Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgpsumunsn | Structured version Visualization version GIF version |
Description: Extract a summand/factor from the group sum for the multiplicative group of a unital ring. (Contributed by AV, 29-Dec-2018.) |
Ref | Expression |
---|---|
mgpsumunsn.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgpsumunsn.t | ⊢ · = (.r‘𝑅) |
mgpsumunsn.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
mgpsumunsn.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mgpsumunsn.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
mgpsumunsn.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) |
mgpsumunsn.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) |
mgpsumunsn.e | ⊢ (𝑘 = 𝐼 → 𝐴 = 𝑋) |
Ref | Expression |
---|---|
mgpsumunsn | ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpsumunsn.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
2 | difsnid 4743 | . . . . . 6 ⊢ (𝐼 ∈ 𝑁 → ((𝑁 ∖ {𝐼}) ∪ {𝐼}) = 𝑁) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝑁 ∖ {𝐼}) ∪ {𝐼}) = 𝑁) |
4 | 3 | eqcomd 2744 | . . . 4 ⊢ (𝜑 → 𝑁 = ((𝑁 ∖ {𝐼}) ∪ {𝐼})) |
5 | 4 | mpteq1d 5169 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝑁 ↦ 𝐴) = (𝑘 ∈ ((𝑁 ∖ {𝐼}) ∪ {𝐼}) ↦ 𝐴)) |
6 | 5 | oveq2d 7291 | . 2 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = (𝑀 Σg (𝑘 ∈ ((𝑁 ∖ {𝐼}) ∪ {𝐼}) ↦ 𝐴))) |
7 | mgpsumunsn.m | . . . 4 ⊢ 𝑀 = (mulGrp‘𝑅) | |
8 | eqid 2738 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | 7, 8 | mgpbas 19726 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑀) |
10 | mgpsumunsn.t | . . . 4 ⊢ · = (.r‘𝑅) | |
11 | 7, 10 | mgpplusg 19724 | . . 3 ⊢ · = (+g‘𝑀) |
12 | mgpsumunsn.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
13 | 7 | crngmgp 19791 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑀 ∈ CMnd) |
14 | 12, 13 | syl 17 | . . 3 ⊢ (𝜑 → 𝑀 ∈ CMnd) |
15 | mgpsumunsn.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
16 | diffi 8962 | . . . 4 ⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐼}) ∈ Fin) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁 ∖ {𝐼}) ∈ Fin) |
18 | eldifi 4061 | . . . 4 ⊢ (𝑘 ∈ (𝑁 ∖ {𝐼}) → 𝑘 ∈ 𝑁) | |
19 | mgpsumunsn.a | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) | |
20 | 18, 19 | sylan2 593 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁 ∖ {𝐼})) → 𝐴 ∈ (Base‘𝑅)) |
21 | neldifsnd 4726 | . . 3 ⊢ (𝜑 → ¬ 𝐼 ∈ (𝑁 ∖ {𝐼})) | |
22 | mgpsumunsn.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑅)) | |
23 | mgpsumunsn.e | . . 3 ⊢ (𝑘 = 𝐼 → 𝐴 = 𝑋) | |
24 | 9, 11, 14, 17, 20, 1, 21, 22, 23 | gsumunsn 19561 | . 2 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ ((𝑁 ∖ {𝐼}) ∪ {𝐼}) ↦ 𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 𝑋)) |
25 | 6, 24 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∪ cun 3885 {csn 4561 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 Basecbs 16912 .rcmulr 16963 Σg cgsu 17151 CMndccmn 19386 mulGrpcmgp 19720 CRingccrg 19784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-0g 17152 df-gsum 17153 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 df-mgp 19721 df-cring 19786 |
This theorem is referenced by: mgpsumz 45698 mgpsumn 45699 |
Copyright terms: Public domain | W3C validator |