![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndmovdistr | Structured version Visualization version GIF version |
Description: Any operation is distributive outside its domain, if the domain doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
ndmov.5 | ⊢ ¬ ∅ ∈ 𝑆 |
ndmov.6 | ⊢ dom 𝐺 = (𝑆 × 𝑆) |
Ref | Expression |
---|---|
ndmovdistr | ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmov.1 | . . . . . 6 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
2 | ndmov.5 | . . . . . 6 ⊢ ¬ ∅ ∈ 𝑆 | |
3 | 1, 2 | ndmovrcl 7545 | . . . . 5 ⊢ ((𝐵𝐹𝐶) ∈ 𝑆 → (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
4 | 3 | anim2i 618 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴 ∈ 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) |
5 | 3anass 1096 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ↔ (𝐴 ∈ 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) | |
6 | 4, 5 | sylibr 233 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
7 | ndmov.6 | . . . 4 ⊢ dom 𝐺 = (𝑆 × 𝑆) | |
8 | 7 | ndmov 7543 | . . 3 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ∅) |
9 | 6, 8 | nsyl5 159 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ∅) |
10 | 7, 2 | ndmovrcl 7545 | . . . . 5 ⊢ ((𝐴𝐺𝐵) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
11 | 7, 2 | ndmovrcl 7545 | . . . . 5 ⊢ ((𝐴𝐺𝐶) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
12 | 10, 11 | anim12i 614 | . . . 4 ⊢ (((𝐴𝐺𝐵) ∈ 𝑆 ∧ (𝐴𝐺𝐶) ∈ 𝑆) → ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) |
13 | anandi3 1103 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ↔ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) | |
14 | 12, 13 | sylibr 233 | . . 3 ⊢ (((𝐴𝐺𝐵) ∈ 𝑆 ∧ (𝐴𝐺𝐶) ∈ 𝑆) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
15 | 1 | ndmov 7543 | . . 3 ⊢ (¬ ((𝐴𝐺𝐵) ∈ 𝑆 ∧ (𝐴𝐺𝐶) ∈ 𝑆) → ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) = ∅) |
16 | 14, 15 | nsyl5 159 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) = ∅) |
17 | 9, 16 | eqtr4d 2780 | 1 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∅c0 4287 × cxp 5636 dom cdm 5638 (class class class)co 7362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-xp 5644 df-dm 5648 df-iota 6453 df-fv 6509 df-ov 7365 |
This theorem is referenced by: distrpi 10841 distrnq 10904 distrpr 10971 distrsr 11034 |
Copyright terms: Public domain | W3C validator |