MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem9 Structured version   Visualization version   GIF version

Theorem rpnnen2lem9 15927
Description: Lemma for rpnnen2 15931. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem9 (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ𝑀)((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (0 + (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3)))))
Distinct variable groups:   𝑥,𝑛,𝑘   𝑘,𝐹   𝑘,𝑀,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem9
StepHypRef Expression
1 eqid 2740 . . 3 (ℤ𝑀) = (ℤ𝑀)
2 nnz 12340 . . 3 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
3 eqidd 2741 . . 3 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘))
4 eluznn 12655 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
5 difss 4071 . . . . . . 7 (ℕ ∖ {𝑀}) ⊆ ℕ
6 rpnnen2.1 . . . . . . . 8 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
76rpnnen2lem2 15920 . . . . . . 7 ((ℕ ∖ {𝑀}) ⊆ ℕ → (𝐹‘(ℕ ∖ {𝑀})):ℕ⟶ℝ)
85, 7ax-mp 5 . . . . . 6 (𝐹‘(ℕ ∖ {𝑀})):ℕ⟶ℝ
98ffvelrni 6955 . . . . 5 (𝑘 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℝ)
109recnd 11002 . . . 4 (𝑘 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℂ)
114, 10syl 17 . . 3 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℂ)
126rpnnen2lem5 15923 . . . 4 (((ℕ ∖ {𝑀}) ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘(ℕ ∖ {𝑀}))) ∈ dom ⇝ )
135, 12mpan 687 . . 3 (𝑀 ∈ ℕ → seq𝑀( + , (𝐹‘(ℕ ∖ {𝑀}))) ∈ dom ⇝ )
141, 2, 3, 11, 13isum1p 15549 . 2 (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ𝑀)((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))((𝐹‘(ℕ ∖ {𝑀}))‘𝑘)))
156rpnnen2lem1 15919 . . . . 5 (((ℕ ∖ {𝑀}) ⊆ ℕ ∧ 𝑀 ∈ ℕ) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) = if(𝑀 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑀), 0))
165, 15mpan 687 . . . 4 (𝑀 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) = if(𝑀 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑀), 0))
17 neldifsnd 4732 . . . . 5 (𝑀 ∈ ℕ → ¬ 𝑀 ∈ (ℕ ∖ {𝑀}))
1817iffalsed 4476 . . . 4 (𝑀 ∈ ℕ → if(𝑀 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑀), 0) = 0)
1916, 18eqtrd 2780 . . 3 (𝑀 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) = 0)
20 eqid 2740 . . . 4 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
21 peano2nn 11983 . . . . 5 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℕ)
2221nnzd 12422 . . . 4 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℤ)
23 eqidd 2741 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘))
24 eluznn 12655 . . . . . 6 (((𝑀 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘 ∈ ℕ)
2521, 24sylan 580 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘 ∈ ℕ)
2625, 10syl 17 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℂ)
27 1re 10974 . . . . . . . 8 1 ∈ ℝ
28 3nn 12050 . . . . . . . 8 3 ∈ ℕ
29 nndivre 12012 . . . . . . . 8 ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ)
3027, 28, 29mp2an 689 . . . . . . 7 (1 / 3) ∈ ℝ
3130recni 10988 . . . . . 6 (1 / 3) ∈ ℂ
3231a1i 11 . . . . 5 (𝑀 ∈ ℕ → (1 / 3) ∈ ℂ)
33 0re 10976 . . . . . . . . 9 0 ∈ ℝ
34 3re 12051 . . . . . . . . . 10 3 ∈ ℝ
35 3pos 12076 . . . . . . . . . 10 0 < 3
3634, 35recgt0ii 11879 . . . . . . . . 9 0 < (1 / 3)
3733, 30, 36ltleii 11096 . . . . . . . 8 0 ≤ (1 / 3)
38 absid 15004 . . . . . . . 8 (((1 / 3) ∈ ℝ ∧ 0 ≤ (1 / 3)) → (abs‘(1 / 3)) = (1 / 3))
3930, 37, 38mp2an 689 . . . . . . 7 (abs‘(1 / 3)) = (1 / 3)
40 1lt3 12144 . . . . . . . 8 1 < 3
