Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgpsumunsn Structured version   Visualization version   GIF version

Theorem mgpsumunsn 45370
Description: Extract a summand/factor from the group sum for the multiplicative group of a unital ring. (Contributed by AV, 29-Dec-2018.)
Hypotheses
Ref Expression
mgpsumunsn.m 𝑀 = (mulGrp‘𝑅)
mgpsumunsn.t · = (.r𝑅)
mgpsumunsn.r (𝜑𝑅 ∈ CRing)
mgpsumunsn.n (𝜑𝑁 ∈ Fin)
mgpsumunsn.i (𝜑𝐼𝑁)
mgpsumunsn.a ((𝜑𝑘𝑁) → 𝐴 ∈ (Base‘𝑅))
mgpsumunsn.x (𝜑𝑋 ∈ (Base‘𝑅))
mgpsumunsn.e (𝑘 = 𝐼𝐴 = 𝑋)
Assertion
Ref Expression
mgpsumunsn (𝜑 → (𝑀 Σg (𝑘𝑁𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 𝑋))
Distinct variable groups:   𝑘,𝐼   𝑘,𝑀   𝑘,𝑁   𝑅,𝑘   𝜑,𝑘   𝑘,𝑋
Allowed substitution hints:   𝐴(𝑘)   · (𝑘)

Proof of Theorem mgpsumunsn
StepHypRef Expression
1 mgpsumunsn.i . . . . . 6 (𝜑𝐼𝑁)
2 difsnid 4723 . . . . . 6 (𝐼𝑁 → ((𝑁 ∖ {𝐼}) ∪ {𝐼}) = 𝑁)
31, 2syl 17 . . . . 5 (𝜑 → ((𝑁 ∖ {𝐼}) ∪ {𝐼}) = 𝑁)
43eqcomd 2743 . . . 4 (𝜑𝑁 = ((𝑁 ∖ {𝐼}) ∪ {𝐼}))
54mpteq1d 5144 . . 3 (𝜑 → (𝑘𝑁𝐴) = (𝑘 ∈ ((𝑁 ∖ {𝐼}) ∪ {𝐼}) ↦ 𝐴))
65oveq2d 7229 . 2 (𝜑 → (𝑀 Σg (𝑘𝑁𝐴)) = (𝑀 Σg (𝑘 ∈ ((𝑁 ∖ {𝐼}) ∪ {𝐼}) ↦ 𝐴)))
7 mgpsumunsn.m . . . 4 𝑀 = (mulGrp‘𝑅)
8 eqid 2737 . . . 4 (Base‘𝑅) = (Base‘𝑅)
97, 8mgpbas 19510 . . 3 (Base‘𝑅) = (Base‘𝑀)
10 mgpsumunsn.t . . . 4 · = (.r𝑅)
117, 10mgpplusg 19508 . . 3 · = (+g𝑀)
12 mgpsumunsn.r . . . 4 (𝜑𝑅 ∈ CRing)
137crngmgp 19570 . . . 4 (𝑅 ∈ CRing → 𝑀 ∈ CMnd)
1412, 13syl 17 . . 3 (𝜑𝑀 ∈ CMnd)
15 mgpsumunsn.n . . . 4 (𝜑𝑁 ∈ Fin)
16 diffi 8906 . . . 4 (𝑁 ∈ Fin → (𝑁 ∖ {𝐼}) ∈ Fin)
1715, 16syl 17 . . 3 (𝜑 → (𝑁 ∖ {𝐼}) ∈ Fin)
18 eldifi 4041 . . . 4 (𝑘 ∈ (𝑁 ∖ {𝐼}) → 𝑘𝑁)
19 mgpsumunsn.a . . . 4 ((𝜑𝑘𝑁) → 𝐴 ∈ (Base‘𝑅))
2018, 19sylan2 596 . . 3 ((𝜑𝑘 ∈ (𝑁 ∖ {𝐼})) → 𝐴 ∈ (Base‘𝑅))
21 neldifsnd 4706 . . 3 (𝜑 → ¬ 𝐼 ∈ (𝑁 ∖ {𝐼}))
22 mgpsumunsn.x . . 3 (𝜑𝑋 ∈ (Base‘𝑅))
23 mgpsumunsn.e . . 3 (𝑘 = 𝐼𝐴 = 𝑋)
249, 11, 14, 17, 20, 1, 21, 22, 23gsumunsn 19345 . 2 (𝜑 → (𝑀 Σg (𝑘 ∈ ((𝑁 ∖ {𝐼}) ∪ {𝐼}) ↦ 𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 𝑋))
256, 24eqtrd 2777 1 (𝜑 → (𝑀 Σg (𝑘𝑁𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  cdif 3863  cun 3864  {csn 4541  cmpt 5135  cfv 6380  (class class class)co 7213  Fincfn 8626  Basecbs 16760  .rcmulr 16803   Σg cgsu 16945  CMndccmn 19170  mulGrpcmgp 19504  CRingccrg 19563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-0g 16946  df-gsum 16947  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-mgp 19505  df-cring 19565
This theorem is referenced by:  mgpsumz  45371  mgpsumn  45372
  Copyright terms: Public domain W3C validator