MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem9 Structured version   Visualization version   GIF version

Theorem rpnnen2lem9 16190
Description: Lemma for rpnnen2 16194. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem9 (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ𝑀)((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (0 + (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3)))))
Distinct variable groups:   𝑥,𝑛,𝑘   𝑘,𝐹   𝑘,𝑀,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem9
StepHypRef Expression
1 eqid 2729 . . 3 (ℤ𝑀) = (ℤ𝑀)
2 nnz 12550 . . 3 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
3 eqidd 2730 . . 3 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘))
4 eluznn 12877 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ)
5 difss 4099 . . . . . . 7 (ℕ ∖ {𝑀}) ⊆ ℕ
6 rpnnen2.1 . . . . . . . 8 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
76rpnnen2lem2 16183 . . . . . . 7 ((ℕ ∖ {𝑀}) ⊆ ℕ → (𝐹‘(ℕ ∖ {𝑀})):ℕ⟶ℝ)
85, 7ax-mp 5 . . . . . 6 (𝐹‘(ℕ ∖ {𝑀})):ℕ⟶ℝ
98ffvelcdmi 7055 . . . . 5 (𝑘 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℝ)
109recnd 11202 . . . 4 (𝑘 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℂ)
114, 10syl 17 . . 3 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℂ)
126rpnnen2lem5 16186 . . . 4 (((ℕ ∖ {𝑀}) ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘(ℕ ∖ {𝑀}))) ∈ dom ⇝ )
135, 12mpan 690 . . 3 (𝑀 ∈ ℕ → seq𝑀( + , (𝐹‘(ℕ ∖ {𝑀}))) ∈ dom ⇝ )
141, 2, 3, 11, 13isum1p 15807 . 2 (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ𝑀)((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))((𝐹‘(ℕ ∖ {𝑀}))‘𝑘)))
156rpnnen2lem1 16182 . . . . 5 (((ℕ ∖ {𝑀}) ⊆ ℕ ∧ 𝑀 ∈ ℕ) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) = if(𝑀 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑀), 0))
165, 15mpan 690 . . . 4 (𝑀 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) = if(𝑀 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑀), 0))
17 neldifsnd 4757 . . . . 5 (𝑀 ∈ ℕ → ¬ 𝑀 ∈ (ℕ ∖ {𝑀}))
1817iffalsed 4499 . . . 4 (𝑀 ∈ ℕ → if(𝑀 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑀), 0) = 0)
1916, 18eqtrd 2764 . . 3 (𝑀 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) = 0)
20 eqid 2729 . . . 4 (ℤ‘(𝑀 + 1)) = (ℤ‘(𝑀 + 1))
21 peano2nn 12198 . . . . 5 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℕ)
2221nnzd 12556 . . . 4 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℤ)
23 eqidd 2730 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘))
24 eluznn 12877 . . . . . 6 (((𝑀 + 1) ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘 ∈ ℕ)
2521, 24sylan 580 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘 ∈ ℕ)
2625, 10syl 17 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℂ)
27 1re 11174 . . . . . . . 8 1 ∈ ℝ
28 3nn 12265 . . . . . . . 8 3 ∈ ℕ
29 nndivre 12227 . . . . . . . 8 ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ)
3027, 28, 29mp2an 692 . . . . . . 7 (1 / 3) ∈ ℝ
3130recni 11188 . . . . . 6 (1 / 3) ∈ ℂ
3231a1i 11 . . . . 5 (𝑀 ∈ ℕ → (1 / 3) ∈ ℂ)
33 0re 11176 . . . . . . . . 9 0 ∈ ℝ
34 3re 12266 . . . . . . . . . 10 3 ∈ ℝ
35 3pos 12291 . . . . . . . . . 10 0 < 3
