Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madjusmdetlem1 Structured version   Visualization version   GIF version

Theorem madjusmdetlem1 31777
Description: Lemma for madjusmdet 31781. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypotheses
Ref Expression
madjusmdet.b 𝐵 = (Base‘𝐴)
madjusmdet.a 𝐴 = ((1...𝑁) Mat 𝑅)
madjusmdet.d 𝐷 = ((1...𝑁) maDet 𝑅)
madjusmdet.k 𝐾 = ((1...𝑁) maAdju 𝑅)
madjusmdet.t · = (.r𝑅)
madjusmdet.z 𝑍 = (ℤRHom‘𝑅)
madjusmdet.e 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
madjusmdet.n (𝜑𝑁 ∈ ℕ)
madjusmdet.r (𝜑𝑅 ∈ CRing)
madjusmdet.i (𝜑𝐼 ∈ (1...𝑁))
madjusmdet.j (𝜑𝐽 ∈ (1...𝑁))
madjusmdet.m (𝜑𝑀𝐵)
madjusmdetlem1.g 𝐺 = (Base‘(SymGrp‘(1...𝑁)))
madjusmdetlem1.s 𝑆 = (pmSgn‘(1...𝑁))
madjusmdetlem1.u 𝑈 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)
madjusmdetlem1.w 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)𝑈(𝑄𝑗)))
madjusmdetlem1.p (𝜑𝑃𝐺)
madjusmdetlem1.q (𝜑𝑄𝐺)
madjusmdetlem1.1 (𝜑 → (𝑃𝑁) = 𝐼)
madjusmdetlem1.2 (𝜑 → (𝑄𝑁) = 𝐽)
madjusmdetlem1.3 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
Assertion
Ref Expression
madjusmdetlem1 (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐼,𝑗   𝑖,𝐽,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑄,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗   𝑖,𝐺,𝑗   𝑖,𝑊,𝑗   𝑈,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   𝑆(𝑖,𝑗)   · (𝑖,𝑗)   𝐸(𝑖,𝑗)   𝐾(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem madjusmdetlem1
StepHypRef Expression
1 madjusmdet.m . . . 4 (𝜑𝑀𝐵)
2 madjusmdet.j . . . 4 (𝜑𝐽 ∈ (1...𝑁))
3 madjusmdet.i . . . 4 (𝜑𝐼 ∈ (1...𝑁))
4 madjusmdet.a . . . . 5 𝐴 = ((1...𝑁) Mat 𝑅)
5 madjusmdet.b . . . . 5 𝐵 = (Base‘𝐴)
6 madjusmdet.d . . . . 5 𝐷 = ((1...𝑁) maDet 𝑅)
7 madjusmdet.k . . . . 5 𝐾 = ((1...𝑁) maAdju 𝑅)
84, 5, 6, 7maducoevalmin1 21801 . . . 4 ((𝑀𝐵𝐽 ∈ (1...𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐽(𝐾𝑀)𝐼) = (𝐷‘(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)))
91, 2, 3, 8syl3anc 1370 . . 3 (𝜑 → (𝐽(𝐾𝑀)𝐼) = (𝐷‘(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)))
10 madjusmdetlem1.u . . . 4 𝑈 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)
1110fveq2i 6777 . . 3 (𝐷𝑈) = (𝐷‘(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽))
129, 11eqtr4di 2796 . 2 (𝜑 → (𝐽(𝐾𝑀)𝐼) = (𝐷𝑈))
13 madjusmdetlem1.g . . 3 𝐺 = (Base‘(SymGrp‘(1...𝑁)))
14 madjusmdetlem1.s . . 3 𝑆 = (pmSgn‘(1...𝑁))
15 madjusmdet.z . . 3 𝑍 = (ℤRHom‘𝑅)
16 madjusmdet.t . . 3 · = (.r𝑅)
17 madjusmdetlem1.w . . 3 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)𝑈(𝑄𝑗)))
18 madjusmdet.r . . 3 (𝜑𝑅 ∈ CRing)
19 fzfid 13693 . . 3 (𝜑 → (1...𝑁) ∈ Fin)
20 crngring 19795 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2118, 20syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
224, 5minmar1cl 21800 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁))) → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ∈ 𝐵)
2321, 1, 3, 2, 22syl22anc 836 . . . 4 (𝜑 → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ∈ 𝐵)
2410, 23eqeltrid 2843 . . 3 (𝜑𝑈𝐵)
25 madjusmdetlem1.p . . 3 (𝜑𝑃𝐺)
26 madjusmdetlem1.q . . 3 (𝜑𝑄𝐺)
274, 5, 6, 13, 14, 15, 16, 17, 18, 19, 24, 25, 26mdetpmtr12 31775 . 2 (𝜑 → (𝐷𝑈) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝑊)))
28 simplr 766 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → 𝑖 = 𝑁)
2928fveq2d 6778 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑃𝑖) = (𝑃𝑁))
30 madjusmdetlem1.1 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃𝑁) = 𝐼)
31303ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑃𝑁) = 𝐼)
3231ad2antrr 723 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑃𝑁) = 𝐼)
3329, 32eqtrd 2778 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑃𝑖) = 𝐼)
34 simpr 485 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → 𝑗 = 𝑁)
3534fveq2d 6778 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑄𝑗) = (𝑄𝑁))
36 madjusmdetlem1.2 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄𝑁) = 𝐽)
37363ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄𝑁) = 𝐽)
3837ad2antrr 723 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑄𝑁) = 𝐽)
3935, 38eqtrd 2778 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑄𝑗) = 𝐽)
4033, 39oveq12d 7293 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) = (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)𝐽))
