MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ndmovass Structured version   Visualization version   GIF version

Theorem ndmovass 7438
Description: Any operation is associative outside its domain, if the domain doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.)
Hypotheses
Ref Expression
ndmov.1 dom 𝐹 = (𝑆 × 𝑆)
ndmov.5 ¬ ∅ ∈ 𝑆
Assertion
Ref Expression
ndmovass (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))

Proof of Theorem ndmovass
StepHypRef Expression
1 ndmov.1 . . . . . 6 dom 𝐹 = (𝑆 × 𝑆)
2 ndmov.5 . . . . . 6 ¬ ∅ ∈ 𝑆
31, 2ndmovrcl 7436 . . . . 5 ((𝐴𝐹𝐵) ∈ 𝑆 → (𝐴𝑆𝐵𝑆))
43anim1i 614 . . . 4 (((𝐴𝐹𝐵) ∈ 𝑆𝐶𝑆) → ((𝐴𝑆𝐵𝑆) ∧ 𝐶𝑆))
5 df-3an 1087 . . . 4 ((𝐴𝑆𝐵𝑆𝐶𝑆) ↔ ((𝐴𝑆𝐵𝑆) ∧ 𝐶𝑆))
64, 5sylibr 233 . . 3 (((𝐴𝐹𝐵) ∈ 𝑆𝐶𝑆) → (𝐴𝑆𝐵𝑆𝐶𝑆))
71ndmov 7434 . . 3 (¬ ((𝐴𝐹𝐵) ∈ 𝑆𝐶𝑆) → ((𝐴𝐹𝐵)𝐹𝐶) = ∅)
86, 7nsyl5 159 . 2 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → ((𝐴𝐹𝐵)𝐹𝐶) = ∅)
91, 2ndmovrcl 7436 . . . . 5 ((𝐵𝐹𝐶) ∈ 𝑆 → (𝐵𝑆𝐶𝑆))
109anim2i 616 . . . 4 ((𝐴𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)))
11 3anass 1093 . . . 4 ((𝐴𝑆𝐵𝑆𝐶𝑆) ↔ (𝐴𝑆 ∧ (𝐵𝑆𝐶𝑆)))
1210, 11sylibr 233 . . 3 ((𝐴𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴𝑆𝐵𝑆𝐶𝑆))
131ndmov 7434 . . 3 (¬ (𝐴𝑆 ∧ (𝐵𝐹𝐶) ∈ 𝑆) → (𝐴𝐹(𝐵𝐹𝐶)) = ∅)
1412, 13nsyl5 159 . 2 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → (𝐴𝐹(𝐵𝐹𝐶)) = ∅)
158, 14eqtr4d 2781 1 (¬ (𝐴𝑆𝐵𝑆𝐶𝑆) → ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  c0 4253   × cxp 5578  dom cdm 5580  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-dm 5590  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  addasspi  10582  mulasspi  10584  addassnq  10645  mulassnq  10646  genpass  10696  addasssr  10775  mulasssr  10777
  Copyright terms: Public domain W3C validator