MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovass Structured version   Visualization version   GIF version

Theorem ndmovass 7593
Description: Any operation is associative outside its domain, if the domain doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.)
Hypotheses
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmov.5 ¬ ∅ ∈ 𝑆
Assertion
Ref Expression
ndmovass (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))

Proof of Theorem ndmovass
StepHypRef Expression
1 ndmov.1 . . . . . 6 dom 𝐹 = (𝑆 × 𝑆)
2 ndmov.5 . . . . . 6 ¬ ∅ ∈ 𝑆
31, 2ndmovrcl 7591 . . . . 5 ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴𝑆𝐵𝑆))
43anim1i 615 . . . 4 (((𝐴𝐹𝐵) ∈ 𝑆𝐶𝑆) → ((𝐴𝑆𝐵𝑆) ∧ 𝐶𝑆))
5 df-3an 1088 . . . 4 ((𝐴𝑆𝐵𝑆𝐶𝑆) ↔ ((𝐴𝑆𝐵𝑆) ∧ 𝐶𝑆))
64, 5sylibr 234 . . 3 (((𝐴𝐹𝐵) ∈ 𝑆𝐶𝑆) → (𝐴𝑆𝐵𝑆𝐶𝑆))
71ndmov 7589 . . 3 (¬ ((𝐴𝐹𝐵) ∈ 𝑆𝐶𝑆) → ((𝐴𝐹𝐵)𝐹𝐶) = ∅)
86, 7nsyl5 159 . 2 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → ((𝐴𝐹𝐵)𝐹𝐶) = ∅)
91, 2ndmovrcl 7591 . . . . 5 ((𝐵𝐹𝐶) ∈ 𝑆 → (𝐵𝑆𝐶𝑆))
109anim2i 617 . . . 4 ((𝐴𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)))
11 3anass 1094 . . . 4 ((𝐴𝑆𝐵𝑆𝐶𝑆) ↔ (𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)))
1210, 11sylibr 234 . . 3 ((𝐴𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴𝑆𝐵𝑆𝐶𝑆))
131ndmov 7589 . . 3 (¬ (𝐴𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴𝐹(𝐵𝐹𝐶)) = ∅)
1412, 13nsyl5 159 . 2 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → (𝐴𝐹(𝐵𝐹𝐶)) = ∅)
158, 14eqtr4d 2773 1 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  c0 4308   × cxp 5652  dom cdm 5654  (class class class)co 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-dm 5664  df-iota 6483  df-fv 6538  df-ov 7406
This theorem is referenced by:  addasspi  10907  mulasspi  10909  addassnq  10970  mulassnq  10971  genpass  11021  addasssr  11100  mulasssr  11102
  Copyright terms: Public domain W3C validator