4113ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑀𝐵)
4241ad2antrr 723 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → 𝑀𝐵)
4333ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝐼 ∈ (1...𝑁))
4443ad2antrr 723 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → 𝐼 ∈ (1...𝑁))
4523ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝐽 ∈ (1...𝑁))
4645ad2antrr 723 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → 𝐽 ∈ (1...𝑁))
47 eqid 2738 . . . . . . . . . . . . 13 ((1...𝑁) minMatR1 𝑅) = ((1...𝑁) minMatR1 𝑅)
48 eqid 2738 . . . . . . . . . . . . 13 (1r𝑅) = (1r𝑅)
49 eqid 2738 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
504, 5, 47, 48, 49minmar1eval 21798 . . . . . . . . . . . 12 ((𝑀𝐵 ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁)) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁))) → (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)𝐽) = if(𝐼 = 𝐼, if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀𝐽)))
5142, 44, 46, 44, 46, 50syl122anc 1378 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)𝐽) = if(𝐼 = 𝐼, if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀𝐽)))
52 eqid 2738 . . . . . . . . . . . . . 14 𝐼 = 𝐼
5352iftruei 4466 . . . . . . . . . . . . 13 if(𝐼 = 𝐼, if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀𝐽)) = if(𝐽 = 𝐽, (1r𝑅), (0g𝑅))
54 eqid 2738 . . . . . . . . . . . . . 14 𝐽 = 𝐽
5554iftruei 4466 . . . . . . . . . . . . 13 if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)) = (1r𝑅)
5653, 55eqtri 2766 . . . . . . . . . . . 12 if(𝐼 = 𝐼, if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀𝐽)) = (1r𝑅)
5756a1i 11 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → if(𝐼 = 𝐼, if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀𝐽)) = (1r𝑅))
5840, 51, 573eqtrrd 2783 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (1r𝑅) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
59 simplr 766 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → 𝑖 = 𝑁)
6059fveq2d 6778 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (𝑃𝑖) = (𝑃𝑁))
6131ad2antrr 723 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (𝑃𝑁) = 𝐼)
6260, 61eqtrd 2778 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (𝑃𝑖) = 𝐼)
6362oveq1d 7290 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) = (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
6441ad2antrr 723 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → 𝑀𝐵)
6543ad2antrr 723 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → 𝐼 ∈ (1...𝑁))
6645ad2antrr 723 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → 𝐽 ∈ (1...𝑁))
67263ad2ant1 1132 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑄𝐺)
68 simp3 1137 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
69 eqid 2738 . . . . . . . . . . . . . . 15 (SymGrp‘(1...𝑁)) = (SymGrp‘(1...𝑁))
7069, 13symgfv 18987 . . . . . . . . . . . . . 14 ((𝑄𝐺𝑗 ∈ (1...𝑁)) → (𝑄𝑗) ∈ (1...𝑁))
7167, 68, 70syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄𝑗) ∈ (1...𝑁))
7271ad2antrr 723 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (𝑄𝑗) ∈ (1...𝑁))
734, 5, 47, 48, 49minmar1eval 21798 . . . . . . . . . . . 12 ((𝑀𝐵 ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁)) ∧ (𝐼 ∈ (1...𝑁) ∧ (𝑄𝑗) ∈ (1...𝑁))) → (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) = if(𝐼 = 𝐼, if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀(𝑄𝑗))))
7464, 65, 66, 65, 72, 73syl122anc 1378 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) = if(𝐼 = 𝐼, if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀(𝑄𝑗))))
7552a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → 𝐼 = 𝐼)
7675iftrued 4467 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → if(𝐼 = 𝐼, if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀(𝑄𝑗))) = if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)))
77 simpr 485 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → (𝑄𝑗) = 𝐽)
7877fveq2d 6778 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → (𝑄‘(𝑄𝑗)) = (𝑄𝐽))
7969, 13symgbasf1o 18982 . . . . . . . . . . . . . . . . . . . 20 (𝑄𝐺𝑄:(1...𝑁)–1-1-onto→(1...𝑁))
8067, 79syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑄:(1...𝑁)–1-1-onto→(1...𝑁))
8180ad2antrr 723 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → 𝑄:(1...𝑁)–1-1-onto→(1...𝑁))
