Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ndmovdistr | Structured version Visualization version GIF version |
Description: Any operation is distributive outside its domain, if the domain doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
ndmov.5 | ⊢ ¬ ∅ ∈ 𝑆 |
ndmov.6 | ⊢ dom 𝐺 = (𝑆 × 𝑆) |
Ref | Expression |
---|---|
ndmovdistr | ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmov.1 | . . . . . 6 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
2 | ndmov.5 | . . . . . 6 ⊢ ¬ ∅ ∈ 𝑆 | |
3 | 1, 2 | ndmovrcl 7458 | . . . . 5 ⊢ ((𝐵𝐹𝐶) ∈ 𝑆 → (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
4 | 3 | anim2i 617 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴 ∈ 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) |
5 | 3anass 1094 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ↔ (𝐴 ∈ 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) | |
6 | 4, 5 | sylibr 233 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
7 | ndmov.6 | . . . 4 ⊢ dom 𝐺 = (𝑆 × 𝑆) | |
8 | 7 | ndmov 7456 | . . 3 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ∅) |
9 | 6, 8 | nsyl5 159 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ∅) |
10 | 7, 2 | ndmovrcl 7458 | . . . . 5 ⊢ ((𝐴𝐺𝐵) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
11 | 7, 2 | ndmovrcl 7458 | . . . . 5 ⊢ ((𝐴𝐺𝐶) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
12 | 10, 11 | anim12i 613 | . . . 4 ⊢ (((𝐴𝐺𝐵) ∈ 𝑆 ∧ (𝐴𝐺𝐶) ∈ 𝑆) → ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) |
13 | anandi3 1101 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ↔ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) | |
14 | 12, 13 | sylibr 233 | . . 3 ⊢ (((𝐴𝐺𝐵) ∈ 𝑆 ∧ (𝐴𝐺𝐶) ∈ 𝑆) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
15 | 1 | ndmov 7456 | . . 3 ⊢ (¬ ((𝐴𝐺𝐵) ∈ 𝑆 ∧ (𝐴𝐺𝐶) ∈ 𝑆) → ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) = ∅) |
16 | 14, 15 | nsyl5 159 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) = ∅) |
17 | 9, 16 | eqtr4d 2781 | 1 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∅c0 4256 × cxp 5587 dom cdm 5589 (class class class)co 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-dm 5599 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: distrpi 10654 distrnq 10717 distrpr 10784 distrsr 10847 |
Copyright terms: Public domain | W3C validator |