MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem9 Structured version   Visualization version   GIF version

Theorem rpnnen2lem9 16258
Description: Lemma for rpnnen2 16262. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem9 (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ𝑀)((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (0 + (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3)))))
Distinct variable groups:   𝑥,𝑛,𝑘   𝑘,𝐹   𝑘,𝑀,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem9
StepHypRef Expression
1 eqid 2737 . . 3 (ℤ𝑀) = (ℤ𝑀)
2 nnz 12634 . . 3 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
3 eqidd 2738 . . 3 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘))
4 eluznn 12960 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
5 difss 4136 . . . . . . 7 (ℕ ∖ {𝑀}) ⊆ ℕ
6 rpnnen2.1 . . . . . . . 8 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
76rpnnen2lem2 16251 . . . . . . 7 ((ℕ ∖ {𝑀}) ⊆ ℕ → (𝐹‘(ℕ ∖ {𝑀})):ℕ⟶ℝ)
85, 7ax-mp 5 . . . . . 6 (𝐹‘(ℕ ∖ {𝑀})):ℕ⟶ℝ
98ffvelcdmi 7103 . . . . 5 (𝑘 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℝ)
109recnd 11289 . . . 4 (𝑘 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℂ)
114, 10syl 17 . . 3 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℂ)
126rpnnen2lem5 16254 . . . 4 (((ℕ ∖ {𝑀}) ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘(ℕ ∖ {𝑀}))) ∈ dom ⇝ )
135, 12mpan 690 . . 3 (𝑀 ∈ ℕ → seq𝑀( + , (𝐹‘(ℕ ∖ {𝑀}))) ∈ dom ⇝ )
141, 2, 3, 11, 13isum1p 15877 . 2 (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ𝑀)((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))((𝐹‘(ℕ ∖ {𝑀}))‘𝑘)))
156rpnnen2lem1 16250 . . . . 5 (((ℕ ∖ {𝑀}) ⊆ ℕ ∧ 𝑀 ∈ ℕ) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) = if(𝑀 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑀), 0))
165, 15mpan 690 . . . 4 (𝑀 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) = if(𝑀 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑀), 0))
17 neldifsnd 4793 . . . . 5 (𝑀 ∈ ℕ → ¬ 𝑀 ∈ (ℕ ∖ {𝑀}))
1817iffalsed 4536 . . . 4 (𝑀 ∈ ℕ → if(𝑀 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑀), 0) = 0)
1916, 18eqtrd 2777 . . 3 (𝑀 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) = 0)
20 eqid 2737 . . . 4 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
21 peano2nn 12278 . . . . 5 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℕ)
2221nnzd 12640 . . . 4 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℤ)
23 eqidd 2738 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘))
24 eluznn 12960 . . . . . 6 (((𝑀 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘 ∈ ℕ)
2521, 24sylan 580 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘 ∈ ℕ)
2625, 10syl 17 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℂ)
27 1re 11261 . . . . . . . 8 1 ∈ ℝ
28 3nn 12345 . . . . . . . 8 3 ∈ ℕ
29 nndivre 12307 . . . . . . . 8 ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ)
3027, 28, 29mp2an 692 . . . . . . 7 (1 / 3) ∈ ℝ
3130recni 11275 . . . . . 6 (1 / 3) ∈ ℂ
3231a1i 11 . . . . 5 (𝑀 ∈ ℕ → (1 / 3) ∈ ℂ)
33 0re 11263 . . . . . . . . 9 0 ∈ ℝ
34 3re 12346 . . . . . . . . . 10 3 ∈ ℝ
35 3pos 12371 . . . . . . . . . 10 0 < 3
3634, 35recgt0ii 12174 . . . . . . . . 9 0 < (1 / 3)
3733, 30, 36ltleii 11384 . . . . . . . 8 0 ≤ (1 / 3)
38 absid 15335 . . . . . . . 8 (((1 / 3) ∈ ℝ ∧ 0 ≤ (1 / 3)) → (abs‘(1 / 3)) = (1 / 3))
3930, 37, 38mp2an 692 . . . . . . 7 (abs‘(1 / 3)) = (1 / 3)
40 1lt3 12439 . . . . . . . 8 1 < 3
41 recgt1 12164 . . . . . . . . 9 ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1))
4234, 35, 41mp2an 692 . . . . . . . 8 (1 < 3 ↔ (1 / 3) < 1)
4340, 42mpbi 230 . . . . . . 7 (1 / 3) < 1
4439, 43eqbrtri 5164 . . . . . 6 (abs‘(1 / 3)) < 1
4544a1i 11 . . . . 5 (𝑀 ∈ ℕ → (abs‘(1 / 3)) < 1)
4621nnnn0d 12587 . . . . 5 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℕ0)
476rpnnen2lem1 16250 . . . . . . . 8 (((ℕ ∖ {𝑀}) ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0))
485, 47mpan 690 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0))
4925, 48syl 17 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0))
50 nnre 12273 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
5150adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℝ)
52 eluzle 12891 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘(𝑀 + 1)) → (𝑀 + 1) ≤ 𝑘)
5352adantl 481 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 + 1) ≤ 𝑘)
54 nnltp1le 12674 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑀 < 𝑘 ↔ (𝑀 + 1) ≤ 𝑘))
5525, 54syldan 591 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 < 𝑘 ↔ (𝑀 + 1) ≤ 𝑘))
5653, 55mpbird 257 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 < 𝑘)
5751, 56gtned 11396 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘𝑀)
58 eldifsn 4786 . . . . . . . 8 (𝑘 ∈ (ℕ ∖ {𝑀}) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑀))
5925, 57, 58sylanbrc 583 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘 ∈ (ℕ ∖ {𝑀}))
6059iftrued 4533 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0) = ((1 / 3)↑𝑘))
6149, 60eqtrd 2777 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = ((1 / 3)↑𝑘))
6232, 45, 46, 61geolim2 15907 . . . 4 (𝑀 ∈ ℕ → seq(𝑀 + 1)( + , (𝐹‘(ℕ ∖ {𝑀}))) ⇝ (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3))))
6320, 22, 23, 26, 62isumclim 15793 . . 3 (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ‘(𝑀 + 1))((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3))))
6419, 63oveq12d 7449 . 2 (𝑀 ∈ ℕ → (((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))((𝐹‘(ℕ ∖ {𝑀}))‘𝑘)) = (0 + (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3)))))
6514, 64eqtrd 2777 1 (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ𝑀)((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (0 + (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  cdif 3948  wss 3951  ifcif 4525  𝒫 cpw 4600  {csn 4626   class class class wbr 5143  cmpt 5225  dom cdm 5685  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  3c3 12322  cuz 12878  seqcseq 14042  cexp 14102  abscabs 15273  cli 15520  Σcsu 15722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723
This theorem is referenced by:  rpnnen2lem11  16260
  Copyright terms: Public domain W3C validator