8268ad2antrr 723 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → 𝑗 ∈ (1...𝑁))
83 f1ocnvfv1 7148 . . . . . . . . . . . . . . . . . 18 ((𝑄:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄‘(𝑄𝑗)) = 𝑗)
8481, 82, 83syl2anc 584 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → (𝑄‘(𝑄𝑗)) = 𝑗)
8536fveq2d 6778 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑄‘(𝑄𝑁)) = (𝑄𝐽))
8626, 79syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑄:(1...𝑁)–1-1-onto→(1...𝑁))
87 madjusmdet.n . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑁 ∈ ℕ)
88 nnuz 12621 . . . . . . . . . . . . . . . . . . . . . . 23 ℕ = (ℤ‘1)
8987, 88eleqtrdi 2849 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑁 ∈ (ℤ‘1))
90 eluzfz2 13264 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
9189, 90syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑁 ∈ (1...𝑁))
92 f1ocnvfv1 7148 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → (𝑄‘(𝑄𝑁)) = 𝑁)
9386, 91, 92syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑄‘(𝑄𝑁)) = 𝑁)
9485, 93eqtr3d 2780 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑄𝐽) = 𝑁)
95943ad2ant1 1132 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄𝐽) = 𝑁)
9695ad2antrr 723 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → (𝑄𝐽) = 𝑁)
9778, 84, 963eqtr3d 2786 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → 𝑗 = 𝑁)
9897ex 413 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) → ((𝑄𝑗) = 𝐽𝑗 = 𝑁))
9998con3d 152 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) → (¬ 𝑗 = 𝑁 → ¬ (𝑄𝑗) = 𝐽))
10099imp 407 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → ¬ (𝑄𝑗) = 𝐽)
101100iffalsed 4470 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)) = (0g𝑅))
10276, 101eqtrd 2778 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → if(𝐼 = 𝐼, if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀(𝑄𝑗))) = (0g𝑅))
10363, 74, 1023eqtrrd 2783 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (0g𝑅) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
10458, 103ifeqda 4495 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) → if(𝑗 = 𝑁, (1r𝑅), (0g𝑅)) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
105 simp2 1136 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁))
106105adantr 481 . . . . . . . . . 10 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ ¬ 𝑖 = 𝑁) → 𝑖 ∈ (1...𝑁))
10768adantr 481 . . . . . . . . . 10 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ ¬ 𝑖 = 𝑁) → 𝑗 ∈ (1...𝑁))
108 ovexd 7310 . . . . . . . . . 10 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ ¬ 𝑖 = 𝑁) → ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) ∈ V)
10910oveqi 7288 . . . . . . . . . . . . . 14 ((𝑃𝑖)𝑈(𝑄𝑗)) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗))
110109a1i 11 . . . . . . . . . . . . 13 ((𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑃𝑖)𝑈(𝑄𝑗)) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
111110mpoeq3ia 7353 . . . . . . . . . . . 12 (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)𝑈(𝑄𝑗))) = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
11217, 111eqtri 2766 . . . . . . . . . . 11 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
113112ovmpt4g 7420 . . . . . . . . . 10 ((𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁) ∧ ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) ∈ V) → (𝑖𝑊𝑗) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
114106, 107, 108, 113syl3anc 1370 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ ¬ 𝑖 = 𝑁) → (𝑖𝑊𝑗) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
115104, 114ifeqda 4495 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → if(𝑖 = 𝑁, if(𝑗 = 𝑁, (1r𝑅), (0g𝑅)), (𝑖𝑊𝑗)) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
116115mpoeq3dva 7352 . . . . . . 7 (𝜑 → (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ if(𝑖 = 𝑁, if(𝑗 = 𝑁, (1r𝑅), (0g𝑅)), (𝑖𝑊𝑗))) = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗))))
117 eqid 2738 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
118253ad2ant1 1132 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑃𝐺)
11969, 13symgfv 18987 . . . . . . . . . . . 12 ((𝑃𝐺𝑖 ∈ (1...𝑁)) → (𝑃𝑖) ∈ (1...𝑁))
120118, 105, 119syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑃𝑖) ∈ (1...𝑁))
