MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmdvdsprmo Structured version   Visualization version   GIF version

Theorem prmdvdsprmo 16743
Description: The primorial of a number is divisible by each prime less then or equal to the number. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmdvdsprmo (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 ∥ (#p𝑁)))
Distinct variable group:   𝑁,𝑝

Proof of Theorem prmdvdsprmo
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfi 13692 . . . . . . 7 (1...𝑁) ∈ Fin
2 diffi 8962 . . . . . . 7 ((1...𝑁) ∈ Fin → ((1...𝑁) ∖ {𝑝}) ∈ Fin)
31, 2mp1i 13 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ((1...𝑁) ∖ {𝑝}) ∈ Fin)
4 eldifi 4061 . . . . . . . . 9 (𝑘 ∈ ((1...𝑁) ∖ {𝑝}) → 𝑘 ∈ (1...𝑁))
5 elfzelz 13256 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℤ)
64, 5syl 17 . . . . . . . 8 (𝑘 ∈ ((1...𝑁) ∖ {𝑝}) → 𝑘 ∈ ℤ)
7 1zzd 12351 . . . . . . . 8 (𝑘 ∈ ((1...𝑁) ∖ {𝑝}) → 1 ∈ ℤ)
86, 7ifcld 4505 . . . . . . 7 (𝑘 ∈ ((1...𝑁) ∖ {𝑝}) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
98adantl 482 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) ∧ 𝑘 ∈ ((1...𝑁) ∖ {𝑝})) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
103, 9fprodzcl 15664 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
11 prmz 16380 . . . . . . 7 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
1211adantl 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
1312adantr 481 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∈ ℤ)
14 dvdsmul2 15988 . . . . 5 ((∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ ∧ 𝑝 ∈ ℤ) → 𝑝 ∥ (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝))
1510, 13, 14syl2anc 584 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∥ (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝))
16 nnnn0 12240 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
17 prmoval 16734 . . . . . . . 8 (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
1816, 17syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
1918ad2antrr 723 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
2019breq2d 5086 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (𝑝 ∥ (#p𝑁) ↔ 𝑝 ∥ ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1)))
21 neldifsnd 4726 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ¬ 𝑝 ∈ ((1...𝑁) ∖ {𝑝}))
22 disjsn 4647 . . . . . . . . 9 ((((1...𝑁) ∖ {𝑝}) ∩ {𝑝}) = ∅ ↔ ¬ 𝑝 ∈ ((1...𝑁) ∖ {𝑝}))
2321, 22sylibr 233 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (((1...𝑁) ∖ {𝑝}) ∩ {𝑝}) = ∅)
24 prmnn 16379 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
2524adantl 482 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℕ)
2625anim1i 615 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (𝑝 ∈ ℕ ∧ 𝑝𝑁))
27 nnz 12342 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
28 fznn 13324 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (𝑝 ∈ (1...𝑁) ↔ (𝑝 ∈ ℕ ∧ 𝑝𝑁)))
2927, 28syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑝 ∈ (1...𝑁) ↔ (𝑝 ∈ ℕ ∧ 𝑝𝑁)))
3029ad2antrr 723 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (𝑝 ∈ (1...𝑁) ↔ (𝑝 ∈ ℕ ∧ 𝑝𝑁)))
3126, 30mpbird 256 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∈ (1...𝑁))
32 difsnid 4743 . . . . . . . . . 10 (𝑝 ∈ (1...𝑁) → (((1...𝑁) ∖ {𝑝}) ∪ {𝑝}) = (1...𝑁))
3332eqcomd 2744 . . . . . . . . 9 (𝑝 ∈ (1...𝑁) → (1...𝑁) = (((1...𝑁) ∖ {𝑝}) ∪ {𝑝}))
