Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madjusmdetlem1 Structured version   Visualization version   GIF version

Theorem madjusmdetlem1 33559
Description: Lemma for madjusmdet 33563. (Contributed by Thierry Arnoux, 22-Aug-2020.)
Hypotheses
Ref Expression
madjusmdet.b 𝐵 = (Base‘𝐴)
madjusmdet.a 𝐴 = ((1...𝑁) Mat 𝑅)
madjusmdet.d 𝐷 = ((1...𝑁) maDet 𝑅)
madjusmdet.k 𝐾 = ((1...𝑁) maAdju 𝑅)
madjusmdet.t · = (.r𝑅)
madjusmdet.z 𝑍 = (ℤRHom‘𝑅)
madjusmdet.e 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
madjusmdet.n (𝜑𝑁 ∈ ℕ)
madjusmdet.r (𝜑𝑅 ∈ CRing)
madjusmdet.i (𝜑𝐼 ∈ (1...𝑁))
madjusmdet.j (𝜑𝐽 ∈ (1...𝑁))
madjusmdet.m (𝜑𝑀𝐵)
madjusmdetlem1.g 𝐺 = (Base‘(SymGrp‘(1...𝑁)))
madjusmdetlem1.s 𝑆 = (pmSgn‘(1...𝑁))
madjusmdetlem1.u 𝑈 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)
madjusmdetlem1.w 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)𝑈(𝑄𝑗)))
madjusmdetlem1.p (𝜑𝑃𝐺)
madjusmdetlem1.q (𝜑𝑄𝐺)
madjusmdetlem1.1 (𝜑 → (𝑃𝑁) = 𝐼)
madjusmdetlem1.2 (𝜑 → (𝑄𝑁) = 𝐽)
madjusmdetlem1.3 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
Assertion
Ref Expression
madjusmdetlem1 (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐼,𝑗   𝑖,𝐽,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑄,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗   𝑖,𝐺,𝑗   𝑖,𝑊,𝑗   𝑈,𝑖,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   𝑆(𝑖,𝑗)   · (𝑖,𝑗)   𝐸(𝑖,𝑗)   𝐾(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem madjusmdetlem1
StepHypRef Expression
1 madjusmdet.m . . . 4 (𝜑𝑀𝐵)
2 madjusmdet.j . . . 4 (𝜑𝐽 ∈ (1...𝑁))
3 madjusmdet.i . . . 4 (𝜑𝐼 ∈ (1...𝑁))
4 madjusmdet.a . . . . 5 𝐴 = ((1...𝑁) Mat 𝑅)
5 madjusmdet.b . . . . 5 𝐵 = (Base‘𝐴)
6 madjusmdet.d . . . . 5 𝐷 = ((1...𝑁) maDet 𝑅)
7 madjusmdet.k . . . . 5 𝐾 = ((1...𝑁) maAdju 𝑅)
84, 5, 6, 7maducoevalmin1 22598 . . . 4 ((𝑀𝐵𝐽 ∈ (1...𝑁) ∧ 𝐼 ∈ (1...𝑁)) → (𝐽(𝐾𝑀)𝐼) = (𝐷‘(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)))
91, 2, 3, 8syl3anc 1368 . . 3 (𝜑 → (𝐽(𝐾𝑀)𝐼) = (𝐷‘(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)))
10 madjusmdetlem1.u . . . 4 𝑈 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)
1110fveq2i 6899 . . 3 (𝐷𝑈) = (𝐷‘(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽))
129, 11eqtr4di 2783 . 2 (𝜑 → (𝐽(𝐾𝑀)𝐼) = (𝐷𝑈))
13 madjusmdetlem1.g . . 3 𝐺 = (Base‘(SymGrp‘(1...𝑁)))
14 madjusmdetlem1.s . . 3 𝑆 = (pmSgn‘(1...𝑁))
15 madjusmdet.z . . 3 𝑍 = (ℤRHom‘𝑅)
16 madjusmdet.t . . 3 · = (.r𝑅)
17 madjusmdetlem1.w . . 3 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)𝑈(𝑄𝑗)))
18 madjusmdet.r . . 3 (𝜑𝑅 ∈ CRing)
19 fzfid 13974 . . 3 (𝜑 → (1...𝑁) ∈ Fin)
20 crngring 20197 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2118, 20syl 17 . . . . 5 (𝜑𝑅 ∈ Ring)
224, 5minmar1cl 22597 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁))) → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ∈ 𝐵)
2321, 1, 3, 2, 22syl22anc 837 . . . 4 (𝜑 → (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ∈ 𝐵)
2410, 23eqeltrid 2829 . . 3 (𝜑𝑈𝐵)
25 madjusmdetlem1.p . . 3 (𝜑𝑃𝐺)
26 madjusmdetlem1.q . . 3 (𝜑𝑄𝐺)
274, 5, 6, 13, 14, 15, 16, 17, 18, 19, 24, 25, 26mdetpmtr12 33557 . 2 (𝜑 → (𝐷𝑈) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝑊)))
28 simplr 767 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → 𝑖 = 𝑁)
2928fveq2d 6900 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑃𝑖) = (𝑃𝑁))
30 madjusmdetlem1.1 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃𝑁) = 𝐼)
31303ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑃𝑁) = 𝐼)
3231ad2antrr 724 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑃𝑁) = 𝐼)
3329, 32eqtrd 2765 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑃𝑖) = 𝐼)
34 simpr 483 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → 𝑗 = 𝑁)
