MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnunf2 Structured version   Visualization version   GIF version

Theorem fsnunf2 6925
Description: Adjoining a point to a punctured function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fsnunf2 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):𝑆𝑇)

Proof of Theorem fsnunf2
StepHypRef Expression
1 simp1 1133 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → 𝐹:(𝑆 ∖ {𝑋})⟶𝑇)
2 simp2 1134 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → 𝑋𝑆)
3 neldifsnd 4686 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → ¬ 𝑋 ∈ (𝑆 ∖ {𝑋}))
4 simp3 1135 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → 𝑌𝑇)
5 fsnunf 6924 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ (𝑋𝑆 ∧ ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) ∧ 𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇)
61, 2, 3, 4, 5syl121anc 1372 . 2 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇)
7 difsnid 4703 . . . 4 (𝑋𝑆 → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆)
873ad2ant2 1131 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆)
98feq2d 6473 . 2 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}):𝑆𝑇))
106, 9mpbid 235 1 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1084   = wceq 1538  wcel 2111  cdif 3878  cun 3879  {csn 4525  cop 4531  wf 6320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331
This theorem is referenced by:  fsets  16508  islindf4  20527
  Copyright terms: Public domain W3C validator