3431, 33syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (1...𝑁) = (((1...𝑁) ∖ {𝑝}) ∪ {𝑝}))
35 fzfid 13693 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (1...𝑁) ∈ Fin)
36 1zzd 12351 . . . . . . . . . . 11 (𝑘 ∈ (1...𝑁) → 1 ∈ ℤ)
375, 36ifcld 4505 . . . . . . . . . 10 (𝑘 ∈ (1...𝑁) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℤ)
3837zcnd 12427 . . . . . . . . 9 (𝑘 ∈ (1...𝑁) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
3938adantl 482 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℂ)
4023, 34, 35, 39fprodsplit 15676 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) = (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · ∏𝑘 ∈ {𝑝}if(𝑘 ∈ ℙ, 𝑘, 1)))
41 simplr 766 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∈ ℙ)
4225adantr 481 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∈ ℕ)
4342nncnd 11989 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∈ ℂ)
44 1cnd 10970 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 1 ∈ ℂ)
4543, 44ifcld 4505 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → if(𝑝 ∈ ℙ, 𝑝, 1) ∈ ℂ)
46 eleq1w 2821 . . . . . . . . . . . 12 (𝑘 = 𝑝 → (𝑘 ∈ ℙ ↔ 𝑝 ∈ ℙ))
47 id 22 . . . . . . . . . . . 12 (𝑘 = 𝑝𝑘 = 𝑝)
4846, 47ifbieq1d 4483 . . . . . . . . . . 11 (𝑘 = 𝑝 → if(𝑘 ∈ ℙ, 𝑘, 1) = if(𝑝 ∈ ℙ, 𝑝, 1))
4948prodsn 15672 . . . . . . . . . 10 ((𝑝 ∈ ℙ ∧ if(𝑝 ∈ ℙ, 𝑝, 1) ∈ ℂ) → ∏𝑘 ∈ {𝑝}if(𝑘 ∈ ℙ, 𝑘, 1) = if(𝑝 ∈ ℙ, 𝑝, 1))
5041, 45, 49syl2anc 584 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ∏𝑘 ∈ {𝑝}if(𝑘 ∈ ℙ, 𝑘, 1) = if(𝑝 ∈ ℙ, 𝑝, 1))
51 simpr 485 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
5251iftrued 4467 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → if(𝑝 ∈ ℙ, 𝑝, 1) = 𝑝)
5352adantr 481 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → if(𝑝 ∈ ℙ, 𝑝, 1) = 𝑝)
5450, 53eqtrd 2778 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ∏𝑘 ∈ {𝑝}if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑝)
5554oveq2d 7291 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · ∏𝑘 ∈ {𝑝}if(𝑘 ∈ ℙ, 𝑘, 1)) = (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝))
5640, 55eqtrd 2778 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) = (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝))
5756breq2d 5086 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (𝑝 ∥ ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ↔ 𝑝 ∥ (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝)))
5820, 57bitrd 278 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → (𝑝 ∥ (#p𝑁) ↔ 𝑝 ∥ (∏𝑘 ∈ ((1...𝑁) ∖ {𝑝})if(𝑘 ∈ ℙ, 𝑘, 1) · 𝑝)))
5915, 58mpbird 256 . . 3 (((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) ∧ 𝑝𝑁) → 𝑝 ∥ (#p𝑁))
6059ex 413 . 2 ((𝑁 ∈ ℕ ∧ 𝑝 ∈ ℙ) → (𝑝𝑁𝑝 ∥ (#p𝑁)))
6160ralrimiva 3103 1 (𝑁 ∈ ℕ → ∀𝑝 ∈ ℙ (𝑝𝑁𝑝 ∥ (#p𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  cdif 3884  cun 3885  cin 3886  c0 4256  ifcif 4459  {csn 4561   class class class wbr 5074  cfv 6433  (class class class)co 7275  Fincfn 8733  cc 10869  1c1 10872   · cmul 10876  cle 11010  cn 11973  0cn0 12233  cz 12319  ...cfz 13239  cprod 15615  cdvds 15963  cprime 16376  #pcprmo 16732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-prod 15616  df-dvds 15964  df-prm 16377  df-prmo 16733
This theorem is referenced by:  prmdvdsprmop  16744
  Copyright terms: Public domain W3C validator