3534fveq2d 6900 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑄𝑗) = (𝑄𝑁))
36 madjusmdetlem1.2 . . . . . . . . . . . . . . 15 (𝜑 → (𝑄𝑁) = 𝐽)
37363ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄𝑁) = 𝐽)
3837ad2antrr 724 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑄𝑁) = 𝐽)
3935, 38eqtrd 2765 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝑄𝑗) = 𝐽)
4033, 39oveq12d 7437 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) = (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)𝐽))
4113ad2ant1 1130 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑀𝐵)
4241ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → 𝑀𝐵)
4333ad2ant1 1130 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝐼 ∈ (1...𝑁))
4443ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → 𝐼 ∈ (1...𝑁))
4523ad2ant1 1130 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝐽 ∈ (1...𝑁))
4645ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → 𝐽 ∈ (1...𝑁))
47 eqid 2725 . . . . . . . . . . . . 13 ((1...𝑁) minMatR1 𝑅) = ((1...𝑁) minMatR1 𝑅)
48 eqid 2725 . . . . . . . . . . . . 13 (1r𝑅) = (1r𝑅)
49 eqid 2725 . . . . . . . . . . . . 13 (0g𝑅) = (0g𝑅)
504, 5, 47, 48, 49minmar1eval 22595 . . . . . . . . . . . 12 ((𝑀𝐵 ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁)) ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁))) → (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)𝐽) = if(𝐼 = 𝐼, if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀𝐽)))
5142, 44, 46, 44, 46, 50syl122anc 1376 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)𝐽) = if(𝐼 = 𝐼, if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀𝐽)))
52 eqid 2725 . . . . . . . . . . . . . 14 𝐼 = 𝐼
5352iftruei 4537 . . . . . . . . . . . . 13 if(𝐼 = 𝐼, if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀𝐽)) = if(𝐽 = 𝐽, (1r𝑅), (0g𝑅))
54 eqid 2725 . . . . . . . . . . . . . 14 𝐽 = 𝐽
5554iftruei 4537 . . . . . . . . . . . . 13 if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)) = (1r𝑅)
5653, 55eqtri 2753 . . . . . . . . . . . 12 if(𝐼 = 𝐼, if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀𝐽)) = (1r𝑅)
5756a1i 11 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → if(𝐼 = 𝐼, if(𝐽 = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀𝐽)) = (1r𝑅))
5840, 51, 573eqtrrd 2770 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ 𝑗 = 𝑁) → (1r𝑅) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
59 simplr 767 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → 𝑖 = 𝑁)
6059fveq2d 6900 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (𝑃𝑖) = (𝑃𝑁))
6131ad2antrr 724 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (𝑃𝑁) = 𝐼)
6260, 61eqtrd 2765 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (𝑃𝑖) = 𝐼)
6362oveq1d 7434 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) = (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
6441ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → 𝑀𝐵)
6543ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → 𝐼 ∈ (1...𝑁))
6645ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → 𝐽 ∈ (1...𝑁))
67263ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑄𝐺)
68 simp3 1135 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
69 eqid 2725 . . . . . . . . . . . . . . 15 (SymGrp‘(1...𝑁)) = (SymGrp‘(1...𝑁))
7069, 13symgfv 19346 . . . . . . . . . . . . . 14 ((𝑄𝐺𝑗 ∈ (1...𝑁)) → (𝑄𝑗) ∈ (1...𝑁))
7167, 68, 70syl2anc 582 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄𝑗) ∈ (1...𝑁))
7271ad2antrr 724 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (𝑄𝑗) ∈ (1...𝑁))
734, 5, 47, 48, 49minmar1eval 22595 . . . . . . . . . . . 12 ((𝑀𝐵 ∧ (𝐼 ∈ (1...𝑁) ∧ 𝐽 ∈ (1...𝑁)) ∧ (𝐼 ∈ (1...𝑁) ∧ (𝑄𝑗) ∈ (1...𝑁))) → (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) = if(𝐼 = 𝐼, if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀(𝑄𝑗))))
