MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdvdsprmo Structured version   Visualization version   GIF version

Theorem prmdvdsprmo 17089
Description: The primorial of a number is divisible by each prime less then or equal to the number. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmdvdsprmo (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 ∥ (#p𝑁)))
Distinct variable group:   𝑁,𝑝

Proof of Theorem prmdvdsprmo
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfi 14023 . . . . . . 7 (1...𝑁) ∈ Fin
2 diffi 9242 . . . . . . 7 ((1...𝑁) ∈ Fin → ((1...𝑁) ∖ {𝑝}) ∈ Fin)
31, 2mp1i 13 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ((1...𝑁) ∖ {𝑝}) ∈ Fin)
4 eldifi 4154 . . . . . . . . 9 (𝑘 ∈ ((1...𝑁) ∖ {𝑝}) → 𝑘 ∈ (1...𝑁))
5 elfzelz 13584 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
64, 5syl 17 . . . . . . . 8 (𝑘 ∈ ((1...𝑁) ∖ {𝑝}) → 𝑘 ∈ ℤ)
7 1zzd 12674 . . . . . . . 8 (𝑘 ∈ ((1...𝑁) ∖ {𝑝}) → 1 ∈ ℤ)
86, 7ifcld 4594 . . . . . . 7 (𝑘 ∈ ((1...𝑁) ∖ {𝑝}) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
98adantl 481 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) ∧ 𝑘 ∈ ((1...𝑁) ∖ {𝑝})) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
103, 9fprodzcl 16002 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
11 prmz 16722 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
1211adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
1312adantr 480 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∈ ℤ)
14 dvdsmul2 16327 . . . . 5 ((∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ ∧ 𝑝 ∈ ℤ) → 𝑝 ∥ (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝))
1510, 13, 14syl2anc 583 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∥ (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝))
16 nnnn0 12560 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
17 prmoval 17080 . . . . . . . 8 (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
1816, 17syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
1918ad2antrr 725 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
2019breq2d 5178 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (𝑝 ∥ (#p𝑁) ↔ 𝑝 ∥ ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1)))
21 neldifsnd 4818 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ¬ 𝑝 ∈ ((1...𝑁) ∖ {𝑝}))
22 disjsn 4736 . . . . . . . . 9 ((((1...𝑁) ∖ {𝑝}) ∩ {𝑝}) = ∅ ↔ ¬ 𝑝 ∈ ((1...𝑁) ∖ {𝑝}))
2321, 22sylibr 234 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (((1...𝑁) ∖ {𝑝}) ∩ {𝑝}) = ∅)
24 prmnn 16721 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
2524adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
2625anim1i 614 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (𝑝 ∈ ℕ ∧ 𝑝𝑁))
27 nnz 12660 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
28 fznn 13652 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑝 ∈ (1...𝑁) ↔ (𝑝 ∈ ℕ ∧ 𝑝𝑁)))
2927, 28syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑝 ∈ (1...𝑁) ↔ (𝑝 ∈ ℕ ∧ 𝑝𝑁)))
3029ad2antrr 725 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (𝑝 ∈ (1...𝑁) ↔ (𝑝 ∈ ℕ ∧ 𝑝𝑁)))
3126, 30mpbird 257 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∈ (1...𝑁))
32 difsnid 4835 . . . . . . . . . 10 (𝑝 ∈ (1...𝑁) → (((1...𝑁) ∖ {𝑝}) ∪ {𝑝}) = (1...𝑁))
3332eqcomd 2746 . . . . . . . . 9 (𝑝 ∈ (1...𝑁) → (1...𝑁) = (((1...𝑁) ∖ {𝑝}) ∪ {𝑝}))
3431, 33syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (1...𝑁) = (((1...𝑁) ∖ {𝑝}) ∪ {𝑝}))
35 fzfid 14024 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (1...𝑁) ∈ Fin)
36 1zzd 12674 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → 1 ∈ ℤ)
375, 36ifcld 4594 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
3837zcnd 12748 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
3938adantl 481 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
4023, 34, 35, 39fprodsplit 16014 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) = (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · ∏𝑘 ∈ {𝑝}if(𝑘 ∈ ℙ, 𝑘, 1)))
41 simplr 768 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∈ ℙ)
4225adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∈ ℕ)
4342nncnd 12309 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∈ ℂ)
44 1cnd 11285 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 1 ∈ ℂ)
4543, 44ifcld 4594 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → if(𝑝 ∈ ℙ, 𝑝, 1) ∈ ℂ)
46 eleq1w 2827 . . . . . . . . . . . 12 (𝑘 = 𝑝 → (𝑘 ∈ ℙ ↔ 𝑝 ∈ ℙ))
47 id 22 . . . . . . . . . . . 12 (𝑘 = 𝑝𝑘 = 𝑝)
4846, 47ifbieq1d 4572 . . . . . . . . . . 11 (𝑘 = 𝑝 → if(𝑘 ∈ ℙ, 𝑘, 1) = if(𝑝 ∈ ℙ, 𝑝, 1))
4948prodsn 16010 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ if(𝑝 ∈ ℙ, 𝑝, 1) ∈ ℂ) → ∏𝑘 ∈ {𝑝}if(𝑘 ∈ ℙ, 𝑘, 1) = if(𝑝 ∈ ℙ, 𝑝, 1))
5041, 45, 49syl2anc 583 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ∏𝑘 ∈ {𝑝}if(𝑘 ∈ ℙ, 𝑘, 1) = if(𝑝 ∈ ℙ, 𝑝, 1))
51 simpr 484 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
5251iftrued 4556 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → if(𝑝 ∈ ℙ, 𝑝, 1) = 𝑝)
5352adantr 480 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → if(𝑝 ∈ ℙ, 𝑝, 1) = 𝑝)
5450, 53eqtrd 2780 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ∏𝑘 ∈ {𝑝}if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑝)
5554oveq2d 7464 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · ∏𝑘 ∈ {𝑝}if(𝑘 ∈ ℙ, 𝑘, 1)) = (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝))
5640, 55eqtrd 2780 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) = (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝))
5756breq2d 5178 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (𝑝 ∥ ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ↔ 𝑝 ∥ (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝)))
5820, 57bitrd 279 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (𝑝 ∥ (#p𝑁) ↔ 𝑝 ∥ (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝)))
5915, 58mpbird 257 . . 3 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∥ (#p𝑁))
6059ex 412 . 2 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝𝑁𝑝 ∥ (#p𝑁)))
6160ralrimiva 3152 1 (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 ∥ (#p𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  cdif 3973  cun 3974  cin 3975  c0 4352  ifcif 4548  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  1c1 11185   · cmul 11189  cle 11325  cn 12293  0cn0 12553  cz 12639  ...cfz 13567  cprod 15951  cdvds 16302  cprime 16718  #pcprmo 17078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-prod 15952  df-dvds 16303  df-prm 16719  df-prmo 17079
This theorem is referenced by:  prmdvdsprmop  17090
  Copyright terms: Public domain W3C validator