41 recgt1 11869 . . . . . . . . 9 ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1))
4234, 35, 41mp2an 689 . . . . . . . 8 (1 < 3 ↔ (1 / 3) < 1)
4340, 42mpbi 229 . . . . . . 7 (1 / 3) < 1
4439, 43eqbrtri 5100 . . . . . 6 (abs‘(1 / 3)) < 1
4544a1i 11 . . . . 5 (𝑀 ∈ ℕ → (abs‘(1 / 3)) < 1)
4621nnnn0d 12291 . . . . 5 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℕ0)
476rpnnen2lem1 15919 . . . . . . . 8 (((ℕ ∖ {𝑀}) ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0))
485, 47mpan 687 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0))
4925, 48syl 17 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0))
50 nnre 11978 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
5150adantr 481 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℝ)
52 eluzle 12592 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘(𝑀 + 1)) → (𝑀 + 1) ≤ 𝑘)
5352adantl 482 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 + 1) ≤ 𝑘)
54 nnltp1le 12374 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑀 < 𝑘 ↔ (𝑀 + 1) ≤ 𝑘))
5525, 54syldan 591 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 < 𝑘 ↔ (𝑀 + 1) ≤ 𝑘))
5653, 55mpbird 256 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 < 𝑘)
5751, 56gtned 11108 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘𝑀)
58 eldifsn 4726 . . . . . . . 8 (𝑘 ∈ (ℕ ∖ {𝑀}) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑀))
5925, 57, 58sylanbrc 583 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘 ∈ (ℕ ∖ {𝑀}))
6059iftrued 4473 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0) = ((1 / 3)↑𝑘))
6149, 60eqtrd 2780 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = ((1 / 3)↑𝑘))
6232, 45, 46, 61geolim2 15579 . . . 4 (𝑀 ∈ ℕ → seq(𝑀 + 1)( + , (𝐹‘(ℕ ∖ {𝑀}))) ⇝ (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3))))
6320, 22, 23, 26, 62isumclim 15465 . . 3 (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ‘(𝑀 + 1))((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3))))
6419, 63oveq12d 7287 . 2 (𝑀 ∈ ℕ → (((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))((𝐹‘(ℕ ∖ {𝑀}))‘𝑘)) = (0 + (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3)))))
6514, 64eqtrd 2780 1 (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ𝑀)((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (0 + (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wne 2945  cdif 3889  wss 3892  ifcif 4465  𝒫 cpw 4539  {csn 4567   class class class wbr 5079  cmpt 5162  dom cdm 5589  wf 6427  cfv 6431  (class class class)co 7269  cc 10868  cr 10869  0cc0 10870  1c1 10871   + caddc 10873   < clt 11008  cle 11009  cmin 11203   / cdiv 11630  cn 11971  3c3 12027  cuz 12579  seqcseq 13717  cexp 13778  abscabs 14941  cli 15189  Σcsu 15393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-inf2 9375  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947  ax-pre-sup 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-isom 6440  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-er 8479  df-pm 8599  df-en 8715  df-dom 8716  df-sdom 8717  df-fin 8718  df-sup 9177  df-inf 9178  df-oi 9245  df-card 9696  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-n0 12232  df-z 12318  df-uz 12580  df-rp 12728  df-ico 13082  df-fz 13237  df-fzo 13380  df-fl 13508  df-seq 13718  df-exp 13779  df-hash 14041  df-cj 14806  df-re 14807  df-im 14808  df-sqrt 14942  df-abs 14943  df-limsup 15176  df-clim 15193  df-rlim 15194  df-sum 15394
This theorem is referenced by:  rpnnen2lem11  15929
  Copyright terms: Public domain W3C validator