7464, 65, 66, 65, 72, 73syl122anc 1376 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (𝐼(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) = if(𝐼 = 𝐼, if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀(𝑄𝑗))))
7552a1i 11 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → 𝐼 = 𝐼)
7675iftrued 4538 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → if(𝐼 = 𝐼, if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀(𝑄𝑗))) = if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)))
77 simpr 483 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → (𝑄𝑗) = 𝐽)
7877fveq2d 6900 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → (𝑄‘(𝑄𝑗)) = (𝑄𝐽))
7969, 13symgbasf1o 19341 . . . . . . . . . . . . . . . . . . . 20 (𝑄𝐺𝑄:(1...𝑁)–1-1-onto→(1...𝑁))
8067, 79syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑄:(1...𝑁)–1-1-onto→(1...𝑁))
8180ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → 𝑄:(1...𝑁)–1-1-onto→(1...𝑁))
8268ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → 𝑗 ∈ (1...𝑁))
83 f1ocnvfv1 7285 . . . . . . . . . . . . . . . . . 18 ((𝑄:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄‘(𝑄𝑗)) = 𝑗)
8481, 82, 83syl2anc 582 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → (𝑄‘(𝑄𝑗)) = 𝑗)
8536fveq2d 6900 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑄‘(𝑄𝑁)) = (𝑄𝐽))
8626, 79syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑄:(1...𝑁)–1-1-onto→(1...𝑁))
87 madjusmdet.n . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑁 ∈ ℕ)
88 nnuz 12898 . . . . . . . . . . . . . . . . . . . . . . 23 ℕ = (ℤ‘1)
8987, 88eleqtrdi 2835 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑁 ∈ (ℤ‘1))
90 eluzfz2 13544 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
9189, 90syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑁 ∈ (1...𝑁))
92 f1ocnvfv1 7285 . . . . . . . . . . . . . . . . . . . . 21 ((𝑄:(1...𝑁)–1-1-onto→(1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → (𝑄‘(𝑄𝑁)) = 𝑁)
9386, 91, 92syl2anc 582 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑄‘(𝑄𝑁)) = 𝑁)
9485, 93eqtr3d 2767 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑄𝐽) = 𝑁)
95943ad2ant1 1130 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄𝐽) = 𝑁)
9695ad2antrr 724 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → (𝑄𝐽) = 𝑁)
9778, 84, 963eqtr3d 2773 . . . . . . . . . . . . . . . 16 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ (𝑄𝑗) = 𝐽) → 𝑗 = 𝑁)
9897ex 411 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) → ((𝑄𝑗) = 𝐽𝑗 = 𝑁))
9998con3d 152 . . . . . . . . . . . . . 14 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) → (¬ 𝑗 = 𝑁 → ¬ (𝑄𝑗) = 𝐽))
10099imp 405 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → ¬ (𝑄𝑗) = 𝐽)
101100iffalsed 4541 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)) = (0g𝑅))
10276, 101eqtrd 2765 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → if(𝐼 = 𝐼, if((𝑄𝑗) = 𝐽, (1r𝑅), (0g𝑅)), (𝐼𝑀(𝑄𝑗))) = (0g𝑅))
10363, 74, 1023eqtrrd 2770 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) ∧ ¬ 𝑗 = 𝑁) → (0g𝑅) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
10458, 103ifeqda 4566 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ 𝑖 = 𝑁) → if(𝑗 = 𝑁, (1r𝑅), (0g𝑅)) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
105 simp2 1134 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁))
106105adantr 479 . . . . . . . . . 10 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ ¬ 𝑖 = 𝑁) → 𝑖 ∈ (1...𝑁))
10768adantr 479 . . . . . . . . . 10 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ ¬ 𝑖 = 𝑁) → 𝑗 ∈ (1...𝑁))
108 ovexd 7454 . . . . . . . . . 10 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ ¬ 𝑖 = 𝑁) → ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) ∈ V)
