Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mgpsumunsn Structured version   Visualization version   GIF version

Theorem mgpsumunsn 47776
Description: Extract a summand/factor from the group sum for the multiplicative group of a unital ring. (Contributed by AV, 29-Dec-2018.)
Hypotheses
Ref Expression
mgpsumunsn.m 𝑀 = (mulGrp‘𝑅)
mgpsumunsn.t · = (.r𝑅)
mgpsumunsn.r (𝜑𝑅 ∈ CRing)
mgpsumunsn.n (𝜑𝑁 ∈ Fin)
mgpsumunsn.i (𝜑𝐼𝑁)
mgpsumunsn.a ((𝜑𝑘𝑁) → 𝐴 ∈ (Base‘𝑅))
mgpsumunsn.x (𝜑𝑋 ∈ (Base‘𝑅))
mgpsumunsn.e (𝑘 = 𝐼𝐴 = 𝑋)
Assertion
Ref Expression
mgpsumunsn (𝜑 → (𝑀 Σg (𝑘𝑁𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 𝑋))
Distinct variable groups:   𝑘,𝐼   𝑘,𝑀   𝑘,𝑁   𝑅,𝑘   𝜑,𝑘   𝑘,𝑋
Allowed substitution hints:   𝐴(𝑘)   · (𝑘)

Proof of Theorem mgpsumunsn
StepHypRef Expression
1 mgpsumunsn.i . . . . . 6 (𝜑𝐼𝑁)
2 difsnid 4809 . . . . . 6 (𝐼𝑁 → ((𝑁 ∖ {𝐼}) ∪ {𝐼}) = 𝑁)
31, 2syl 17 . . . . 5 (𝜑 → ((𝑁 ∖ {𝐼}) ∪ {𝐼}) = 𝑁)
43eqcomd 2732 . . . 4 (𝜑𝑁 = ((𝑁 ∖ {𝐼}) ∪ {𝐼}))
54mpteq1d 5240 . . 3 (𝜑 → (𝑘𝑁𝐴) = (𝑘 ∈ ((𝑁 ∖ {𝐼}) ∪ {𝐼}) ↦ 𝐴))
65oveq2d 7432 . 2 (𝜑 → (𝑀 Σg (𝑘𝑁𝐴)) = (𝑀 Σg (𝑘 ∈ ((𝑁 ∖ {𝐼}) ∪ {𝐼}) ↦ 𝐴)))
7 mgpsumunsn.m . . . 4 𝑀 = (mulGrp‘𝑅)
8 eqid 2726 . . . 4 (Base‘𝑅) = (Base‘𝑅)
97, 8mgpbas 20119 . . 3 (Base‘𝑅) = (Base‘𝑀)
10 mgpsumunsn.t . . . 4 · = (.r𝑅)
117, 10mgpplusg 20117 . . 3 · = (+g𝑀)
12 mgpsumunsn.r . . . 4 (𝜑𝑅 ∈ CRing)
137crngmgp 20220 . . . 4 (𝑅 ∈ CRing → 𝑀 ∈ CMnd)
1412, 13syl 17 . . 3 (𝜑𝑀 ∈ CMnd)
15 mgpsumunsn.n . . . 4 (𝜑𝑁 ∈ Fin)
16 diffi 9206 . . . 4 (𝑁 ∈ Fin → (𝑁 ∖ {𝐼}) ∈ Fin)
1715, 16syl 17 . . 3 (𝜑 → (𝑁 ∖ {𝐼}) ∈ Fin)
18 eldifi 4123 . . . 4 (𝑘 ∈ (𝑁 ∖ {𝐼}) → 𝑘𝑁)
19 mgpsumunsn.a . . . 4 ((𝜑𝑘𝑁) → 𝐴 ∈ (Base‘𝑅))
2018, 19sylan2 591 . . 3 ((𝜑𝑘 ∈ (𝑁 ∖ {𝐼})) → 𝐴 ∈ (Base‘𝑅))
21 neldifsnd 4792 . . 3 (𝜑 → ¬ 𝐼 ∈ (𝑁 ∖ {𝐼}))
22 mgpsumunsn.x . . 3 (𝜑𝑋 ∈ (Base‘𝑅))
23 mgpsumunsn.e . . 3 (𝑘 = 𝐼𝐴 = 𝑋)
249, 11, 14, 17, 20, 1, 21, 22, 23gsumunsn 19954 . 2 (𝜑 → (𝑀 Σg (𝑘 ∈ ((𝑁 ∖ {𝐼}) ∪ {𝐼}) ↦ 𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 𝑋))
256, 24eqtrd 2766 1 (𝜑 → (𝑀 Σg (𝑘𝑁𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  cdif 3943  cun 3944  {csn 4623  cmpt 5228  cfv 6546  (class class class)co 7416  Fincfn 8966  Basecbs 17208  .rcmulr 17262   Σg cgsu 17450  CMndccmn 19774  mulGrpcmgp 20113  CRingccrg 20213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9399  df-oi 9546  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-n0 12519  df-z 12605  df-uz 12869  df-fz 13533  df-fzo 13676  df-seq 14016  df-hash 14343  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-0g 17451  df-gsum 17452  df-mre 17594  df-mrc 17595  df-acs 17597  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-submnd 18769  df-mulg 19058  df-cntz 19307  df-cmn 19776  df-mgp 20114  df-cring 20215
This theorem is referenced by:  mgpsumz  47777  mgpsumn  47778
  Copyright terms: Public domain W3C validator