| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ndmovdistr | Structured version Visualization version GIF version | ||
| Description: Any operation is distributive outside its domain, if the domain doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.) |
| Ref | Expression |
|---|---|
| ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
| ndmov.5 | ⊢ ¬ ∅ ∈ 𝑆 |
| ndmov.6 | ⊢ dom 𝐺 = (𝑆 × 𝑆) |
| Ref | Expression |
|---|---|
| ndmovdistr | ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmov.1 | . . . . . 6 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
| 2 | ndmov.5 | . . . . . 6 ⊢ ¬ ∅ ∈ 𝑆 | |
| 3 | 1, 2 | ndmovrcl 7578 | . . . . 5 ⊢ ((𝐵𝐹𝐶) ∈ 𝑆 → (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
| 4 | 3 | anim2i 617 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴 ∈ 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) |
| 5 | 3anass 1094 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ↔ (𝐴 ∈ 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) | |
| 6 | 4, 5 | sylibr 234 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
| 7 | ndmov.6 | . . . 4 ⊢ dom 𝐺 = (𝑆 × 𝑆) | |
| 8 | 7 | ndmov 7576 | . . 3 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ∅) |
| 9 | 6, 8 | nsyl5 159 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ∅) |
| 10 | 7, 2 | ndmovrcl 7578 | . . . . 5 ⊢ ((𝐴𝐺𝐵) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
| 11 | 7, 2 | ndmovrcl 7578 | . . . . 5 ⊢ ((𝐴𝐺𝐶) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
| 12 | 10, 11 | anim12i 613 | . . . 4 ⊢ (((𝐴𝐺𝐵) ∈ 𝑆 ∧ (𝐴𝐺𝐶) ∈ 𝑆) → ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) |
| 13 | anandi3 1101 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ↔ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) | |
| 14 | 12, 13 | sylibr 234 | . . 3 ⊢ (((𝐴𝐺𝐵) ∈ 𝑆 ∧ (𝐴𝐺𝐶) ∈ 𝑆) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
| 15 | 1 | ndmov 7576 | . . 3 ⊢ (¬ ((𝐴𝐺𝐵) ∈ 𝑆 ∧ (𝐴𝐺𝐶) ∈ 𝑆) → ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) = ∅) |
| 16 | 14, 15 | nsyl5 159 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) = ∅) |
| 17 | 9, 16 | eqtr4d 2768 | 1 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∅c0 4299 × cxp 5639 dom cdm 5641 (class class class)co 7390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-dm 5651 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: distrpi 10858 distrnq 10921 distrpr 10988 distrsr 11051 |
| Copyright terms: Public domain | W3C validator |