10910oveqi 7432 . . . . . . . . . . . . . 14 ((𝑃𝑖)𝑈(𝑄𝑗)) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗))
110109a1i 11 . . . . . . . . . . . . 13 ((𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑃𝑖)𝑈(𝑄𝑗)) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
111110mpoeq3ia 7498 . . . . . . . . . . . 12 (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)𝑈(𝑄𝑗))) = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
11217, 111eqtri 2753 . . . . . . . . . . 11 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
113112ovmpt4g 7568 . . . . . . . . . 10 ((𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁) ∧ ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)) ∈ V) → (𝑖𝑊𝑗) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
114106, 107, 108, 113syl3anc 1368 . . . . . . . . 9 (((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) ∧ ¬ 𝑖 = 𝑁) → (𝑖𝑊𝑗) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
115104, 114ifeqda 4566 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → if(𝑖 = 𝑁, if(𝑗 = 𝑁, (1r𝑅), (0g𝑅)), (𝑖𝑊𝑗)) = ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗)))
116115mpoeq3dva 7497 . . . . . . 7 (𝜑 → (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ if(𝑖 = 𝑁, if(𝑗 = 𝑁, (1r𝑅), (0g𝑅)), (𝑖𝑊𝑗))) = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗))))
117 eqid 2725 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
118253ad2ant1 1130 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑃𝐺)
11969, 13symgfv 19346 . . . . . . . . . . . 12 ((𝑃𝐺𝑖 ∈ (1...𝑁)) → (𝑃𝑖) ∈ (1...𝑁))
120118, 105, 119syl2anc 582 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑃𝑖) ∈ (1...𝑁))
121243ad2ant1 1130 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑈𝐵)
1224, 117, 5, 120, 71, 121matecld 22372 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑃𝑖)𝑈(𝑄𝑗)) ∈ (Base‘𝑅))
1234, 117, 5, 19, 18, 122matbas2d 22369 . . . . . . . . 9 (𝜑 → (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)𝑈(𝑄𝑗))) ∈ 𝐵)
12417, 123eqeltrid 2829 . . . . . . . 8 (𝜑𝑊𝐵)
125117, 48ringidcl 20214 . . . . . . . . 9 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
12621, 125syl 17 . . . . . . . 8 (𝜑 → (1r𝑅) ∈ (Base‘𝑅))
127 eqid 2725 . . . . . . . . 9 ((1...𝑁) matRRep 𝑅) = ((1...𝑁) matRRep 𝑅)
1284, 5, 127, 49marrepval 22508 . . . . . . . 8 (((𝑊𝐵 ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ (𝑁 ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁))) → (𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁) = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ if(𝑖 = 𝑁, if(𝑗 = 𝑁, (1r𝑅), (0g𝑅)), (𝑖𝑊𝑗))))
129124, 126, 91, 91, 128syl22anc 837 . . . . . . 7 (𝜑 → (𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁) = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ if(𝑖 = 𝑁, if(𝑗 = 𝑁, (1r𝑅), (0g𝑅)), (𝑖𝑊𝑗))))
130112a1i 11 . . . . . . 7 (𝜑𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ ((𝑃𝑖)(𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽)(𝑄𝑗))))
131116, 129, 1303eqtr4d 2775 . . . . . 6 (𝜑 → (𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁) = 𝑊)
132131fveq2d 6900 . . . . 5 (𝜑 → (𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = (𝐷𝑊))
133 eqid 2725 . . . . . . . . . . . 12 ((1...𝑁) subMat 𝑅) = ((1...𝑁) subMat 𝑅)
1344, 133, 5submaval 22527 . . . . . . . . . . 11 ((𝑊𝐵𝑁 ∈ (1...𝑁) ∧ 𝑁 ∈ (1...𝑁)) → (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑊𝑗)))
135124, 91, 91, 134syl3anc 1368 . . . . . . . . . 10 (𝜑 → (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁) = (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑊𝑗)))
136 fzdif2 32641 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
