (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
175174fveq2d 6885 . . . 4 (𝜑 → (𝐸‘(𝐼(subMat1‘𝑀)𝐽)) = (𝐸‘(𝑁(subMat1‘𝑊)𝑁)))
176171, 175eqtr4d 2774 . . 3 (𝜑 → (𝐷𝑊) = (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))
177176oveq2d 7426 . 2 (𝜑 → ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝑊)) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
17812, 27, 1773eqtrd 2775 1 (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3464  cdif 3928  wss 3931  ifcif 4505  {csn 4606  ccnv 5658  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  cmpo 7412  1c1 11135   · cmul 11139  cmin 11471  cn 12245  cuz 12857  ...cfz 13529  Basecbs 17233  .rcmulr 17277  0gc0g 17458  SymGrpcsymg 19355  pmSgncpsgn 19475  1rcur 20146  Ringcrg 20198  CRingccrg 20199  ℤRHomczrh 21465   Mat cmat 22350   matRRep cmarrep 22499   subMat csubma 22519   maDet cmdat 22527   maAdju cmadu 22575   minMatR1 cminmar1 22576  subMat1csmat 33829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-xnn0 12580  df-z 12594  df-dec 12714  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-word 14537  df-lsw 14586  df-concat 14594  df-s1 14619  df-substr 14664  df-pfx 14694  df-splice 14773  df-reverse 14782  df-s2 14872  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-efmnd 18852  df-grp 18924  df-minusg 18925  df-mulg 19056  df-subg 19111  df-ghm 19201  df-gim 19247  df-cntz 19305  df-oppg 19334  df-symg 19356  df-pmtr 19428  df-psgn 19477  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-rhm 20437  df-subrng 20511  df-subrg 20535  df-drng 20696  df-sra 21136  df-rgmod 21137  df-cnfld 21321  df-zring 21413  df-zrh 21469  df-dsmm 21697  df-frlm 21712  df-mat 22351  df-marrep 22501  df-subma 22520  df-mdet 22528  df-madu 22577  df-minmar1 22578  df-smat 33830
This theorem is referenced by:  madjusmdetlem4  33866
  Copyright terms: Public domain W3C validator