121243ad2ant1 1132 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑈𝐵)
1224, 117, 5, 120, 71, 121matecld 21575 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑃𝑖)𝑈(𝑄𝑗)) ∈ (Base‘𝑅))
1234, 117, 5, 19, 18, 122matbas2d 21572 . . . . . . . . 9 (𝜑 → (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)𝑈(𝑄𝑗))) ∈ 𝐵)
12417, 123eqeltrid 2843 . . . . . . . 8 (𝜑𝑊𝐵)
125117, 48ringidcl 19807 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
12621, 125syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
127 eqid 2738 . . . . . . . . 9 ((1...𝑁) matRRep 𝑅) = ((1...𝑁) matRRep 𝑅)
1284, 5, 127, 49marrepval 21711 . . . . . . . 8 (((𝑊𝐵 ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ (𝑁 ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁))) → (𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁) = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ if(𝑖 = 𝑁, if(𝑗 = 𝑁, (1r𝑅), (0g𝑅)), (𝑖𝑊𝑗))))
129124, 126, 91, 91, 128syl22anc 836 . . . . . . 7 (𝜑 → (𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁) = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ if(𝑖 = 𝑁, if(𝑗 = 𝑁, (1r𝑅), (0g𝑅)), (𝑖𝑊𝑗))))
130112a1i 11 . . . . . . 7 (𝜑𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗))))
131116, 129, 1303eqtr4d 2788 . . . . . 6 (𝜑 → (𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁) = 𝑊)
132131fveq2d 6778 . . . . 5 (𝜑 → (𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = (𝐷𝑊))
133 eqid 2738 . . . . . . . . . . . 12 ((1...𝑁) subMat 𝑅) = ((1...𝑁) subMat 𝑅)
1344, 133, 5submaval 21730 . . . . . . . . . . 11 ((𝑊𝐵𝑁 ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑊𝑗)))
135124, 91, 91, 134syl3anc 1370 . . . . . . . . . 10 (𝜑 → (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑊𝑗)))
136 fzdif2 31112 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
13789, 136syl 17 . . . . . . . . . . 11 (𝜑 → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
138 mpoeq12 7348 . . . . . . . . . . 11 ((((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)) ∧ ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑊𝑗)) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑊𝑗)))
139137, 137, 138syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑊𝑗)) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑊𝑗)))
140135, 139eqtrd 2778 . . . . . . . . 9 (𝜑 → (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑊𝑗)))
141 difssd 4067 . . . . . . . . . . 11 (𝜑 → ((1...𝑁) ∖ {𝑁}) ⊆ (1...𝑁))
142137, 141eqsstrrd 3960 . . . . . . . . . 10 (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁))
1434, 5submabas 21727 . . . . . . . . . 10 ((𝑊𝐵 ∧ (1...(𝑁 − 1)) ⊆ (1...𝑁)) → (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑊𝑗)) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
144124, 142, 143syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑊𝑗)) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
145140, 144eqeltrd 2839 . . . . . . . 8 (𝜑 → (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
146 madjusmdet.e . . . . . . . . 9 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
147 eqid 2738 . . . . . . . . 9 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
148 eqid 2738 . . . . . . . . 9 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
149146, 147, 148, 117mdetcl 21745 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) → (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)) ∈ (Base‘𝑅))
15018, 145, 149syl2anc 584 . . . . . . 7 (𝜑 → (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)) ∈ (Base‘𝑅))
151117, 16, 48ringlidm 19810 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)) ∈ (Base‘𝑅)) → ((1r𝑅) · (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))) = (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)))
15221, 150, 151syl2anc 584 . . . . . 6 (𝜑 → ((1r𝑅) · (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))) = (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)))
1534fveq2i 6777 . . . . . . . . . . 11 (Base‘𝐴) = (Base‘((1...𝑁) Mat 𝑅))
1545, 153eqtri 2766 . . . . . . . . . 10 𝐵 = (Base‘((1...𝑁) Mat 𝑅))
155124, 154eleqtrdi 2849 . . . . . . . . 9 (𝜑𝑊 ∈ (Base‘((1...𝑁) Mat 𝑅)))
156 smadiadetr 21824 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑊 ∈ (Base‘((1...𝑁) Mat 𝑅))) ∧ (𝑁 ∈ (1...𝑁) ∧ (1r𝑅) ∈ (Base‘𝑅))) → (((1...𝑁) maDet 𝑅)‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅)(.r𝑅)((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