13789, 136syl 17 . . . . . . . . . . 11 (𝜑 → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
138 mpoeq12 7493 . . . . . . . . . . 11 ((((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)) ∧ ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑊𝑗)) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑊𝑗)))
139137, 137, 138syl2anc 582 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ ((1...𝑁) ∖ {𝑁}), 𝑗 ∈ ((1...𝑁) ∖ {𝑁}) ↦ (𝑖𝑊𝑗)) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑊𝑗)))
140135, 139eqtrd 2765 . . . . . . . . 9 (𝜑 → (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁) = (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑊𝑗)))
141 difssd 4129 . . . . . . . . . . 11 (𝜑 → ((1...𝑁) ∖ {𝑁}) ⊆ (1...𝑁))
142137, 141eqsstrrd 4016 . . . . . . . . . 10 (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁))
1434, 5submabas 22524 . . . . . . . . . 10 ((𝑊𝐵 ∧ (1...(𝑁 − 1)) ⊆ (1...𝑁)) → (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑊𝑗)) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
144124, 142, 143syl2anc 582 . . . . . . . . 9 (𝜑 → (𝑖 ∈ (1...(𝑁 − 1)), 𝑗 ∈ (1...(𝑁 − 1)) ↦ (𝑖𝑊𝑗)) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
145140, 144eqeltrd 2825 . . . . . . . 8 (𝜑 → (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
146 madjusmdet.e . . . . . . . . 9 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
147 eqid 2725 . . . . . . . . 9 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
148 eqid 2725 . . . . . . . . 9 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
149146, 147, 148, 117mdetcl 22542 . . . . . . . 8 ((𝑅 ∈ CRing ∧ (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) → (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)) ∈ (Base‘𝑅))
15018, 145, 149syl2anc 582 . . . . . . 7 (𝜑 → (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)) ∈ (Base‘𝑅))
151117, 16, 48ringlidm 20217 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)) ∈ (Base‘𝑅)) → ((1r𝑅) · (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))) = (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)))
15221, 150, 151syl2anc 582 . . . . . 6 (𝜑 → ((1r𝑅) · (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))) = (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)))
1534fveq2i 6899 . . . . . . . . . . 11 (Base‘𝐴) = (Base‘((1...𝑁) Mat 𝑅))
1545, 153eqtri 2753 . . . . . . . . . 10 𝐵 = (Base‘((1...𝑁) Mat 𝑅))
155124, 154eleqtrdi 2835 . . . . . . . . 9 (𝜑𝑊 ∈ (Base‘((1...𝑁) Mat 𝑅)))
156 smadiadetr 22621 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑊 ∈ (Base‘((1...𝑁) Mat 𝑅))) ∧ (𝑁 ∈ (1...𝑁) ∧ (1r𝑅) ∈ (Base‘𝑅))) → (((1...𝑁) maDet 𝑅)‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅)(.r𝑅)((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
15718, 155, 91, 126, 156syl22anc 837 . . . . . . . 8 (𝜑 → (((1...𝑁) maDet 𝑅)‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅)(.r𝑅)((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
1586fveq1i 6897 . . . . . . . . 9 (𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = (((1...𝑁) maDet 𝑅)‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁))
15916oveqi 7432 . . . . . . . . 9 ((1r𝑅) · ((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))) = ((1r𝑅)(.r𝑅)((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)))
160158, 159eqeq12i 2743 . . . . . . . 8 ((𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅) · ((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))) ↔ (((1...𝑁) maDet 𝑅)‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅)(.r𝑅)((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
161157, 160sylibr 233 . . . . . . 7 (𝜑 → (𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅) · ((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
