![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsnunf2 | Structured version Visualization version GIF version |
Description: Adjoining a point to a punctured function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
Ref | Expression |
---|---|
fsnunf2 | ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):𝑆⟶𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → 𝐹:(𝑆 ∖ {𝑋})⟶𝑇) | |
2 | simp2 1135 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → 𝑋 ∈ 𝑆) | |
3 | neldifsnd 4795 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) | |
4 | simp3 1136 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → 𝑌 ∈ 𝑇) | |
5 | fsnunf 7184 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ (𝑋 ∈ 𝑆 ∧ ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇) | |
6 | 1, 2, 3, 4, 5 | syl121anc 1373 | . 2 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇) |
7 | difsnid 4812 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆) | |
8 | 7 | 3ad2ant2 1132 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆) |
9 | 8 | feq2d 6702 | . 2 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}):𝑆⟶𝑇)) |
10 | 6, 9 | mpbid 231 | 1 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):𝑆⟶𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ∖ cdif 3944 ∪ cun 3945 {csn 4627 ⟨cop 4633 ⟶wf 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 |
This theorem is referenced by: fsets 17106 islindf4 21612 |
Copyright terms: Public domain | W3C validator |