MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnunf2 Structured version   Visualization version   GIF version

Theorem fsnunf2 7163
Description: Adjoining a point to a punctured function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fsnunf2 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):𝑆𝑇)

Proof of Theorem fsnunf2
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → 𝐹:(𝑆 ∖ {𝑋})⟶𝑇)
2 simp2 1137 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → 𝑋𝑆)
3 neldifsnd 4760 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → ¬ 𝑋 ∈ (𝑆 ∖ {𝑋}))
4 simp3 1138 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → 𝑌𝑇)
5 fsnunf 7162 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ (𝑋𝑆 ∧ ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) ∧ 𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇)
61, 2, 3, 4, 5syl121anc 1377 . 2 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇)
7 difsnid 4777 . . . 4 (𝑋𝑆 → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆)
873ad2ant2 1134 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆)
98feq2d 6675 . 2 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}):𝑆𝑇))
106, 9mpbid 232 1 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086   = wceq 1540  wcel 2109  cdif 3914  cun 3915  {csn 4592  cop 4598  wf 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521
This theorem is referenced by:  fsets  17146  islindf4  21754
  Copyright terms: Public domain W3C validator