MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovass Structured version   Visualization version   GIF version

Theorem ndmovass 7577
Description: Any operation is associative outside its domain, if the domain doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.)
Hypotheses
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmov.5 ¬ ∅ ∈ 𝑆
Assertion
Ref Expression
ndmovass (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))

Proof of Theorem ndmovass
StepHypRef Expression
1 ndmov.1 . . . . . 6 dom 𝐹 = (𝑆 × 𝑆)
2 ndmov.5 . . . . . 6 ¬ ∅ ∈ 𝑆
31, 2ndmovrcl 7575 . . . . 5 ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴𝑆𝐵𝑆))
43anim1i 615 . . . 4 (((𝐴𝐹𝐵) ∈ 𝑆𝐶𝑆) → ((𝐴𝑆𝐵𝑆) ∧ 𝐶𝑆))
5 df-3an 1088 . . . 4 ((𝐴𝑆𝐵𝑆𝐶𝑆) ↔ ((𝐴𝑆𝐵𝑆) ∧ 𝐶𝑆))
64, 5sylibr 234 . . 3 (((𝐴𝐹𝐵) ∈ 𝑆𝐶𝑆) → (𝐴𝑆𝐵𝑆𝐶𝑆))
71ndmov 7573 . . 3 (¬ ((𝐴𝐹𝐵) ∈ 𝑆𝐶𝑆) → ((𝐴𝐹𝐵)𝐹𝐶) = ∅)
86, 7nsyl5 159 . 2 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → ((𝐴𝐹𝐵)𝐹𝐶) = ∅)
91, 2ndmovrcl 7575 . . . . 5 ((𝐵𝐹𝐶) ∈ 𝑆 → (𝐵𝑆𝐶𝑆))
109anim2i 617 . . . 4 ((𝐴𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)))
11 3anass 1094 . . . 4 ((𝐴𝑆𝐵𝑆𝐶𝑆) ↔ (𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)))
1210, 11sylibr 234 . . 3 ((𝐴𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴𝑆𝐵𝑆𝐶𝑆))
131ndmov 7573 . . 3 (¬ (𝐴𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴𝐹(𝐵𝐹𝐶)) = ∅)
1412, 13nsyl5 159 . 2 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → (𝐴𝐹(𝐵𝐹𝐶)) = ∅)
158, 14eqtr4d 2767 1 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  c0 4296   × cxp 5636  dom cdm 5638  (class class class)co 7387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-dm 5648  df-iota 6464  df-fv 6519  df-ov 7390
This theorem is referenced by:  addasspi  10848  mulasspi  10850  addassnq  10911  mulassnq  10912  genpass  10962  addasssr  11041  mulasssr  11043
  Copyright terms: Public domain W3C validator