![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsnunf2 | Structured version Visualization version GIF version |
Description: Adjoining a point to a punctured function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
Ref | Expression |
---|---|
fsnunf2 | ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):𝑆⟶𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1137 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → 𝐹:(𝑆 ∖ {𝑋})⟶𝑇) | |
2 | simp2 1138 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → 𝑋 ∈ 𝑆) | |
3 | neldifsnd 4792 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) | |
4 | simp3 1139 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → 𝑌 ∈ 𝑇) | |
5 | fsnunf 7170 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ (𝑋 ∈ 𝑆 ∧ ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇) | |
6 | 1, 2, 3, 4, 5 | syl121anc 1376 | . 2 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇) |
7 | difsnid 4809 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆) | |
8 | 7 | 3ad2ant2 1135 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆) |
9 | 8 | feq2d 6693 | . 2 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → ((𝐹 ∪ {〈𝑋, 𝑌〉}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}):𝑆⟶𝑇)) |
10 | 6, 9 | mpbid 231 | 1 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):𝑆⟶𝑇) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∖ cdif 3943 ∪ cun 3944 {csn 4624 〈cop 4630 ⟶wf 6531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5295 ax-nul 5302 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5145 df-opab 5207 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 |
This theorem is referenced by: fsets 17089 islindf4 21366 |
Copyright terms: Public domain | W3C validator |