Proof of Theorem hspmbllem1
Step | Hyp | Ref
| Expression |
1 | | rge0ssre 13117 |
. . . 4
⊢
(0[,)+∞) ⊆ ℝ |
2 | | hspmbllem1.l |
. . . . 5
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
3 | | hspmbllem1.x |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ Fin) |
4 | | hspmbllem1.a |
. . . . 5
⊢ (𝜑 → 𝐴:𝑋⟶ℝ) |
5 | | hspmbllem1.t |
. . . . . 6
⊢ 𝑇 = (𝑦 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ ∈ (𝑋 ∖ {𝐾}), (𝑐‘ℎ), if((𝑐‘ℎ) ≤ 𝑦, (𝑐‘ℎ), 𝑦))))) |
6 | | hspmbllem1.y |
. . . . . 6
⊢ (𝜑 → 𝑌 ∈ ℝ) |
7 | | hspmbllem1.b |
. . . . . 6
⊢ (𝜑 → 𝐵:𝑋⟶ℝ) |
8 | 5, 6, 3, 7 | hsphoif 44004 |
. . . . 5
⊢ (𝜑 → ((𝑇‘𝑌)‘𝐵):𝑋⟶ℝ) |
9 | 2, 3, 4, 8 | hoidmvcl 44010 |
. . . 4
⊢ (𝜑 → (𝐴(𝐿‘𝑋)((𝑇‘𝑌)‘𝐵)) ∈ (0[,)+∞)) |
10 | 1, 9 | sselid 3915 |
. . 3
⊢ (𝜑 → (𝐴(𝐿‘𝑋)((𝑇‘𝑌)‘𝐵)) ∈ ℝ) |
11 | | hspmbllem1.s |
. . . . . 6
⊢ 𝑆 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑋) ↦ (ℎ ∈ 𝑋 ↦ if(ℎ = 𝐾, if(𝑥 ≤ (𝑐‘ℎ), (𝑐‘ℎ), 𝑥), (𝑐‘ℎ))))) |
12 | 11, 6, 3, 4 | hoidifhspf 44046 |
. . . . 5
⊢ (𝜑 → ((𝑆‘𝑌)‘𝐴):𝑋⟶ℝ) |
13 | 2, 3, 12, 7 | hoidmvcl 44010 |
. . . 4
⊢ (𝜑 → (((𝑆‘𝑌)‘𝐴)(𝐿‘𝑋)𝐵) ∈ (0[,)+∞)) |
14 | 1, 13 | sselid 3915 |
. . 3
⊢ (𝜑 → (((𝑆‘𝑌)‘𝐴)(𝐿‘𝑋)𝐵) ∈ ℝ) |
15 | 10, 14 | rexaddd 12897 |
. 2
⊢ (𝜑 → ((𝐴(𝐿‘𝑋)((𝑇‘𝑌)‘𝐵)) +𝑒 (((𝑆‘𝑌)‘𝐴)(𝐿‘𝑋)𝐵)) = ((𝐴(𝐿‘𝑋)((𝑇‘𝑌)‘𝐵)) + (((𝑆‘𝑌)‘𝐴)(𝐿‘𝑋)𝐵))) |
16 | | hspmbllem1.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ 𝑋) |
17 | 16 | ne0d 4266 |
. . . . 5
⊢ (𝜑 → 𝑋 ≠ ∅) |
18 | 2, 3, 17, 4, 8 | hoidmvn0val 44012 |
. . . 4
⊢ (𝜑 → (𝐴(𝐿‘𝑋)((𝑇‘𝑌)‘𝐵)) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(((𝑇‘𝑌)‘𝐵)‘𝑘)))) |
19 | 2, 3, 17, 12, 7 | hoidmvn0val 44012 |
. . . 4
⊢ (𝜑 → (((𝑆‘𝑌)‘𝐴)(𝐿‘𝑋)𝐵) = ∏𝑘 ∈ 𝑋 (vol‘((((𝑆‘𝑌)‘𝐴)‘𝑘)[,)(𝐵‘𝑘)))) |
20 | 18, 19 | oveq12d 7273 |
. . 3
⊢ (𝜑 → ((𝐴(𝐿‘𝑋)((𝑇‘𝑌)‘𝐵)) + (((𝑆‘𝑌)‘𝐴)(𝐿‘𝑋)𝐵)) = (∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(((𝑇‘𝑌)‘𝐵)‘𝑘))) + ∏𝑘 ∈ 𝑋 (vol‘((((𝑆‘𝑌)‘𝐴)‘𝑘)[,)(𝐵‘𝑘))))) |
21 | | uncom 4083 |
. . . . . . . . 9
⊢ ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = ({𝐾} ∪ (𝑋 ∖ {𝐾})) |
22 | 21 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = ({𝐾} ∪ (𝑋 ∖ {𝐾}))) |
23 | 16 | snssd 4739 |
. . . . . . . . 9
⊢ (𝜑 → {𝐾} ⊆ 𝑋) |
24 | | undif 4412 |
. . . . . . . . 9
⊢ ({𝐾} ⊆ 𝑋 ↔ ({𝐾} ∪ (𝑋 ∖ {𝐾})) = 𝑋) |
25 | 23, 24 | sylib 217 |
. . . . . . . 8
⊢ (𝜑 → ({𝐾} ∪ (𝑋 ∖ {𝐾})) = 𝑋) |
26 | 22, 25 | eqtrd 2778 |
. . . . . . 7
⊢ (𝜑 → ((𝑋 ∖ {𝐾}) ∪ {𝐾}) = 𝑋) |
27 | 26 | eqcomd 2744 |
. . . . . 6
⊢ (𝜑 → 𝑋 = ((𝑋 ∖ {𝐾}) ∪ {𝐾})) |
28 | 27 | prodeq1d 15559 |
. . . . 5
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(((𝑇‘𝑌)‘𝐵)‘𝑘))) = ∏𝑘 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾})(vol‘((𝐴‘𝑘)[,)(((𝑇‘𝑌)‘𝐵)‘𝑘)))) |
29 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑘𝜑 |
30 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑘(vol‘((𝐴‘𝐾)[,)(((𝑇‘𝑌)‘𝐵)‘𝐾))) |
31 | | difssd 4063 |
. . . . . . 7
⊢ (𝜑 → (𝑋 ∖ {𝐾}) ⊆ 𝑋) |
32 | 3, 31 | ssfid 8971 |
. . . . . 6
⊢ (𝜑 → (𝑋 ∖ {𝐾}) ∈ Fin) |
33 | | neldifsnd 4723 |
. . . . . 6
⊢ (𝜑 → ¬ 𝐾 ∈ (𝑋 ∖ {𝐾})) |
34 | 4 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → 𝐴:𝑋⟶ℝ) |
35 | 31 | sselda 3917 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → 𝑘 ∈ 𝑋) |
36 | 34, 35 | ffvelrnd 6944 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → (𝐴‘𝑘) ∈ ℝ) |
37 | 6 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → 𝑌 ∈ ℝ) |
38 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → 𝑋 ∈ Fin) |
39 | 7 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → 𝐵:𝑋⟶ℝ) |
40 | 5, 37, 38, 39 | hsphoif 44004 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → ((𝑇‘𝑌)‘𝐵):𝑋⟶ℝ) |
41 | 40, 35 | ffvelrnd 6944 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → (((𝑇‘𝑌)‘𝐵)‘𝑘) ∈ ℝ) |
42 | | volicore 44009 |
. . . . . . . 8
⊢ (((𝐴‘𝑘) ∈ ℝ ∧ (((𝑇‘𝑌)‘𝐵)‘𝑘) ∈ ℝ) → (vol‘((𝐴‘𝑘)[,)(((𝑇‘𝑌)‘𝐵)‘𝑘))) ∈ ℝ) |
43 | 36, 41, 42 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → (vol‘((𝐴‘𝑘)[,)(((𝑇‘𝑌)‘𝐵)‘𝑘))) ∈ ℝ) |
44 | 43 | recnd 10934 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → (vol‘((𝐴‘𝑘)[,)(((𝑇‘𝑌)‘𝐵)‘𝑘))) ∈ ℂ) |
45 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (𝐴‘𝑘) = (𝐴‘𝐾)) |
