Proof of Theorem rpnnen2lem9
Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
2 | | nnz 12272 |
. . 3
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℤ) |
3 | | eqidd 2739 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑀)) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘)) |
4 | | eluznn 12587 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑀)) → 𝑘 ∈ ℕ) |
5 | | difss 4062 |
. . . . . . 7
⊢ (ℕ
∖ {𝑀}) ⊆
ℕ |
6 | | rpnnen2.1 |
. . . . . . . 8
⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
7 | 6 | rpnnen2lem2 15852 |
. . . . . . 7
⊢ ((ℕ
∖ {𝑀}) ⊆
ℕ → (𝐹‘(ℕ ∖ {𝑀})):ℕ⟶ℝ) |
8 | 5, 7 | ax-mp 5 |
. . . . . 6
⊢ (𝐹‘(ℕ ∖ {𝑀})):ℕ⟶ℝ |
9 | 8 | ffvelrni 6942 |
. . . . 5
⊢ (𝑘 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℝ) |
10 | 9 | recnd 10934 |
. . . 4
⊢ (𝑘 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℂ) |
11 | 4, 10 | syl 17 |
. . 3
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑀)) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℂ) |
12 | 6 | rpnnen2lem5 15855 |
. . . 4
⊢
(((ℕ ∖ {𝑀}) ⊆ ℕ ∧ 𝑀 ∈ ℕ) → seq𝑀( + , (𝐹‘(ℕ ∖ {𝑀}))) ∈ dom ⇝ ) |
13 | 5, 12 | mpan 686 |
. . 3
⊢ (𝑀 ∈ ℕ → seq𝑀( + , (𝐹‘(ℕ ∖ {𝑀}))) ∈ dom ⇝ ) |
14 | 1, 2, 3, 11, 13 | isum1p 15481 |
. 2
⊢ (𝑀 ∈ ℕ →
Σ𝑘 ∈
(ℤ≥‘𝑀)((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))((𝐹‘(ℕ ∖ {𝑀}))‘𝑘))) |
15 | 6 | rpnnen2lem1 15851 |
. . . . 5
⊢
(((ℕ ∖ {𝑀}) ⊆ ℕ ∧ 𝑀 ∈ ℕ) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) = if(𝑀 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑀), 0)) |
16 | 5, 15 | mpan 686 |
. . . 4
⊢ (𝑀 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) = if(𝑀 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑀), 0)) |
17 | | neldifsnd 4723 |
. . . . 5
⊢ (𝑀 ∈ ℕ → ¬
𝑀 ∈ (ℕ ∖
{𝑀})) |
18 | 17 | iffalsed 4467 |
. . . 4
⊢ (𝑀 ∈ ℕ → if(𝑀 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑀), 0) = 0) |
19 | 16, 18 | eqtrd 2778 |
. . 3
⊢ (𝑀 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) = 0) |
20 | | eqid 2738 |
. . . 4
⊢
(ℤ≥‘(𝑀 + 1)) =
(ℤ≥‘(𝑀 + 1)) |
21 | | peano2nn 11915 |
. . . . 5
⊢ (𝑀 ∈ ℕ → (𝑀 + 1) ∈
ℕ) |
22 | 21 | nnzd 12354 |
. . . 4
⊢ (𝑀 ∈ ℕ → (𝑀 + 1) ∈
ℤ) |
23 | | eqidd 2739 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘)) |
24 | | eluznn 12587 |
. . . . . 6
⊢ (((𝑀 + 1) ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑘 ∈ ℕ) |
25 | 21, 24 | sylan 579 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑘 ∈ ℕ) |
26 | 25, 10 | syl 17 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) ∈ ℂ) |
27 | | 1re 10906 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
28 | | 3nn 11982 |
. . . . . . . 8
⊢ 3 ∈
ℕ |
29 | | nndivre 11944 |
. . . . . . . 8
⊢ ((1
∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈
ℝ) |
30 | 27, 28, 29 | mp2an 688 |
. . . . . . 7
⊢ (1 / 3)
∈ ℝ |
31 | 30 | recni 10920 |
. . . . . 6
⊢ (1 / 3)
∈ ℂ |
32 | 31 | a1i 11 |
. . . . 5
⊢ (𝑀 ∈ ℕ → (1 / 3)
∈ ℂ) |
33 | | 0re 10908 |
. . . . . . . . 9
⊢ 0 ∈
ℝ |
34 | | 3re 11983 |