3634, 35recgt0ii 12089 . . . . . . . . 9 0 < (1 / 3)
3733, 30, 36ltleii 11297 . . . . . . . 8 0 ≤ (1 / 3)
38 absid 15262 . . . . . . . 8 (((1 / 3) ∈ ℝ ∧ 0 ≤ (1 / 3)) → (abs‘(1 / 3)) = (1 / 3))
3930, 37, 38mp2an 692 . . . . . . 7 (abs‘(1 / 3)) = (1 / 3)
40 1lt3 12354 . . . . . . . 8 1 < 3
41 recgt1 12079 . . . . . . . . 9 ((3 ∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) < 1))
4234, 35, 41mp2an 692 . . . . . . . 8 (1 < 3 ↔ (1 / 3) < 1)
4340, 42mpbi 230 . . . . . . 7 (1 / 3) < 1
4439, 43eqbrtri 5128 . . . . . 6 (abs‘(1 / 3)) < 1
4544a1i 11 . . . . 5 (𝑀 ∈ ℕ → (abs‘(1 / 3)) < 1)
4621nnnn0d 12503 . . . . 5 (𝑀 ∈ ℕ → (𝑀 + 1) ∈ ℕ0)
476rpnnen2lem1 16182 . . . . . . . 8 (((ℕ ∖ {𝑀}) ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0))
485, 47mpan 690 . . . . . . 7 (𝑘 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0))
4925, 48syl 17 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0))
50 nnre 12193 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
5150adantr 480 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 ∈ ℝ)
52 eluzle 12806 . . . . . . . . . . 11 (𝑘 ∈ (ℤ‘(𝑀 + 1)) → (𝑀 + 1) ≤ 𝑘)
5352adantl 481 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 + 1) ≤ 𝑘)
54 nnltp1le 12590 . . . . . . . . . . 11 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑀 < 𝑘 ↔ (𝑀 + 1) ≤ 𝑘))
5525, 54syldan 591 . . . . . . . . . 10 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → (𝑀 < 𝑘 ↔ (𝑀 + 1) ≤ 𝑘))
5653, 55mpbird 257 . . . . . . . . 9 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑀 < 𝑘)
5751, 56gtned 11309 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘𝑀)
58 eldifsn 4750 . . . . . . . 8 (𝑘 ∈ (ℕ ∖ {𝑀}) ↔ (𝑘 ∈ ℕ ∧ 𝑘𝑀))
5925, 57, 58sylanbrc 583 . . . . . . 7 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → 𝑘 ∈ (ℕ ∖ {𝑀}))
6059iftrued 4496 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0) = ((1 / 3)↑𝑘))
6149, 60eqtrd 2764 . . . . 5 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (ℤ‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = ((1 / 3)↑𝑘))
6232, 45, 46, 61geolim2 15837 . . . 4 (𝑀 ∈ ℕ → seq(𝑀 + 1)( + , (𝐹‘(ℕ ∖ {𝑀}))) ⇝ (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3))))
6320, 22, 23, 26, 62isumclim 15723 . . 3 (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ‘(𝑀 + 1))((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3))))
6419, 63oveq12d 7405 . 2 (𝑀 ∈ ℕ → (((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) + Σ𝑘 ∈ (ℤ‘(𝑀 + 1))((𝐹‘(ℕ ∖ {𝑀}))‘𝑘)) = (0 + (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3)))))
6514, 64eqtrd 2764 1 (𝑀 ∈ ℕ → Σ𝑘 ∈ (ℤ𝑀)((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (0 + (((1 / 3)↑(𝑀 + 1)) / (1 − (1 / 3)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3911  wss 3914  ifcif 4488  𝒫 cpw 4563  {csn 4589   class class class wbr 5107  cmpt 5188  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  3c3 12242  cuz 12793  seqcseq 13966  cexp 14026  abscabs 15200  cli 15450  Σcsu 15652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-ico 13312  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653
This theorem is referenced by:  rpnnen2lem11  16192
  Copyright terms: Public domain W3C validator