46 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (((𝑇‘𝑌)‘𝐵)‘𝑘) = (((𝑇‘𝑌)‘𝐵)‘𝐾)) |
47 | 45, 46 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → ((𝐴‘𝑘)[,)(((𝑇‘𝑌)‘𝐵)‘𝑘)) = ((𝐴‘𝐾)[,)(((𝑇‘𝑌)‘𝐵)‘𝐾))) |
48 | 47 | fveq2d 6760 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (vol‘((𝐴‘𝑘)[,)(((𝑇‘𝑌)‘𝐵)‘𝑘))) = (vol‘((𝐴‘𝐾)[,)(((𝑇‘𝑌)‘𝐵)‘𝐾)))) |
49 | 4, 16 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (𝜑 → (𝐴‘𝐾) ∈ ℝ) |
50 | 8, 16 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (𝜑 → (((𝑇‘𝑌)‘𝐵)‘𝐾) ∈ ℝ) |
51 | | volicore 44009 |
. . . . . . . 8
⊢ (((𝐴‘𝐾) ∈ ℝ ∧ (((𝑇‘𝑌)‘𝐵)‘𝐾) ∈ ℝ) → (vol‘((𝐴‘𝐾)[,)(((𝑇‘𝑌)‘𝐵)‘𝐾))) ∈ ℝ) |
52 | 49, 50, 51 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (vol‘((𝐴‘𝐾)[,)(((𝑇‘𝑌)‘𝐵)‘𝐾))) ∈ ℝ) |
53 | 52 | recnd 10934 |
. . . . . 6
⊢ (𝜑 → (vol‘((𝐴‘𝐾)[,)(((𝑇‘𝑌)‘𝐵)‘𝐾))) ∈ ℂ) |
54 | 29, 30, 32, 16, 33, 44, 48, 53 | fprodsplitsn 15627 |
. . . . 5
⊢ (𝜑 → ∏𝑘 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾})(vol‘((𝐴‘𝑘)[,)(((𝑇‘𝑌)‘𝐵)‘𝑘))) = (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(((𝑇‘𝑌)‘𝐵)‘𝑘))) · (vol‘((𝐴‘𝐾)[,)(((𝑇‘𝑌)‘𝐵)‘𝐾))))) |
55 | 5, 37, 38, 39, 35 | hsphoival 44007 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → (((𝑇‘𝑌)‘𝐵)‘𝑘) = if(𝑘 ∈ (𝑋 ∖ {𝐾}), (𝐵‘𝑘), if((𝐵‘𝑘) ≤ 𝑌, (𝐵‘𝑘), 𝑌))) |
56 | | iftrue 4462 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (𝑋 ∖ {𝐾}) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), (𝐵‘𝑘), if((𝐵‘𝑘) ≤ 𝑌, (𝐵‘𝑘), 𝑌)) = (𝐵‘𝑘)) |
57 | 56 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → if(𝑘 ∈ (𝑋 ∖ {𝐾}), (𝐵‘𝑘), if((𝐵‘𝑘) ≤ 𝑌, (𝐵‘𝑘), 𝑌)) = (𝐵‘𝑘)) |
58 | 55, 57 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → (((𝑇‘𝑌)‘𝐵)‘𝑘) = (𝐵‘𝑘)) |
59 | 58 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → ((𝐴‘𝑘)[,)(((𝑇‘𝑌)‘𝐵)‘𝑘)) = ((𝐴‘𝑘)[,)(𝐵‘𝑘))) |
60 | 59 | fveq2d 6760 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → (vol‘((𝐴‘𝑘)[,)(((𝑇‘𝑌)‘𝐵)‘𝑘))) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
61 | 60 | prodeq2dv 15561 |
. . . . . 6
⊢ (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(((𝑇‘𝑌)‘𝐵)‘𝑘))) = ∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
62 | 61 | oveq1d 7270 |
. . . . 5
⊢ (𝜑 → (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(((𝑇‘𝑌)‘𝐵)‘𝑘))) · (vol‘((𝐴‘𝐾)[,)(((𝑇‘𝑌)‘𝐵)‘𝐾)))) = (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) · (vol‘((𝐴‘𝐾)[,)(((𝑇‘𝑌)‘𝐵)‘𝐾))))) |
63 | 28, 54, 62 | 3eqtrd 2782 |
. . . 4
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(((𝑇‘𝑌)‘𝐵)‘𝑘))) = (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) · (vol‘((𝐴‘𝐾)[,)(((𝑇‘𝑌)‘𝐵)‘𝐾))))) |
64 | 27 | prodeq1d 15559 |
. . . . 5
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((((𝑆‘𝑌)‘𝐴)‘𝑘)[,)(𝐵‘𝑘))) = ∏𝑘 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾})(vol‘((((𝑆‘𝑌)‘𝐴)‘𝑘)[,)(𝐵‘𝑘)))) |
65 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑘(vol‘((((𝑆‘𝑌)‘𝐴)‘𝐾)[,)(𝐵‘𝐾))) |
66 | 12 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → ((𝑆‘𝑌)‘𝐴):𝑋⟶ℝ) |
67 | 66, 35 | ffvelrnd 6944 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → (((𝑆‘𝑌)‘𝐴)‘𝑘) ∈ ℝ) |
68 | 58, 41 | eqeltrrd 2840 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → (𝐵‘𝑘) ∈ ℝ) |
69 | | volicore 44009 |
. . . . . . . 8
⊢
(((((𝑆‘𝑌)‘𝐴)‘𝑘) ∈ ℝ ∧ (𝐵‘𝑘) ∈ ℝ) → (vol‘((((𝑆‘𝑌)‘𝐴)‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
70 | 67, 68, 69 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → (vol‘((((𝑆‘𝑌)‘𝐴)‘𝑘)[,)(𝐵‘𝑘))) ∈ ℝ) |
71 | 70 | recnd 10934 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → (vol‘((((𝑆‘𝑌)‘𝐴)‘𝑘)[,)(𝐵‘𝑘))) ∈ ℂ) |
72 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (((𝑆‘𝑌)‘𝐴)‘𝑘) = (((𝑆‘𝑌)‘𝐴)‘𝐾)) |
73 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (𝐵‘𝑘) = (𝐵‘𝐾)) |
74 | 72, 73 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → ((((𝑆‘𝑌)‘𝐴)‘𝑘)[,)(𝐵‘𝑘)) = ((((𝑆‘𝑌)‘𝐴)‘𝐾)[,)(𝐵‘𝐾))) |
75 | 74 | fveq2d 6760 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (vol‘((((𝑆‘𝑌)‘𝐴)‘𝑘)[,)(𝐵‘𝑘))) = (vol‘((((𝑆‘𝑌)‘𝐴)‘𝐾)[,)(𝐵‘𝐾)))) |
76 | 12, 16 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (𝜑 → (((𝑆‘𝑌)‘𝐴)‘𝐾) ∈ ℝ) |
77 | 7, 16 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (𝜑 → (𝐵‘𝐾) ∈ ℝ) |
