Proof of Theorem hoidmv1lelem2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | hoidmv1lelem2.a | . . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 2 |  | hoidmv1lelem2.b | . . . . . 6
⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| 3 |  | hoidmv1lelem2.m | . . . . . . . 8
⊢ 𝑀 = if((𝐷‘𝐾) ≤ 𝐵, (𝐷‘𝐾), 𝐵) | 
| 4 | 3 | a1i 11 | . . . . . . 7
⊢ (𝜑 → 𝑀 = if((𝐷‘𝐾) ≤ 𝐵, (𝐷‘𝐾), 𝐵)) | 
| 5 |  | hoidmv1lelem2.d | . . . . . . . . 9
⊢ (𝜑 → 𝐷:ℕ⟶ℝ) | 
| 6 |  | hoidmv1lelem2.k | . . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ ℕ) | 
| 7 | 5, 6 | ffvelcdmd 7105 | . . . . . . . 8
⊢ (𝜑 → (𝐷‘𝐾) ∈ ℝ) | 
| 8 | 7, 2 | ifcld 4572 | . . . . . . 7
⊢ (𝜑 → if((𝐷‘𝐾) ≤ 𝐵, (𝐷‘𝐾), 𝐵) ∈ ℝ) | 
| 9 | 4, 8 | eqeltrd 2841 | . . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℝ) | 
| 10 |  | hoidmv1lelem2.c | . . . . . . . . . . 11
⊢ (𝜑 → 𝐶:ℕ⟶ℝ) | 
| 11 | 10, 6 | ffvelcdmd 7105 | . . . . . . . . . 10
⊢ (𝜑 → (𝐶‘𝐾) ∈ ℝ) | 
| 12 | 7 | rexrd 11311 | . . . . . . . . . 10
⊢ (𝜑 → (𝐷‘𝐾) ∈
ℝ*) | 
| 13 |  | icossre 13468 | . . . . . . . . . 10
⊢ (((𝐶‘𝐾) ∈ ℝ ∧ (𝐷‘𝐾) ∈ ℝ*) → ((𝐶‘𝐾)[,)(𝐷‘𝐾)) ⊆ ℝ) | 
| 14 | 11, 12, 13 | syl2anc 584 | . . . . . . . . 9
⊢ (𝜑 → ((𝐶‘𝐾)[,)(𝐷‘𝐾)) ⊆ ℝ) | 
| 15 |  | hoidmv1lelem2.s | . . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ ((𝐶‘𝐾)[,)(𝐷‘𝐾))) | 
| 16 | 14, 15 | sseldd 3984 | . . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ ℝ) | 
| 17 |  | hoidmv1lelem2.g | . . . . . . . 8
⊢ (𝜑 → 𝐴 ≤ 𝑆) | 
| 18 | 11 | rexrd 11311 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝐶‘𝐾) ∈
ℝ*) | 
| 19 |  | icoltub 45521 | . . . . . . . . . . . 12
⊢ (((𝐶‘𝐾) ∈ ℝ* ∧ (𝐷‘𝐾) ∈ ℝ* ∧ 𝑆 ∈ ((𝐶‘𝐾)[,)(𝐷‘𝐾))) → 𝑆 < (𝐷‘𝐾)) | 
| 20 | 18, 12, 15, 19 | syl3anc 1373 | . . . . . . . . . . 11
⊢ (𝜑 → 𝑆 < (𝐷‘𝐾)) | 
| 21 | 16, 7, 20 | ltled 11409 | . . . . . . . . . 10
⊢ (𝜑 → 𝑆 ≤ (𝐷‘𝐾)) | 
| 22 |  | hoidmv1lelem2.l | . . . . . . . . . . 11
⊢ (𝜑 → 𝑆 < 𝐵) | 
| 23 | 16, 2, 22 | ltled 11409 | . . . . . . . . . 10
⊢ (𝜑 → 𝑆 ≤ 𝐵) | 
| 24 | 21, 23 | jca 511 | . . . . . . . . 9
⊢ (𝜑 → (𝑆 ≤ (𝐷‘𝐾) ∧ 𝑆 ≤ 𝐵)) | 
| 25 |  | lemin 13234 | . . . . . . . . . 10
⊢ ((𝑆 ∈ ℝ ∧ (𝐷‘𝐾) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑆 ≤ if((𝐷‘𝐾) ≤ 𝐵, (𝐷‘𝐾), 𝐵) ↔ (𝑆 ≤ (𝐷‘𝐾) ∧ 𝑆 ≤ 𝐵))) | 
| 26 | 16, 7, 2, 25 | syl3anc 1373 | . . . . . . . . 9
⊢ (𝜑 → (𝑆 ≤ if((𝐷‘𝐾) ≤ 𝐵, (𝐷‘𝐾), 𝐵) ↔ (𝑆 ≤ (𝐷‘𝐾) ∧ 𝑆 ≤ 𝐵))) | 
| 27 | 24, 26 | mpbird 257 | . . . . . . . 8
⊢ (𝜑 → 𝑆 ≤ if((𝐷‘𝐾) ≤ 𝐵, (𝐷‘𝐾), 𝐵)) | 
| 28 | 1, 16, 8, 17, 27 | letrd 11418 | . . . . . . 7
⊢ (𝜑 → 𝐴 ≤ if((𝐷‘𝐾) ≤ 𝐵, (𝐷‘𝐾), 𝐵)) | 
