Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgpsumunsn | Structured version Visualization version GIF version |
Description: Extract a summand/factor from the group sum for the multiplicative group of a unital ring. (Contributed by AV, 29-Dec-2018.) |
Ref | Expression |
---|---|
mgpsumunsn.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgpsumunsn.t | ⊢ · = (.r‘𝑅) |
mgpsumunsn.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
mgpsumunsn.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mgpsumunsn.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
mgpsumunsn.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) |
mgpsumunsn.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
mgpsumunsn.e | ⊢ (𝑘 = 𝐼 → 𝐴 = 𝑋) |
Ref | Expression |
---|---|
mgpsumunsn | ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpsumunsn.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
2 | difsnid 4754 | . . . . . 6 ⊢ (𝐼 ∈ 𝑁 → ((𝑁 ∖ {𝐼}) ∪ {𝐼}) = 𝑁) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝑁 ∖ {𝐼}) ∪ {𝐼}) = 𝑁) |
4 | 3 | eqcomd 2742 | . . . 4 ⊢ (𝜑 → 𝑁 = ((𝑁 ∖ {𝐼}) ∪ {𝐼})) |
5 | 4 | mpteq1d 5181 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑁 ↦ 𝐴) = (𝑘 ∈ ((𝑁 ∖ {𝐼}) ∪ {𝐼}) ↦ 𝐴)) |
6 | 5 | oveq2d 7332 | . 2 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = (𝑀 Σg (𝑘 ∈ ((𝑁 ∖ {𝐼}) ∪ {𝐼}) ↦ 𝐴))) |
7 | mgpsumunsn.m | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑅) | |
8 | eqid 2736 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | 7, 8 | mgpbas 19798 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑀) |
10 | mgpsumunsn.t | . . . 4 ⊢ · = (.r‘𝑅) | |
11 | 7, 10 | mgpplusg 19796 | . . 3 ⊢ · = (+g‘𝑀) |
12 | mgpsumunsn.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
13 | 7 | crngmgp 19863 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑀 ∈ CMnd) |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 ∈ CMnd) |
15 | mgpsumunsn.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
16 | diffi 9022 | . . . 4 ⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐼}) ∈ Fin) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁 ∖ {𝐼}) ∈ Fin) |
18 | eldifi 4071 | . . . 4 ⊢ (𝑘 ∈ (𝑁 ∖ {𝐼}) → 𝑘 ∈ 𝑁) | |
19 | mgpsumunsn.a | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) | |
20 | 18, 19 | sylan2 593 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁 ∖ {𝐼})) → 𝐴 ∈ (Base‘𝑅)) |
21 | neldifsnd 4737 | . . 3 ⊢ (𝜑 → ¬ 𝐼 ∈ (𝑁 ∖ {𝐼})) | |
22 | mgpsumunsn.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) | |
23 | mgpsumunsn.e | . . 3 ⊢ (𝑘 = 𝐼 → 𝐴 = 𝑋) | |
24 | 9, 11, 14, 17, 20, 1, 21, 22, 23 | gsumunsn 19633 | . 2 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ ((𝑁 ∖ {𝐼}) ∪ {𝐼}) ↦ 𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 𝑋)) |
25 | 6, 24 | eqtrd 2776 | 1 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∖ cdif 3893 ∪ cun 3894 {csn 4570 ↦ cmpt 5169 ‘cfv 6465 (class class class)co 7316 Fincfn 8782 Basecbs 16986 .rcmulr 17037 Σg cgsu 17225 CMndccmn 19458 mulGrpcmgp 19792 CRingccrg 19856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-of 7574 df-om 7759 df-1st 7877 df-2nd 7878 df-supp 8026 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-fsupp 9205 df-oi 9345 df-card 9774 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-nn 12053 df-2 12115 df-n0 12313 df-z 12399 df-uz 12662 df-fz 13319 df-fzo 13462 df-seq 13801 df-hash 14124 df-sets 16939 df-slot 16957 df-ndx 16969 df-base 16987 df-ress 17016 df-plusg 17049 df-0g 17226 df-gsum 17227 df-mre 17369 df-mrc 17370 df-acs 17372 df-mgm 18400 df-sgrp 18449 df-mnd 18460 df-submnd 18505 df-mulg 18774 df-cntz 18996 df-cmn 19460 df-mgp 19793 df-cring 19858 |
This theorem is referenced by: mgpsumz 45968 mgpsumn 45969 |
Copyright terms: Public domain | W3C validator |