78 | | volicore 44009 |
. . . . . . . 8
⊢
(((((𝑆‘𝑌)‘𝐴)‘𝐾) ∈ ℝ ∧ (𝐵‘𝐾) ∈ ℝ) →
(vol‘((((𝑆‘𝑌)‘𝐴)‘𝐾)[,)(𝐵‘𝐾))) ∈ ℝ) |
79 | 76, 77, 78 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (vol‘((((𝑆‘𝑌)‘𝐴)‘𝐾)[,)(𝐵‘𝐾))) ∈ ℝ) |
80 | 79 | recnd 10934 |
. . . . . 6
⊢ (𝜑 → (vol‘((((𝑆‘𝑌)‘𝐴)‘𝐾)[,)(𝐵‘𝐾))) ∈ ℂ) |
81 | 29, 65, 32, 16, 33, 71, 75, 80 | fprodsplitsn 15627 |
. . . . 5
⊢ (𝜑 → ∏𝑘 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾})(vol‘((((𝑆‘𝑌)‘𝐴)‘𝑘)[,)(𝐵‘𝑘))) = (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((((𝑆‘𝑌)‘𝐴)‘𝑘)[,)(𝐵‘𝑘))) · (vol‘((((𝑆‘𝑌)‘𝐴)‘𝐾)[,)(𝐵‘𝐾))))) |
82 | 11, 37, 38, 34, 35 | hoidifhspval3 44047 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → (((𝑆‘𝑌)‘𝐴)‘𝑘) = if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘))) |
83 | | eldifsni 4720 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝑋 ∖ {𝐾}) → 𝑘 ≠ 𝐾) |
84 | | neneq 2948 |
. . . . . . . . . . . 12
⊢ (𝑘 ≠ 𝐾 → ¬ 𝑘 = 𝐾) |
85 | 83, 84 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (𝑋 ∖ {𝐾}) → ¬ 𝑘 = 𝐾) |
86 | 85 | iffalsed 4467 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (𝑋 ∖ {𝐾}) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)) = (𝐴‘𝑘)) |
87 | 86 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → if(𝑘 = 𝐾, if(𝑌 ≤ (𝐴‘𝑘), (𝐴‘𝑘), 𝑌), (𝐴‘𝑘)) = (𝐴‘𝑘)) |
88 | 82, 87 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → (((𝑆‘𝑌)‘𝐴)‘𝑘) = (𝐴‘𝑘)) |
89 | 88 | fvoveq1d 7277 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → (vol‘((((𝑆‘𝑌)‘𝐴)‘𝑘)[,)(𝐵‘𝑘))) = (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
90 | 89 | prodeq2dv 15561 |
. . . . . 6
⊢ (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((((𝑆‘𝑌)‘𝐴)‘𝑘)[,)(𝐵‘𝑘))) = ∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
91 | 90 | oveq1d 7270 |
. . . . 5
⊢ (𝜑 → (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((((𝑆‘𝑌)‘𝐴)‘𝑘)[,)(𝐵‘𝑘))) · (vol‘((((𝑆‘𝑌)‘𝐴)‘𝐾)[,)(𝐵‘𝐾)))) = (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) · (vol‘((((𝑆‘𝑌)‘𝐴)‘𝐾)[,)(𝐵‘𝐾))))) |
92 | 64, 81, 91 | 3eqtrd 2782 |
. . . 4
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((((𝑆‘𝑌)‘𝐴)‘𝑘)[,)(𝐵‘𝑘))) = (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) · (vol‘((((𝑆‘𝑌)‘𝐴)‘𝐾)[,)(𝐵‘𝐾))))) |
93 | 63, 92 | oveq12d 7273 |
. . 3
⊢ (𝜑 → (∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(((𝑇‘𝑌)‘𝐵)‘𝑘))) + ∏𝑘 ∈ 𝑋 (vol‘((((𝑆‘𝑌)‘𝐴)‘𝑘)[,)(𝐵‘𝑘)))) = ((∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) · (vol‘((𝐴‘𝐾)[,)(((𝑇‘𝑌)‘𝐵)‘𝐾)))) + (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) · (vol‘((((𝑆‘𝑌)‘𝐴)‘𝐾)[,)(𝐵‘𝐾)))))) |
94 | 27 | prodeq1d 15559 |
. . . . 5
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = ∏𝑘 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
95 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑘(vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾))) |
96 | 60, 44 | eqeltrrd 2840 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑋 ∖ {𝐾})) → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℂ) |
97 | 45, 73 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → ((𝐴‘𝑘)[,)(𝐵‘𝑘)) = ((𝐴‘𝐾)[,)(𝐵‘𝐾))) |
98 | 97 | fveq2d 6760 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) |
99 | | volicore 44009 |
. . . . . . . 8
⊢ (((𝐴‘𝐾) ∈ ℝ ∧ (𝐵‘𝐾) ∈ ℝ) → (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾))) ∈ ℝ) |
100 | 49, 77, 99 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾))) ∈ ℝ) |
101 | 100 | recnd 10934 |
. . . . . 6
⊢ (𝜑 → (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾))) ∈ ℂ) |
102 | 29, 95, 32, 16, 33, 96, 98, 101 | fprodsplitsn 15627 |
. . . . 5
⊢ (𝜑 → ∏𝑘 ∈ ((𝑋 ∖ {𝐾}) ∪ {𝐾})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) · (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾))))) |
103 | 94, 102 | eqtrd 2778 |
. . . 4
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) · (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾))))) |
104 | 5, 6, 3, 7, 16 | hsphoival 44007 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑇‘𝑌)‘𝐵)‘𝐾) = if(𝐾 ∈ (𝑋 ∖ {𝐾}), (𝐵‘𝐾), if((𝐵‘𝐾) ≤ 𝑌, (𝐵‘𝐾), 𝑌))) |
105 | 33 | iffalsed 4467 |
. . . . . . . . . 10