15718, 155, 91, 126, 156syl22anc 836 . . . . . . . 8 (𝜑 → (((1...𝑁) maDet 𝑅)‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅)(.r𝑅)((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
1586fveq1i 6775 . . . . . . . . 9 (𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = (((1...𝑁) maDet 𝑅)‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁))
15916oveqi 7288 . . . . . . . . 9 ((1r𝑅) · ((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))) = ((1r𝑅)(.r𝑅)((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)))
160158, 159eqeq12i 2756 . . . . . . . 8 ((𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅) · ((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))) ↔ (((1...𝑁) maDet 𝑅)‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅)(.r𝑅)((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
161157, 160sylibr 233 . . . . . . 7 (𝜑 → (𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅) · ((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
162137oveq1d 7290 . . . . . . . . . 10 (𝜑 → (((1...𝑁) ∖ {𝑁}) maDet 𝑅) = ((1...(𝑁 − 1)) maDet 𝑅))
163162, 146eqtr4di 2796 . . . . . . . . 9 (𝜑 → (((1...𝑁) ∖ {𝑁}) maDet 𝑅) = 𝐸)
164163fveq1d 6776 . . . . . . . 8 (𝜑 → ((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)) = (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)))
165164oveq2d 7291 . . . . . . 7 (𝜑 → ((1r𝑅) · ((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))) = ((1r𝑅) · (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
166161, 165eqtrd 2778 . . . . . 6 (𝜑 → (𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅) · (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
1674, 5submat1n 31755 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑊𝐵) → (𝑁(subMat1‘𝑊)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))
16887, 124, 167syl2anc 584 . . . . . . 7 (𝜑 → (𝑁(subMat1‘𝑊)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))
169168fveq2d 6778 . . . . . 6 (𝜑 → (𝐸‘(𝑁(subMat1‘𝑊)𝑁)) = (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)))
170152, 166, 1693eqtr4d 2788 . . . . 5 (𝜑 → (𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = (𝐸‘(𝑁(subMat1‘𝑊)𝑁)))
171132, 170eqtr3d 2780 . . . 4 (𝜑 → (𝐷𝑊) = (𝐸‘(𝑁(subMat1‘𝑊)𝑁)))
1724, 5, 87, 3, 2, 21, 1, 10submatminr1 31760 . . . . . 6 (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝑈)𝐽))
173 madjusmdetlem1.3 . . . . . 6 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
174172, 173eqtrd 2778 . . . . 5 (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
175174fveq2d 6778 . . . 4 (𝜑 → (𝐸‘(𝐼(subMat1‘𝑀)𝐽)) = (𝐸‘(𝑁(subMat1‘𝑊)𝑁)))
176171, 175eqtr4d 2781 . . 3 (𝜑 → (𝐷𝑊) = (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))
177176oveq2d 7291 . 2 (𝜑 → ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝑊)) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
17812, 27, 1773eqtrd 2782 1 (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  cdif 3884  wss 3887  ifcif 4459  {csn 4561  ccnv 5588  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cmpo 7277  1c1 10872   · cmul 10876  cmin 11205  cn 11973  cuz 12582  ...cfz 13239  Basecbs 16912  .rcmulr 16963  0gc0g 17150  SymGrpcsymg 18974  pmSgncpsgn 19097  1rcur 19737  Ringcrg 19783  CRingccrg 19784  ℤRHomczrh 20701   Mat cmat 21554   matRRep cmarrep 21705   subMat csubma 21725   maDet cmdat 21733   maAdju cmadu 21781   minMatR1 cminmar1 21782  subMat1csmat 31743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-xor 1507  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-splice 14463  df-reverse 14472  df-s2 14561  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-efmnd 18508  df-grp 18580  df-minusg 18581  df-mulg 18701  df-subg 18752  df-ghm 18832  df-gim 18875  df-cntz 18923  df-oppg 18950  df-symg 18975  df-pmtr 19050  df-psgn 19099  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-subrg 20022  df-sra 20434  df-rgmod 20435  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-dsmm 20939  df-frlm 20954  df-mat 21555  df-marrep 21707  df-subma 21726  df-mdet 21734  df-madu 21783  df-minmar1 21784  df-smat 31744
This theorem is referenced by:  madjusmdetlem4  31780
  Copyright terms: Public domain W3C validator