162137oveq1d 7434 . . . . . . . . . 10 (𝜑 → (((1...𝑁) ∖ {𝑁}) maDet 𝑅) = ((1...(𝑁 − 1)) maDet 𝑅))
163162, 146eqtr4di 2783 . . . . . . . . 9 (𝜑 → (((1...𝑁) ∖ {𝑁}) maDet 𝑅) = 𝐸)
164163fveq1d 6898 . . . . . . . 8 (𝜑 → ((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)) = (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)))
165164oveq2d 7435 . . . . . . 7 (𝜑 → ((1r𝑅) · ((((1...𝑁) ∖ {𝑁}) maDet 𝑅)‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))) = ((1r𝑅) · (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
166161, 165eqtrd 2765 . . . . . 6 (𝜑 → (𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = ((1r𝑅) · (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))))
1674, 5submat1n 33537 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑊𝐵) → (𝑁(subMat1‘𝑊)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))
16887, 124, 167syl2anc 582 . . . . . . 7 (𝜑 → (𝑁(subMat1‘𝑊)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁))
169168fveq2d 6900 . . . . . 6 (𝜑 → (𝐸‘(𝑁(subMat1‘𝑊)𝑁)) = (𝐸‘(𝑁(((1...𝑁) subMat 𝑅)‘𝑊)𝑁)))
170152, 166, 1693eqtr4d 2775 . . . . 5 (𝜑 → (𝐷‘(𝑁(𝑊((1...𝑁) matRRep 𝑅)(1r𝑅))𝑁)) = (𝐸‘(𝑁(subMat1‘𝑊)𝑁)))
171132, 170eqtr3d 2767 . . . 4 (𝜑 → (𝐷𝑊) = (𝐸‘(𝑁(subMat1‘𝑊)𝑁)))
1724, 5, 87, 3, 2, 21, 1, 10submatminr1 33542 . . . . . 6 (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝑈)𝐽))
173 madjusmdetlem1.3 . . . . . 6 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
174172, 173eqtrd 2765 . . . . 5 (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
175174fveq2d 6900 . . . 4 (𝜑 → (𝐸‘(𝐼(subMat1‘𝑀)𝐽)) = (𝐸‘(𝑁(subMat1‘𝑊)𝑁)))
176171, 175eqtr4d 2768 . . 3 (𝜑 → (𝐷𝑊) = (𝐸‘(𝐼(subMat1‘𝑀)𝐽)))
177176oveq2d 7435 . 2 (𝜑 → ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐷𝑊)) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
17812, 27, 1773eqtrd 2769 1 (𝜑 → (𝐽(𝐾𝑀)𝐼) = ((𝑍‘((𝑆𝑃) · (𝑆𝑄))) · (𝐸‘(𝐼(subMat1‘𝑀)𝐽))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3461  cdif 3941  wss 3944  ifcif 4530  {csn 4630  ccnv 5677  1-1-ontowf1o 6548  cfv 6549  (class class class)co 7419  cmpo 7421  1c1 11141   · cmul 11145  cmin 11476  cn 12245  cuz 12855  ...cfz 13519  Basecbs 17183  .rcmulr 17237  0gc0g 17424  SymGrpcsymg 19333  pmSgncpsgn 19456  1rcur 20133  Ringcrg 20185  CRingccrg 20186  ℤRHomczrh 21442   Mat cmat 22351   matRRep cmarrep 22502   subMat csubma 22522   maDet cmdat 22530   maAdju cmadu 22578   minMatR1 cminmar1 22579  subMat1csmat 33525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-addf 11219  ax-mulf 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-xor 1505  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-sup 9467  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-xnn0 12578  df-z 12592  df-dec 12711  df-uz 12856  df-rp 13010  df-fz 13520  df-fzo 13663  df-seq 14003  df-exp 14063  df-hash 14326  df-word 14501  df-lsw 14549  df-concat 14557  df-s1 14582  df-substr 14627  df-pfx 14657  df-splice 14736  df-reverse 14745  df-s2 14835  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-0g 17426  df-gsum 17427  df-prds 17432  df-pws 17434  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-submnd 18744  df-efmnd 18829  df-grp 18901  df-minusg 18902  df-mulg 19032  df-subg 19086  df-ghm 19176  df-gim 19222  df-cntz 19280  df-oppg 19309  df-symg 19334  df-pmtr 19409  df-psgn 19458  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-dvr 20352  df-rhm 20423  df-subrng 20495  df-subrg 20520  df-drng 20638  df-sra 21070  df-rgmod 21071  df-cnfld 21297  df-zring 21390  df-zrh 21446  df-dsmm 21683  df-frlm 21698  df-mat 22352  df-marrep 22504  df-subma 22523  df-mdet 22531  df-madu 22580  df-minmar1 22581  df-smat 33526
This theorem is referenced by:  madjusmdetlem4  33562
  Copyright terms: Public domain W3C validator