⊢ (𝜑 → if(𝐾 ∈ (𝑋 ∖ {𝐾}), (𝐵‘𝐾), if((𝐵‘𝐾) ≤ 𝑌, (𝐵‘𝐾), 𝑌)) = if((𝐵‘𝐾) ≤ 𝑌, (𝐵‘𝐾), 𝑌)) |
106 | 104, 105 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑇‘𝑌)‘𝐵)‘𝐾) = if((𝐵‘𝐾) ≤ 𝑌, (𝐵‘𝐾), 𝑌)) |
107 | 106 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝜑 → ((𝐴‘𝐾)[,)(((𝑇‘𝑌)‘𝐵)‘𝐾)) = ((𝐴‘𝐾)[,)if((𝐵‘𝐾) ≤ 𝑌, (𝐵‘𝐾), 𝑌))) |
108 | 107 | fveq2d 6760 |
. . . . . . 7
⊢ (𝜑 → (vol‘((𝐴‘𝐾)[,)(((𝑇‘𝑌)‘𝐵)‘𝐾))) = (vol‘((𝐴‘𝐾)[,)if((𝐵‘𝐾) ≤ 𝑌, (𝐵‘𝐾), 𝑌)))) |
109 | 11, 6, 3, 4, 16 | hoidifhspval3 44047 |
. . . . . . . . 9
⊢ (𝜑 → (((𝑆‘𝑌)‘𝐴)‘𝐾) = if(𝐾 = 𝐾, if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌), (𝐴‘𝐾))) |
110 | | eqid 2738 |
. . . . . . . . . . 11
⊢ 𝐾 = 𝐾 |
111 | 110 | iftruei 4463 |
. . . . . . . . . 10
⊢ if(𝐾 = 𝐾, if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌), (𝐴‘𝐾)) = if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌) |
112 | 111 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → if(𝐾 = 𝐾, if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌), (𝐴‘𝐾)) = if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)) |
113 | 109, 112 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝜑 → (((𝑆‘𝑌)‘𝐴)‘𝐾) = if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)) |
114 | 113 | fvoveq1d 7277 |
. . . . . . 7
⊢ (𝜑 → (vol‘((((𝑆‘𝑌)‘𝐴)‘𝐾)[,)(𝐵‘𝐾))) = (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)))) |
115 | 108, 114 | oveq12d 7273 |
. . . . . 6
⊢ (𝜑 → ((vol‘((𝐴‘𝐾)[,)(((𝑇‘𝑌)‘𝐵)‘𝐾))) + (vol‘((((𝑆‘𝑌)‘𝐴)‘𝐾)[,)(𝐵‘𝐾)))) = ((vol‘((𝐴‘𝐾)[,)if((𝐵‘𝐾) ≤ 𝑌, (𝐵‘𝐾), 𝑌))) + (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾))))) |
116 | | iftrue 4462 |
. . . . . . . . . . . 12
⊢ ((𝐵‘𝐾) ≤ 𝑌 → if((𝐵‘𝐾) ≤ 𝑌, (𝐵‘𝐾), 𝑌) = (𝐵‘𝐾)) |
117 | 116 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ ((𝐵‘𝐾) ≤ 𝑌 → ((𝐴‘𝐾)[,)if((𝐵‘𝐾) ≤ 𝑌, (𝐵‘𝐾), 𝑌)) = ((𝐴‘𝐾)[,)(𝐵‘𝐾))) |
118 | 117 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝐵‘𝐾) ≤ 𝑌 → (vol‘((𝐴‘𝐾)[,)if((𝐵‘𝐾) ≤ 𝑌, (𝐵‘𝐾), 𝑌))) = (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) |
119 | 118 | oveq1d 7270 |
. . . . . . . . 9
⊢ ((𝐵‘𝐾) ≤ 𝑌 → ((vol‘((𝐴‘𝐾)[,)if((𝐵‘𝐾) ≤ 𝑌, (𝐵‘𝐾), 𝑌))) + (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)))) = ((vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾))) + (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾))))) |
120 | 119 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) → ((vol‘((𝐴‘𝐾)[,)if((𝐵‘𝐾) ≤ 𝑌, (𝐵‘𝐾), 𝑌))) + (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)))) = ((vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾))) + (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾))))) |
121 | | iftrue 4462 |
. . . . . . . . . . . . . . 15
⊢ (𝑌 ≤ (𝐴‘𝐾) → if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌) = (𝐴‘𝐾)) |
122 | 121 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ (𝑌 ≤ (𝐴‘𝐾) → (if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)) = ((𝐴‘𝐾)[,)(𝐵‘𝐾))) |
123 | 122 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴‘𝐾)) → (if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)) = ((𝐴‘𝐾)[,)(𝐵‘𝐾))) |
124 | 77 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴‘𝐾)) → (𝐵‘𝐾) ∈ ℝ) |
125 | 6 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴‘𝐾)) → 𝑌 ∈ ℝ) |
126 | 49 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴‘𝐾)) → (𝐴‘𝐾) ∈ ℝ) |
127 | | simplr 765 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴‘𝐾)) → (𝐵‘𝐾) ≤ 𝑌) |
128 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴‘𝐾)) → 𝑌 ≤ (𝐴‘𝐾)) |
129 | 124, 125,
126, 127, 128 | letrd 11062 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴‘𝐾)) → (𝐵‘𝐾) ≤ (𝐴‘𝐾)) |
130 | 126 | rexrd 10956 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴‘𝐾)) → (𝐴‘𝐾) ∈
ℝ*) |
131 | 124 | rexrd 10956 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴‘𝐾)) → (𝐵‘𝐾) ∈
ℝ*) |
132 | | ico0 13054 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴‘𝐾) ∈ ℝ* ∧ (𝐵‘𝐾) ∈ ℝ*) →
(((𝐴‘𝐾)[,)(𝐵‘𝐾)) = ∅ ↔ (𝐵‘𝐾) ≤ (𝐴‘𝐾))) |
133 | 130, 131,
132 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴‘𝐾)) → (((𝐴‘𝐾)[,)(𝐵‘𝐾)) = ∅ ↔ (𝐵‘𝐾) ≤ (𝐴‘𝐾))) |
134 | 129, 133 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴‘𝐾)) → ((𝐴‘𝐾)[,)(𝐵‘𝐾)) = ∅) |
