MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnunf2 Structured version   Visualization version   GIF version

Theorem fsnunf2 7171
Description: Adjoining a point to a punctured function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fsnunf2 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):𝑆𝑇)

Proof of Theorem fsnunf2
StepHypRef Expression
1 simp1 1137 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → 𝐹:(𝑆 ∖ {𝑋})⟶𝑇)
2 simp2 1138 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → 𝑋𝑆)
3 neldifsnd 4792 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → ¬ 𝑋 ∈ (𝑆 ∖ {𝑋}))
4 simp3 1139 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → 𝑌𝑇)
5 fsnunf 7170 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇 ∧ (𝑋𝑆 ∧ ¬ 𝑋 ∈ (𝑆 ∖ {𝑋})) ∧ 𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇)
61, 2, 3, 4, 5syl121anc 1376 . 2 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇)
7 difsnid 4809 . . . 4 (𝑋𝑆 → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆)
873ad2ant2 1135 . . 3 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → ((𝑆 ∖ {𝑋}) ∪ {𝑋}) = 𝑆)
98feq2d 6693 . 2 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → ((𝐹 ∪ {⟨𝑋, 𝑌⟩}):((𝑆 ∖ {𝑋}) ∪ {𝑋})⟶𝑇 ↔ (𝐹 ∪ {⟨𝑋, 𝑌⟩}):𝑆𝑇))
106, 9mpbid 231 1 ((𝐹:(𝑆 ∖ {𝑋})⟶𝑇𝑋𝑆𝑌𝑇) → (𝐹 ∪ {⟨𝑋, 𝑌⟩}):𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1088   = wceq 1542  wcel 2107  cdif 3943  cun 3944  {csn 4624  cop 4630  wf 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5145  df-opab 5207  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542
This theorem is referenced by:  fsets  17089  islindf4  21366
  Copyright terms: Public domain W3C validator