. . . . . . . . . 10
⊢ 3 ∈
ℝ |
35 | | 3pos 12008 |
. . . . . . . . . 10
⊢ 0 <
3 |
36 | 34, 35 | recgt0ii 11811 |
. . . . . . . . 9
⊢ 0 < (1
/ 3) |
37 | 33, 30, 36 | ltleii 11028 |
. . . . . . . 8
⊢ 0 ≤ (1
/ 3) |
38 | | absid 14936 |
. . . . . . . 8
⊢ (((1 / 3)
∈ ℝ ∧ 0 ≤ (1 / 3)) → (abs‘(1 / 3)) = (1 /
3)) |
39 | 30, 37, 38 | mp2an 688 |
. . . . . . 7
⊢
(abs‘(1 / 3)) = (1 / 3) |
40 | | 1lt3 12076 |
. . . . . . . 8
⊢ 1 <
3 |
41 | | recgt1 11801 |
. . . . . . . . 9
⊢ ((3
∈ ℝ ∧ 0 < 3) → (1 < 3 ↔ (1 / 3) <
1)) |
42 | 34, 35, 41 | mp2an 688 |
. . . . . . . 8
⊢ (1 < 3
↔ (1 / 3) < 1) |
43 | 40, 42 | mpbi 229 |
. . . . . . 7
⊢ (1 / 3)
< 1 |
44 | 39, 43 | eqbrtri 5091 |
. . . . . 6
⊢
(abs‘(1 / 3)) < 1 |
45 | 44 | a1i 11 |
. . . . 5
⊢ (𝑀 ∈ ℕ →
(abs‘(1 / 3)) < 1) |
46 | 21 | nnnn0d 12223 |
. . . . 5
⊢ (𝑀 ∈ ℕ → (𝑀 + 1) ∈
ℕ0) |
47 | 6 | rpnnen2lem1 15851 |
. . . . . . . 8
⊢
(((ℕ ∖ {𝑀}) ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0)) |
48 | 5, 47 | mpan 686 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0)) |
49 | 25, 48 | syl 17 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0)) |
50 | | nnre 11910 |
. . . . . . . . . 10
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℝ) |
51 | 50 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑀 ∈ ℝ) |
52 | | eluzle 12524 |
. . . . . . . . . . 11
⊢ (𝑘 ∈
(ℤ≥‘(𝑀 + 1)) → (𝑀 + 1) ≤ 𝑘) |
53 | 52 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) → (𝑀 + 1) ≤ 𝑘) |
54 | | nnltp1le 12306 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈ ℕ) → (𝑀 < 𝑘 ↔ (𝑀 + 1) ≤ 𝑘)) |
55 | 25, 54 | syldan 590 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) → (𝑀 < 𝑘 ↔ (𝑀 + 1) ≤ 𝑘)) |
56 | 53, 55 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑀 < 𝑘) |
57 | 51, 56 | gtned 11040 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑘 ≠ 𝑀) |
58 | | eldifsn 4717 |
. . . . . . . 8
⊢ (𝑘 ∈ (ℕ ∖ {𝑀}) ↔ (𝑘 ∈ ℕ ∧ 𝑘 ≠ 𝑀)) |
59 | 25, 57, 58 | sylanbrc 582 |
. . . . . . 7
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) → 𝑘 ∈ (ℕ ∖ {𝑀})) |
60 | 59 | iftrued 4464 |
. . . . . 6
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) → if(𝑘 ∈ (ℕ ∖ {𝑀}), ((1 / 3)↑𝑘), 0) = ((1 / 3)↑𝑘)) |
61 | 49, 60 | eqtrd 2778 |
. . . . 5
⊢ ((𝑀 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘(𝑀 + 1))) → ((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = ((1 / 3)↑𝑘)) |
62 | 32, 45, 46, 61 | geolim2 15511 |
. . . 4
⊢ (𝑀 ∈ ℕ → seq(𝑀 + 1)( + , (𝐹‘(ℕ ∖ {𝑀}))) ⇝ (((1 / 3)↑(𝑀 + 1)) / (1 − (1 /
3)))) |
63 | 20, 22, 23, 26, 62 | isumclim 15397 |
. . 3
⊢ (𝑀 ∈ ℕ →
Σ𝑘 ∈
(ℤ≥‘(𝑀 + 1))((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (((1 / 3)↑(𝑀 + 1)) / (1 − (1 /
3)))) |
64 | 19, 63 | oveq12d 7273 |
. 2
⊢ (𝑀 ∈ ℕ → (((𝐹‘(ℕ ∖ {𝑀}))‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))((𝐹‘(ℕ ∖ {𝑀}))‘𝑘)) = (0 + (((1 / 3)↑(𝑀 + 1)) / (1 − (1 /
3))))) |
65 | 14, 64 | eqtrd 2778 |
1
⊢ (𝑀 ∈ ℕ →
Σ𝑘 ∈
(ℤ≥‘𝑀)((𝐹‘(ℕ ∖ {𝑀}))‘𝑘) = (0 + (((1 / 3)↑(𝑀 + 1)) / (1 − (1 /
3))))) |