135 | 123, 134 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) ∧ 𝑌 ≤ (𝐴‘𝐾)) → (if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)) = ∅) |
136 | | iffalse 4465 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑌 ≤ (𝐴‘𝐾) → if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌) = 𝑌) |
137 | 136 | oveq1d 7270 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑌 ≤ (𝐴‘𝐾) → (if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)) = (𝑌[,)(𝐵‘𝐾))) |
138 | 137 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) ∧ ¬ 𝑌 ≤ (𝐴‘𝐾)) → (if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)) = (𝑌[,)(𝐵‘𝐾))) |
139 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) → (𝐵‘𝐾) ≤ 𝑌) |
140 | 6 | rexrd 10956 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑌 ∈
ℝ*) |
141 | 140 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) → 𝑌 ∈
ℝ*) |
142 | 77 | rexrd 10956 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐵‘𝐾) ∈
ℝ*) |
143 | 142 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) → (𝐵‘𝐾) ∈
ℝ*) |
144 | | ico0 13054 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑌 ∈ ℝ*
∧ (𝐵‘𝐾) ∈ ℝ*)
→ ((𝑌[,)(𝐵‘𝐾)) = ∅ ↔ (𝐵‘𝐾) ≤ 𝑌)) |
145 | 141, 143,
144 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) → ((𝑌[,)(𝐵‘𝐾)) = ∅ ↔ (𝐵‘𝐾) ≤ 𝑌)) |
146 | 139, 145 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) → (𝑌[,)(𝐵‘𝐾)) = ∅) |
147 | 146 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) ∧ ¬ 𝑌 ≤ (𝐴‘𝐾)) → (𝑌[,)(𝐵‘𝐾)) = ∅) |
148 | 138, 147 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) ∧ ¬ 𝑌 ≤ (𝐴‘𝐾)) → (if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)) = ∅) |
149 | 135, 148 | pm2.61dan 809 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) → (if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)) = ∅) |
150 | 149 | fveq2d 6760 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) → (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾))) = (vol‘∅)) |
151 | | vol0 43390 |
. . . . . . . . . . 11
⊢
(vol‘∅) = 0 |
152 | 151 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) → (vol‘∅) =
0) |
153 | 150, 152 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) → (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾))) = 0) |
154 | 153 | oveq2d 7271 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) → ((vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾))) + (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)))) = ((vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾))) + 0)) |
155 | 101 | addid1d 11105 |
. . . . . . . . 9
⊢ (𝜑 → ((vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾))) + 0) = (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) |
156 | 155 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) → ((vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾))) + 0) = (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) |
157 | 120, 154,
156 | 3eqtrd 2782 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐵‘𝐾) ≤ 𝑌) → ((vol‘((𝐴‘𝐾)[,)if((𝐵‘𝐾) ≤ 𝑌, (𝐵‘𝐾), 𝑌))) + (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)))) = (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) |
158 | | iffalse 4465 |
. . . . . . . . . . . 12
⊢ (¬
(𝐵‘𝐾) ≤ 𝑌 → if((𝐵‘𝐾) ≤ 𝑌, (𝐵‘𝐾), 𝑌) = 𝑌) |
159 | 158 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (¬
(𝐵‘𝐾) ≤ 𝑌 → ((𝐴‘𝐾)[,)if((𝐵‘𝐾) ≤ 𝑌, (𝐵‘𝐾), 𝑌)) = ((𝐴‘𝐾)[,)𝑌)) |
160 | 159 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (¬
(𝐵‘𝐾) ≤ 𝑌 → (vol‘((𝐴‘𝐾)[,)if((𝐵‘𝐾) ≤ 𝑌, (𝐵‘𝐾), 𝑌))) = (vol‘((𝐴‘𝐾)[,)𝑌))) |
161 | 160 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝐵‘𝐾) ≤ 𝑌) → (vol‘((𝐴‘𝐾)[,)if((𝐵‘𝐾) ≤ 𝑌, (𝐵‘𝐾), 𝑌))) = (vol‘((𝐴‘𝐾)[,)𝑌))) |
162 | 161 | oveq1d 7270 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝐵‘𝐾) ≤ 𝑌) → ((vol‘((𝐴‘𝐾)[,)if((𝐵‘𝐾) ≤ 𝑌, (𝐵‘𝐾), 𝑌))) + (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)))) = ((vol‘((𝐴‘𝐾)[,)𝑌)) + (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾))))) |
163 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝐵‘𝐾) ≤ 𝑌) → 𝜑) |
