Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgpsumunsn | Structured version Visualization version GIF version |
Description: Extract a summand/factor from the group sum for the multiplicative group of a unital ring. (Contributed by AV, 29-Dec-2018.) |
Ref | Expression |
---|---|
mgpsumunsn.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgpsumunsn.t | ⊢ · = (.r‘𝑅) |
mgpsumunsn.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
mgpsumunsn.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mgpsumunsn.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
mgpsumunsn.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) |
mgpsumunsn.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
mgpsumunsn.e | ⊢ (𝑘 = 𝐼 → 𝐴 = 𝑋) |
Ref | Expression |
---|---|
mgpsumunsn | ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpsumunsn.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
2 | difsnid 4723 | . . . . . 6 ⊢ (𝐼 ∈ 𝑁 → ((𝑁 ∖ {𝐼}) ∪ {𝐼}) = 𝑁) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝑁 ∖ {𝐼}) ∪ {𝐼}) = 𝑁) |
4 | 3 | eqcomd 2743 | . . . 4 ⊢ (𝜑 → 𝑁 = ((𝑁 ∖ {𝐼}) ∪ {𝐼})) |
5 | 4 | mpteq1d 5144 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑁 ↦ 𝐴) = (𝑘 ∈ ((𝑁 ∖ {𝐼}) ∪ {𝐼}) ↦ 𝐴)) |
6 | 5 | oveq2d 7229 | . 2 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = (𝑀 Σg (𝑘 ∈ ((𝑁 ∖ {𝐼}) ∪ {𝐼}) ↦ 𝐴))) |
7 | mgpsumunsn.m | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑅) | |
8 | eqid 2737 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | 7, 8 | mgpbas 19510 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑀) |
10 | mgpsumunsn.t | . . . 4 ⊢ · = (.r‘𝑅) | |
11 | 7, 10 | mgpplusg 19508 | . . 3 ⊢ · = (+g‘𝑀) |
12 | mgpsumunsn.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
13 | 7 | crngmgp 19570 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑀 ∈ CMnd) |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 ∈ CMnd) |
15 | mgpsumunsn.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
16 | diffi 8906 | . . . 4 ⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐼}) ∈ Fin) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁 ∖ {𝐼}) ∈ Fin) |
18 | eldifi 4041 | . . . 4 ⊢ (𝑘 ∈ (𝑁 ∖ {𝐼}) → 𝑘 ∈ 𝑁) | |
19 | mgpsumunsn.a | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) | |
20 | 18, 19 | sylan2 596 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁 ∖ {𝐼})) → 𝐴 ∈ (Base‘𝑅)) |
21 | neldifsnd 4706 | . . 3 ⊢ (𝜑 → ¬ 𝐼 ∈ (𝑁 ∖ {𝐼})) | |
22 | mgpsumunsn.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) | |
23 | mgpsumunsn.e | . . 3 ⊢ (𝑘 = 𝐼 → 𝐴 = 𝑋) | |
24 | 9, 11, 14, 17, 20, 1, 21, 22, 23 | gsumunsn 19345 | . 2 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ ((𝑁 ∖ {𝐼}) ∪ {𝐼}) ↦ 𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 𝑋)) |
25 | 6, 24 | eqtrd 2777 | 1 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∖ cdif 3863 ∪ cun 3864 {csn 4541 ↦ cmpt 5135 ‘cfv 6380 (class class class)co 7213 Fincfn 8626 Basecbs 16760 .rcmulr 16803 Σg cgsu 16945 CMndccmn 19170 mulGrpcmgp 19504 CRingccrg 19563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-of 7469 df-om 7645 df-1st 7761 df-2nd 7762 df-supp 7904 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fsupp 8986 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-fzo 13239 df-seq 13575 df-hash 13897 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-0g 16946 df-gsum 16947 df-mre 17089 df-mrc 17090 df-acs 17092 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-submnd 18219 df-mulg 18489 df-cntz 18711 df-cmn 19172 df-mgp 19505 df-cring 19565 |
This theorem is referenced by: mgpsumz 45371 mgpsumn 45372 |
Copyright terms: Public domain | W3C validator |