| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsnunf2 | Structured version Visualization version GIF version | ||
| Description: Adjoining a point to a punctured function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| Ref | Expression |
|---|---|
| fsnunf2 | ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):𝑆⟶𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → 𝐹:(𝑆 ∖ {𝑋})⟶𝑇) | |
| 2 | simp2 1137 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → 𝑋 ∈ 𝑆) | |
| 3 | neldifsnd 4743 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) | |
| 4 | simp3 1138 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → 𝑌 ∈ 𝑇) | |
| 5 | fsnunf 7114 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ (𝑋 ∈ 𝑆 ∧ ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇) | |
| 6 | 1, 2, 3, 4, 5 | syl121anc 1377 | . 2 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇) |
| 7 | difsnid 4760 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆) | |
| 8 | 7 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆) |
| 9 | 8 | feq2d 6631 | . 2 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → ((𝐹 ∪ {〈𝑋, 𝑌〉}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇 ↔ (𝐹 ∪ {〈𝑋, 𝑌〉}):𝑆⟶𝑇)) |
| 10 | 6, 9 | mpbid 232 | 1 ⊢ ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑇) → (𝐹 ∪ {〈𝑋, 𝑌〉}):𝑆⟶𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ∖ cdif 3897 ∪ cun 3898 {csn 4574 〈cop 4580 ⟶wf 6473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 |
| This theorem is referenced by: fsets 17072 islindf4 21768 |
| Copyright terms: Public domain | W3C validator |