164 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ (𝐵‘𝐾) ≤ 𝑌) → ¬ (𝐵‘𝐾) ≤ 𝑌) |
165 | 163, 6 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ (𝐵‘𝐾) ≤ 𝑌) → 𝑌 ∈ ℝ) |
166 | 163, 77 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ (𝐵‘𝐾) ≤ 𝑌) → (𝐵‘𝐾) ∈ ℝ) |
167 | 165, 166 | ltnled 11052 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ¬ (𝐵‘𝐾) ≤ 𝑌) → (𝑌 < (𝐵‘𝐾) ↔ ¬ (𝐵‘𝐾) ≤ 𝑌)) |
168 | 164, 167 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ¬ (𝐵‘𝐾) ≤ 𝑌) → 𝑌 < (𝐵‘𝐾)) |
169 | 121 | fvoveq1d 7277 |
. . . . . . . . . . . . 13
⊢ (𝑌 ≤ (𝐴‘𝐾) → (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾))) = (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) |
170 | 169 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑌 ≤ (𝐴‘𝐾) → ((vol‘((𝐴‘𝐾)[,)𝑌)) + (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)))) = ((vol‘((𝐴‘𝐾)[,)𝑌)) + (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾))))) |
171 | 170 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ 𝑌 ≤ (𝐴‘𝐾)) → ((vol‘((𝐴‘𝐾)[,)𝑌)) + (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)))) = ((vol‘((𝐴‘𝐾)[,)𝑌)) + (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾))))) |
172 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑌 ≤ (𝐴‘𝐾)) → 𝑌 ≤ (𝐴‘𝐾)) |
173 | 49 | rexrd 10956 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐴‘𝐾) ∈
ℝ*) |
174 | 173 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑌 ≤ (𝐴‘𝐾)) → (𝐴‘𝐾) ∈
ℝ*) |
175 | 140 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑌 ≤ (𝐴‘𝐾)) → 𝑌 ∈
ℝ*) |
176 | | ico0 13054 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴‘𝐾) ∈ ℝ* ∧ 𝑌 ∈ ℝ*)
→ (((𝐴‘𝐾)[,)𝑌) = ∅ ↔ 𝑌 ≤ (𝐴‘𝐾))) |
177 | 174, 175,
176 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑌 ≤ (𝐴‘𝐾)) → (((𝐴‘𝐾)[,)𝑌) = ∅ ↔ 𝑌 ≤ (𝐴‘𝐾))) |
178 | 172, 177 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 ≤ (𝐴‘𝐾)) → ((𝐴‘𝐾)[,)𝑌) = ∅) |
179 | 178 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 ≤ (𝐴‘𝐾)) → (vol‘((𝐴‘𝐾)[,)𝑌)) = (vol‘∅)) |
180 | 151 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 ≤ (𝐴‘𝐾)) → (vol‘∅) =
0) |
181 | 179, 180 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑌 ≤ (𝐴‘𝐾)) → (vol‘((𝐴‘𝐾)[,)𝑌)) = 0) |
182 | 181 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑌 ≤ (𝐴‘𝐾)) → ((vol‘((𝐴‘𝐾)[,)𝑌)) + (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) = (0 + (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾))))) |
183 | 182 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ 𝑌 ≤ (𝐴‘𝐾)) → ((vol‘((𝐴‘𝐾)[,)𝑌)) + (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) = (0 + (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾))))) |
184 | 101 | addid2d 11106 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0 + (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) = (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) |
185 | 184 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ 𝑌 ≤ (𝐴‘𝐾)) → (0 + (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) = (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) |
186 | 171, 183,
185 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ 𝑌 ≤ (𝐴‘𝐾)) → ((vol‘((𝐴‘𝐾)[,)𝑌)) + (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)))) = (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) |
187 | 136 | fvoveq1d 7277 |
. . . . . . . . . . . . 13
⊢ (¬
𝑌 ≤ (𝐴‘𝐾) → (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾))) = (vol‘(𝑌[,)(𝐵‘𝐾)))) |
188 | 187 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (¬
𝑌 ≤ (𝐴‘𝐾) → ((vol‘((𝐴‘𝐾)[,)𝑌)) + (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)))) = ((vol‘((𝐴‘𝐾)[,)𝑌)) + (vol‘(𝑌[,)(𝐵‘𝐾))))) |
189 | 188 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ ¬ 𝑌 ≤ (𝐴‘𝐾)) → ((vol‘((𝐴‘𝐾)[,)𝑌)) + (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)))) = ((vol‘((𝐴‘𝐾)[,)𝑌)) + (vol‘(𝑌[,)(𝐵‘𝐾))))) |
190 | | simpl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ ¬ 𝑌 ≤ (𝐴‘𝐾)) → (𝜑 ∧ 𝑌 < (𝐵‘𝐾))) |
191 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝑌 ≤ (𝐴‘𝐾)) → ¬ 𝑌 ≤ (𝐴‘𝐾)) |
192 | 49 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝑌 ≤ (𝐴‘𝐾)) → (𝐴‘𝐾) ∈ ℝ) |
