MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovdistr Structured version   Visualization version   GIF version

Theorem ndmovdistr 7607
Description: Any operation is distributive outside its domain, if the domain doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.)
Hypotheses
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmov.5 ¬ ∅ ∈ 𝑆
ndmov.6 dom 𝐺 = (𝑆 × 𝑆)
Assertion
Ref Expression
ndmovdistr (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)))

Proof of Theorem ndmovdistr
StepHypRef Expression
1 ndmov.1 . . . . . 6 dom 𝐹 = (𝑆 × 𝑆)
2 ndmov.5 . . . . . 6 ¬ ∅ ∈ 𝑆
31, 2ndmovrcl 7604 . . . . 5 ((𝐵𝐹𝐶) ∈ 𝑆 → (𝐵𝑆𝐶𝑆))
43anim2i 615 . . . 4 ((𝐴𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)))
5 3anass 1092 . . . 4 ((𝐴𝑆𝐵𝑆𝐶𝑆) ↔ (𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)))
64, 5sylibr 233 . . 3 ((𝐴𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴𝑆𝐵𝑆𝐶𝑆))
7 ndmov.6 . . . 4 dom 𝐺 = (𝑆 × 𝑆)
87ndmov 7602 . . 3 (¬ (𝐴𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ∅)
96, 8nsyl5 159 . 2 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ∅)
107, 2ndmovrcl 7604 . . . . 5 ((𝐴𝐺𝐵) ∈ 𝑆 → (𝐴𝑆𝐵𝑆))
117, 2ndmovrcl 7604 . . . . 5 ((𝐴𝐺𝐶) ∈ 𝑆 → (𝐴𝑆𝐶𝑆))
1210, 11anim12i 611 . . . 4 (((𝐴𝐺𝐵) ∈ 𝑆 ∧ (𝐴𝐺𝐶) ∈ 𝑆) → ((𝐴𝑆𝐵𝑆) ∧ (𝐴𝑆𝐶𝑆)))
13 anandi3 1099 . . . 4 ((𝐴𝑆𝐵𝑆𝐶𝑆) ↔ ((𝐴𝑆𝐵𝑆) ∧ (𝐴𝑆𝐶𝑆)))
1412, 13sylibr 233 . . 3 (((𝐴𝐺𝐵) ∈ 𝑆 ∧ (𝐴𝐺𝐶) ∈ 𝑆) → (𝐴𝑆𝐵𝑆𝐶𝑆))
151ndmov 7602 . . 3 (¬ ((𝐴𝐺𝐵) ∈ 𝑆 ∧ (𝐴𝐺𝐶) ∈ 𝑆) → ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) = ∅)
1614, 15nsyl5 159 . 2 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) = ∅)
179, 16eqtr4d 2768 1 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  c0 4318   × cxp 5670  dom cdm 5672  (class class class)co 7416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-ss 3956  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-xp 5678  df-dm 5682  df-iota 6495  df-fv 6551  df-ov 7419
This theorem is referenced by:  distrpi  10921  distrnq  10984  distrpr  11051  distrsr  11114
  Copyright terms: Public domain W3C validator