|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ndmovdistr | Structured version Visualization version GIF version | ||
| Description: Any operation is distributive outside its domain, if the domain doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.) | 
| Ref | Expression | 
|---|---|
| ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) | 
| ndmov.5 | ⊢ ¬ ∅ ∈ 𝑆 | 
| ndmov.6 | ⊢ dom 𝐺 = (𝑆 × 𝑆) | 
| Ref | Expression | 
|---|---|
| ndmovdistr | ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ndmov.1 | . . . . . 6 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
| 2 | ndmov.5 | . . . . . 6 ⊢ ¬ ∅ ∈ 𝑆 | |
| 3 | 1, 2 | ndmovrcl 7619 | . . . . 5 ⊢ ((𝐵𝐹𝐶) ∈ 𝑆 → (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) | 
| 4 | 3 | anim2i 617 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴 ∈ 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) | 
| 5 | 3anass 1095 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ↔ (𝐴 ∈ 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) | |
| 6 | 4, 5 | sylibr 234 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) | 
| 7 | ndmov.6 | . . . 4 ⊢ dom 𝐺 = (𝑆 × 𝑆) | |
| 8 | 7 | ndmov 7617 | . . 3 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ∅) | 
| 9 | 6, 8 | nsyl5 159 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ∅) | 
| 10 | 7, 2 | ndmovrcl 7619 | . . . . 5 ⊢ ((𝐴𝐺𝐵) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) | 
| 11 | 7, 2 | ndmovrcl 7619 | . . . . 5 ⊢ ((𝐴𝐺𝐶) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) | 
| 12 | 10, 11 | anim12i 613 | . . . 4 ⊢ (((𝐴𝐺𝐵) ∈ 𝑆 ∧ (𝐴𝐺𝐶) ∈ 𝑆) → ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) | 
| 13 | anandi3 1102 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ↔ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) | |
| 14 | 12, 13 | sylibr 234 | . . 3 ⊢ (((𝐴𝐺𝐵) ∈ 𝑆 ∧ (𝐴𝐺𝐶) ∈ 𝑆) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) | 
| 15 | 1 | ndmov 7617 | . . 3 ⊢ (¬ ((𝐴𝐺𝐵) ∈ 𝑆 ∧ (𝐴𝐺𝐶) ∈ 𝑆) → ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) = ∅) | 
| 16 | 14, 15 | nsyl5 159 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) = ∅) | 
| 17 | 9, 16 | eqtr4d 2780 | 1 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∅c0 4333 × cxp 5683 dom cdm 5685 (class class class)co 7431 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-dm 5695 df-iota 6514 df-fv 6569 df-ov 7434 | 
| This theorem is referenced by: distrpi 10938 distrnq 11001 distrpr 11068 distrsr 11131 | 
| Copyright terms: Public domain | W3C validator |