193 | 6 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ 𝑌 ≤ (𝐴‘𝐾)) → 𝑌 ∈ ℝ) |
194 | 192, 193 | ltnled 11052 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ¬ 𝑌 ≤ (𝐴‘𝐾)) → ((𝐴‘𝐾) < 𝑌 ↔ ¬ 𝑌 ≤ (𝐴‘𝐾))) |
195 | 191, 194 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ¬ 𝑌 ≤ (𝐴‘𝐾)) → (𝐴‘𝐾) < 𝑌) |
196 | 195 | adantlr 711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ ¬ 𝑌 ≤ (𝐴‘𝐾)) → (𝐴‘𝐾) < 𝑌) |
197 | 49 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝐴‘𝐾) < 𝑌) → (𝐴‘𝐾) ∈ ℝ) |
198 | 6 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝐴‘𝐾) < 𝑌) → 𝑌 ∈ ℝ) |
199 | | volico 43414 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴‘𝐾) ∈ ℝ ∧ 𝑌 ∈ ℝ) → (vol‘((𝐴‘𝐾)[,)𝑌)) = if((𝐴‘𝐾) < 𝑌, (𝑌 − (𝐴‘𝐾)), 0)) |
200 | 197, 198,
199 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐴‘𝐾) < 𝑌) → (vol‘((𝐴‘𝐾)[,)𝑌)) = if((𝐴‘𝐾) < 𝑌, (𝑌 − (𝐴‘𝐾)), 0)) |
201 | | iftrue 4462 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴‘𝐾) < 𝑌 → if((𝐴‘𝐾) < 𝑌, (𝑌 − (𝐴‘𝐾)), 0) = (𝑌 − (𝐴‘𝐾))) |
202 | 201 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐴‘𝐾) < 𝑌) → if((𝐴‘𝐾) < 𝑌, (𝑌 − (𝐴‘𝐾)), 0) = (𝑌 − (𝐴‘𝐾))) |
203 | 200, 202 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐴‘𝐾) < 𝑌) → (vol‘((𝐴‘𝐾)[,)𝑌)) = (𝑌 − (𝐴‘𝐾))) |
204 | 203 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ (𝐴‘𝐾) < 𝑌) → (vol‘((𝐴‘𝐾)[,)𝑌)) = (𝑌 − (𝐴‘𝐾))) |
205 | 6 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) → 𝑌 ∈ ℝ) |
206 | 77 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) → (𝐵‘𝐾) ∈ ℝ) |
207 | | volico 43414 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑌 ∈ ℝ ∧ (𝐵‘𝐾) ∈ ℝ) → (vol‘(𝑌[,)(𝐵‘𝐾))) = if(𝑌 < (𝐵‘𝐾), ((𝐵‘𝐾) − 𝑌), 0)) |
208 | 205, 206,
207 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) → (vol‘(𝑌[,)(𝐵‘𝐾))) = if(𝑌 < (𝐵‘𝐾), ((𝐵‘𝐾) − 𝑌), 0)) |
209 | | iftrue 4462 |
. . . . . . . . . . . . . . . 16
⊢ (𝑌 < (𝐵‘𝐾) → if(𝑌 < (𝐵‘𝐾), ((𝐵‘𝐾) − 𝑌), 0) = ((𝐵‘𝐾) − 𝑌)) |
210 | 209 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) → if(𝑌 < (𝐵‘𝐾), ((𝐵‘𝐾) − 𝑌), 0) = ((𝐵‘𝐾) − 𝑌)) |
211 | 208, 210 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) → (vol‘(𝑌[,)(𝐵‘𝐾))) = ((𝐵‘𝐾) − 𝑌)) |
212 | 211 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ (𝐴‘𝐾) < 𝑌) → (vol‘(𝑌[,)(𝐵‘𝐾))) = ((𝐵‘𝐾) − 𝑌)) |
213 | 204, 212 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ (𝐴‘𝐾) < 𝑌) → ((vol‘((𝐴‘𝐾)[,)𝑌)) + (vol‘(𝑌[,)(𝐵‘𝐾)))) = ((𝑌 − (𝐴‘𝐾)) + ((𝐵‘𝐾) − 𝑌))) |
214 | 190, 196,
213 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ ¬ 𝑌 ≤ (𝐴‘𝐾)) → ((vol‘((𝐴‘𝐾)[,)𝑌)) + (vol‘(𝑌[,)(𝐵‘𝐾)))) = ((𝑌 − (𝐴‘𝐾)) + ((𝐵‘𝐾) − 𝑌))) |
215 | 197 | adantlr 711 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ (𝐴‘𝐾) < 𝑌) → (𝐴‘𝐾) ∈ ℝ) |
216 | 205 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ (𝐴‘𝐾) < 𝑌) → 𝑌 ∈ ℝ) |
217 | 206 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ (𝐴‘𝐾) < 𝑌) → (𝐵‘𝐾) ∈ ℝ) |
218 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ (𝐴‘𝐾) < 𝑌) → (𝐴‘𝐾) < 𝑌) |
219 | | simplr 765 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ (𝐴‘𝐾) < 𝑌) → 𝑌 < (𝐵‘𝐾)) |
220 | 215, 216,
217, 218, 219 | lttrd 11066 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ (𝐴‘𝐾) < 𝑌) → (𝐴‘𝐾) < (𝐵‘𝐾)) |
221 | 220 | iftrued 4464 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ (𝐴‘𝐾) < 𝑌) → if((𝐴‘𝐾) < (𝐵‘𝐾), ((𝐵‘𝐾) − (𝐴‘𝐾)), 0) = ((𝐵‘𝐾) − (𝐴‘𝐾))) |
222 | 221 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ (𝐴‘𝐾) < 𝑌) → ((𝐵‘𝐾) − (𝐴‘𝐾)) = if((𝐴‘𝐾) < (𝐵‘𝐾), ((𝐵‘𝐾) − (𝐴‘𝐾)), 0)) |
223 | 6, 49 | resubcld 11333 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑌 − (𝐴‘𝐾)) ∈ ℝ) |
224 | 223 | recnd 10934 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑌 − (𝐴‘𝐾)) ∈ ℂ) |
225 | 77, 6 | resubcld 11333 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ((𝐵‘𝐾) − 𝑌) ∈ ℝ) |
226 | 225 | recnd 10934 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐵‘𝐾) − 𝑌) ∈ ℂ) |
227 | 224, 226 | addcomd 11107 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑌 − (𝐴‘𝐾)) + ((𝐵‘𝐾) − 𝑌)) = (((𝐵‘𝐾) − 𝑌) + (𝑌 − (𝐴‘𝐾)))) |
228 | 77 | recnd 10934 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐵‘𝐾) ∈ ℂ) |
