MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem9 Structured version   Visualization version   GIF version

Theorem rpnnen2lem9 16197
Description: Lemma for rpnnen2 16201. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem9 (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ𝑀)((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (0 + (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3)))))
Distinct variable groups:   𝑥,𝑛,𝑘   𝑘,𝐹   𝑘,𝑀,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem9
StepHypRef Expression
1 eqid 2730 . . 3 (ℤ𝑀) = (ℤ𝑀)
2 nnz 12557 . . 3 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
3 eqidd 2731 . . 3 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘))
4 eluznn 12884 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
5 difss 4102 . . . . . . 7 (ℕ ∖ {𝑀}) ⊆ ℕ
6 rpnnen2.1 . . . . . . . 8 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
76rpnnen2lem2 16190 . . . . . . 7 ((ℕ ∖ {𝑀}) ⊆ ℕ → (𝐹‘(ℕ ∖ {𝑀})):ℕ⟶ℝ)
85, 7ax-mp 5 . . . . . 6 (𝐹‘(ℕ ∖ {𝑀})):ℕ⟶ℝ
98ffvelcdmi 7058 . . . . 5 (𝑘 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℝ)
109recnd 11209 . . . 4 (𝑘 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℂ)
114, 10syl 17 . . 3 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℂ)
126rpnnen2lem5 16193 . . . 4 (((ℕ ∖ {𝑀}) ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘(ℕ ∖ {𝑀}))) ∈ dom ⇝ )
135, 12mpan 690 . . 3 (𝑀 ∈ ℕ → seq𝑀( + , (𝐹‘(ℕ ∖ {𝑀}))) ∈ dom ⇝ )
141, 2, 3, 11, 13isum1p 15814 . 2 (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ𝑀)((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))((𝐹‘(ℕ ∖ {𝑀}))‘𝑘)))
156rpnnen2lem1 16189 . . . . 5 (((ℕ ∖ {𝑀}) ⊆ ℕ ∧ 𝑀 ∈ ℕ) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) = if(𝑀 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑀), 0))
165, 15mpan 690 . . . 4 (𝑀 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) = if(𝑀 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑀), 0))
17 neldifsnd 4760 . . . . 5 (𝑀 ∈ ℕ → ¬ 𝑀 ∈ (ℕ ∖ {𝑀}))
1817iffalsed 4502 . . . 4 (𝑀 ∈ ℕ → if(𝑀 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑀), 0) = 0)
1916, 18eqtrd 2765 . . 3 (𝑀 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) = 0)
20 eqid 2730 . . . 4 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
21 peano2nn 12205 . . . . 5 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℕ)
2221nnzd 12563 . . . 4 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℤ)
23 eqidd 2731 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘))
24 eluznn 12884 . . . . . 6 (((𝑀 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘 ∈ ℕ)
2521, 24sylan 580 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘 ∈ ℕ)
2625, 10syl 17 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℂ)
27 1re 11181 . . . . . . . 8 1 ∈ ℝ
28 3nn 12272 . . . . . . . 8 3 ∈ ℕ
29 nndivre 12234 . . . . . . . 8 ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ)
3027, 28, 29mp2an 692 . . . . . . 7 (1 / 3) ∈ ℝ
3130recni 11195 . . . . . 6 (1 / 3) ∈ ℂ
3231a1i 11 . . . . 5 (𝑀 ∈ ℕ → (1 / 3) ∈ ℂ)
33 0re 11183 . . . . . . . . 9 0 ∈ ℝ
34 3re 12273 . . . . . . . . . 10 3 ∈ ℝ
35 3pos 12298 . . . . . . . . . 10 0 < 3
3634, 35recgt0ii 12096 . . . . . . . . 9 0 < (1 / 3)
3733, 30, 36ltleii 11304 . . . . . . . 8 0 ≤ (1 / 3)
38 absid 15269 . . . . . . . 8 (((1 / 3) ∈ ℝ ∧ 0 ≤ (1 / 3)) → (abs‘(1 / 3)) = (1 / 3))
3930, 37, 38mp2an 692 . . . . . . 7 (abs‘(1 / 3)) = (1 / 3)
40 1lt3 12361 . . . . . . . 8 1 < 3
41 recgt1 12086 . . . . . . . . 9 ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1))
4234, 35, 41mp2an 692 . . . . . . . 8 (1 < 3 ↔ (1 / 3) < 1)
4340, 42mpbi 230 . . . . . . 7 (1 / 3) < 1
4439, 43eqbrtri 5131 . . . . . 6 (abs‘(1 / 3)) < 1
4544a1i 11 . . . . 5 (𝑀 ∈ ℕ → (abs‘(1 / 3)) < 1)
4621nnnn0d 12510 . . . . 5 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℕ0)
476rpnnen2lem1 16189 . . . . . . . 8 (((ℕ ∖ {𝑀}) ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0))
485, 47mpan 690 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0))
4925, 48syl 17 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0))
50 nnre 12200 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
5150adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℝ)
52 eluzle 12813 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘(𝑀 + 1)) → (𝑀 + 1) ≤ 𝑘)
5352adantl 481 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 + 1) ≤ 𝑘)
54 nnltp1le 12597 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑀 < 𝑘 ↔ (𝑀 + 1) ≤ 𝑘))
5525, 54syldan 591 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 < 𝑘 ↔ (𝑀 + 1) ≤ 𝑘))
5653, 55mpbird 257 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 < 𝑘)
5751, 56gtned 11316 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘𝑀)
58 eldifsn 4753 . . . . . . . 8 (𝑘 ∈ (ℕ ∖ {𝑀}) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑀))
5925, 57, 58sylanbrc 583 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘 ∈ (ℕ ∖ {𝑀}))
6059iftrued 4499 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0) = ((1 / 3)↑𝑘))
6149, 60eqtrd 2765 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = ((1 / 3)↑𝑘))
6232, 45, 46, 61geolim2 15844 . . . 4 (𝑀 ∈ ℕ → seq(𝑀 + 1)( + , (𝐹‘(ℕ ∖ {𝑀}))) ⇝ (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3))))
6320, 22, 23, 26, 62isumclim 15730 . . 3 (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ‘(𝑀 + 1))((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3))))
6419, 63oveq12d 7408 . 2 (𝑀 ∈ ℕ → (((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))((𝐹‘(ℕ ∖ {𝑀}))‘𝑘)) = (0 + (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3)))))
6514, 64eqtrd 2765 1 (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ𝑀)((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (0 + (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  cdif 3914  wss 3917  ifcif 4491  𝒫 cpw 4566  {csn 4592   class class class wbr 5110  cmpt 5191  dom cdm 5641  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  3c3 12249  cuz 12800  seqcseq 13973  cexp 14033  abscabs 15207  cli 15457  Σcsu 15659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660
This theorem is referenced by:  rpnnen2lem11  16199
  Copyright terms: Public domain W3C validator