![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ndmovdistr | Structured version Visualization version GIF version |
Description: Any operation is distributive outside its domain, if the domain doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
ndmov.1 | ⊢ dom 𝐹 = (𝑆 × 𝑆) |
ndmov.5 | ⊢ ¬ ∅ ∈ 𝑆 |
ndmov.6 | ⊢ dom 𝐺 = (𝑆 × 𝑆) |
Ref | Expression |
---|---|
ndmovdistr | ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmov.1 | . . . . . 6 ⊢ dom 𝐹 = (𝑆 × 𝑆) | |
2 | ndmov.5 | . . . . . 6 ⊢ ¬ ∅ ∈ 𝑆 | |
3 | 1, 2 | ndmovrcl 7604 | . . . . 5 ⊢ ((𝐵𝐹𝐶) ∈ 𝑆 → (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
4 | 3 | anim2i 615 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴 ∈ 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) |
5 | 3anass 1092 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ↔ (𝐴 ∈ 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) | |
6 | 4, 5 | sylibr 233 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
7 | ndmov.6 | . . . 4 ⊢ dom 𝐺 = (𝑆 × 𝑆) | |
8 | 7 | ndmov 7602 | . . 3 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ∅) |
9 | 6, 8 | nsyl5 159 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ∅) |
10 | 7, 2 | ndmovrcl 7604 | . . . . 5 ⊢ ((𝐴𝐺𝐵) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
11 | 7, 2 | ndmovrcl 7604 | . . . . 5 ⊢ ((𝐴𝐺𝐶) ∈ 𝑆 → (𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
12 | 10, 11 | anim12i 611 | . . . 4 ⊢ (((𝐴𝐺𝐵) ∈ 𝑆 ∧ (𝐴𝐺𝐶) ∈ 𝑆) → ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) |
13 | anandi3 1099 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ↔ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆))) | |
14 | 12, 13 | sylibr 233 | . . 3 ⊢ (((𝐴𝐺𝐵) ∈ 𝑆 ∧ (𝐴𝐺𝐶) ∈ 𝑆) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
15 | 1 | ndmov 7602 | . . 3 ⊢ (¬ ((𝐴𝐺𝐵) ∈ 𝑆 ∧ (𝐴𝐺𝐶) ∈ 𝑆) → ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) = ∅) |
16 | 14, 15 | nsyl5 159 | . 2 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) = ∅) |
17 | 9, 16 | eqtr4d 2768 | 1 ⊢ (¬ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∅c0 4318 × cxp 5670 dom cdm 5672 (class class class)co 7416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-xp 5678 df-dm 5682 df-iota 6495 df-fv 6551 df-ov 7419 |
This theorem is referenced by: distrpi 10921 distrnq 10984 distrpr 11051 distrsr 11114 |
Copyright terms: Public domain | W3C validator |