229 | 6 | recnd 10934 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑌 ∈ ℂ) |
230 | 49 | recnd 10934 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐴‘𝐾) ∈ ℂ) |
231 | 228, 229,
230 | npncand 11286 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (((𝐵‘𝐾) − 𝑌) + (𝑌 − (𝐴‘𝐾))) = ((𝐵‘𝐾) − (𝐴‘𝐾))) |
232 | 227, 231 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑌 − (𝐴‘𝐾)) + ((𝐵‘𝐾) − 𝑌)) = ((𝐵‘𝐾) − (𝐴‘𝐾))) |
233 | 232 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ (𝐴‘𝐾) < 𝑌) → ((𝑌 − (𝐴‘𝐾)) + ((𝐵‘𝐾) − 𝑌)) = ((𝐵‘𝐾) − (𝐴‘𝐾))) |
234 | | volico 43414 |
. . . . . . . . . . . . . 14
⊢ (((𝐴‘𝐾) ∈ ℝ ∧ (𝐵‘𝐾) ∈ ℝ) → (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾))) = if((𝐴‘𝐾) < (𝐵‘𝐾), ((𝐵‘𝐾) − (𝐴‘𝐾)), 0)) |
235 | 215, 217,
234 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ (𝐴‘𝐾) < 𝑌) → (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾))) = if((𝐴‘𝐾) < (𝐵‘𝐾), ((𝐵‘𝐾) − (𝐴‘𝐾)), 0)) |
236 | 222, 233,
235 | 3eqtr4d 2788 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ (𝐴‘𝐾) < 𝑌) → ((𝑌 − (𝐴‘𝐾)) + ((𝐵‘𝐾) − 𝑌)) = (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) |
237 | 190, 196,
236 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ ¬ 𝑌 ≤ (𝐴‘𝐾)) → ((𝑌 − (𝐴‘𝐾)) + ((𝐵‘𝐾) − 𝑌)) = (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) |
238 | 189, 214,
237 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) ∧ ¬ 𝑌 ≤ (𝐴‘𝐾)) → ((vol‘((𝐴‘𝐾)[,)𝑌)) + (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)))) = (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) |
239 | 186, 238 | pm2.61dan 809 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑌 < (𝐵‘𝐾)) → ((vol‘((𝐴‘𝐾)[,)𝑌)) + (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)))) = (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) |
240 | 163, 168,
239 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (𝐵‘𝐾) ≤ 𝑌) → ((vol‘((𝐴‘𝐾)[,)𝑌)) + (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)))) = (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) |
241 | 162, 240 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (𝐵‘𝐾) ≤ 𝑌) → ((vol‘((𝐴‘𝐾)[,)if((𝐵‘𝐾) ≤ 𝑌, (𝐵‘𝐾), 𝑌))) + (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)))) = (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) |
242 | 157, 241 | pm2.61dan 809 |
. . . . . 6
⊢ (𝜑 → ((vol‘((𝐴‘𝐾)[,)if((𝐵‘𝐾) ≤ 𝑌, (𝐵‘𝐾), 𝑌))) + (vol‘(if(𝑌 ≤ (𝐴‘𝐾), (𝐴‘𝐾), 𝑌)[,)(𝐵‘𝐾)))) = (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) |
243 | 115, 242 | eqtr2d 2779 |
. . . . 5
⊢ (𝜑 → (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾))) = ((vol‘((𝐴‘𝐾)[,)(((𝑇‘𝑌)‘𝐵)‘𝐾))) + (vol‘((((𝑆‘𝑌)‘𝐴)‘𝐾)[,)(𝐵‘𝐾))))) |
244 | 243 | oveq2d 7271 |
. . . 4
⊢ (𝜑 → (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) · (vol‘((𝐴‘𝐾)[,)(𝐵‘𝐾)))) = (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) · ((vol‘((𝐴‘𝐾)[,)(((𝑇‘𝑌)‘𝐵)‘𝐾))) + (vol‘((((𝑆‘𝑌)‘𝐴)‘𝐾)[,)(𝐵‘𝐾)))))) |
245 | 32, 96 | fprodcl 15590 |
. . . . 5
⊢ (𝜑 → ∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) ∈ ℂ) |
246 | 245, 53, 80 | adddid 10930 |
. . . 4
⊢ (𝜑 → (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) · ((vol‘((𝐴‘𝐾)[,)(((𝑇‘𝑌)‘𝐵)‘𝐾))) + (vol‘((((𝑆‘𝑌)‘𝐴)‘𝐾)[,)(𝐵‘𝐾))))) = ((∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) · (vol‘((𝐴‘𝐾)[,)(((𝑇‘𝑌)‘𝐵)‘𝐾)))) + (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) · (vol‘((((𝑆‘𝑌)‘𝐴)‘𝐾)[,)(𝐵‘𝐾)))))) |
247 | 103, 244,
246 | 3eqtrrd 2783 |
. . 3
⊢ (𝜑 → ((∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) · (vol‘((𝐴‘𝐾)[,)(((𝑇‘𝑌)‘𝐵)‘𝐾)))) + (∏𝑘 ∈ (𝑋 ∖ {𝐾})(vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) · (vol‘((((𝑆‘𝑌)‘𝐴)‘𝐾)[,)(𝐵‘𝐾))))) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
248 | 20, 93, 247 | 3eqtrd 2782 |
. 2
⊢ (𝜑 → ((𝐴(𝐿‘𝑋)((𝑇‘𝑌)‘𝐵)) + (((𝑆‘𝑌)‘𝐴)(𝐿‘𝑋)𝐵)) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
249 | 2, 3, 17, 4, 7 | hoidmvn0val 44012 |
. . 3
⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘)))) |
250 | 249 | eqcomd 2744 |
. 2
⊢ (𝜑 → ∏𝑘 ∈ 𝑋 (vol‘((𝐴‘𝑘)[,)(𝐵‘𝑘))) = (𝐴(𝐿‘𝑋)𝐵)) |
251 | 15, 248, 250 | 3eqtrrd 2783 |
1
⊢ (𝜑 → (𝐴(𝐿‘𝑋)𝐵) = ((𝐴(𝐿‘𝑋)((𝑇‘𝑌)‘𝐵)) +𝑒 (((𝑆‘𝑌)‘𝐴)(𝐿‘𝑋)𝐵))) |