| 29 | 4 | eqcomd 2743 | . . . . . . 7
⊢ (𝜑 → if((𝐷‘𝐾) ≤ 𝐵, (𝐷‘𝐾), 𝐵) = 𝑀) | 
| 30 | 28, 29 | breqtrd 5169 | . . . . . 6
⊢ (𝜑 → 𝐴 ≤ 𝑀) | 
| 31 |  | min2 13232 | . . . . . . . 8
⊢ (((𝐷‘𝐾) ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((𝐷‘𝐾) ≤ 𝐵, (𝐷‘𝐾), 𝐵) ≤ 𝐵) | 
| 32 | 7, 2, 31 | syl2anc 584 | . . . . . . 7
⊢ (𝜑 → if((𝐷‘𝐾) ≤ 𝐵, (𝐷‘𝐾), 𝐵) ≤ 𝐵) | 
| 33 | 4, 32 | eqbrtrd 5165 | . . . . . 6
⊢ (𝜑 → 𝑀 ≤ 𝐵) | 
| 34 | 1, 2, 9, 30, 33 | eliccd 45517 | . . . . 5
⊢ (𝜑 → 𝑀 ∈ (𝐴[,]𝐵)) | 
| 35 | 9 | recnd 11289 | . . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℂ) | 
| 36 | 16 | recnd 11289 | . . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ ℂ) | 
| 37 | 1 | recnd 11289 | . . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| 38 | 35, 36, 37 | npncand 11644 | . . . . . . 7
⊢ (𝜑 → ((𝑀 − 𝑆) + (𝑆 − 𝐴)) = (𝑀 − 𝐴)) | 
| 39 | 38 | eqcomd 2743 | . . . . . 6
⊢ (𝜑 → (𝑀 − 𝐴) = ((𝑀 − 𝑆) + (𝑆 − 𝐴))) | 
| 40 | 9, 16 | resubcld 11691 | . . . . . . . 8
⊢ (𝜑 → (𝑀 − 𝑆) ∈ ℝ) | 
| 41 | 16, 1 | resubcld 11691 | . . . . . . . 8
⊢ (𝜑 → (𝑆 − 𝐴) ∈ ℝ) | 
| 42 | 40, 41 | readdcld 11290 | . . . . . . 7
⊢ (𝜑 → ((𝑀 − 𝑆) + (𝑆 − 𝐴)) ∈ ℝ) | 
| 43 |  | nnex 12272 | . . . . . . . . . . . . 13
⊢ ℕ
∈ V | 
| 44 | 43 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝜑 → ℕ ∈
V) | 
| 45 |  | volf 25564 | . . . . . . . . . . . . . . 15
⊢ vol:dom
vol⟶(0[,]+∞) | 
| 46 | 45 | a1i 11 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → vol:dom
vol⟶(0[,]+∞)) | 
| 47 | 10 | ffvelcdmda 7104 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ ℝ) | 
| 48 | 5 | ffvelcdmda 7104 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ ℝ) | 
| 49 | 16 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑆 ∈ ℝ) | 
| 50 | 48, 49 | ifcld 4572 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ∈ ℝ) | 
| 51 | 50 | rexrd 11311 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ∈
ℝ*) | 
| 52 |  | icombl 25599 | . . . . . . . . . . . . . . 15
⊢ (((𝐶‘𝑗) ∈ ℝ ∧ if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ∈ ℝ*) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) ∈ dom vol) | 
| 53 | 47, 51, 52 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) ∈ dom vol) | 
| 54 | 46, 53 | ffvelcdmd 7105 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))) ∈ (0[,]+∞)) | 
| 55 |  | eqid 2737 | . . . . . . . . . . . . 13
⊢ (𝑗 ∈ ℕ ↦
(vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))) | 
| 56 | 54, 55 | fmptd 7134 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))):ℕ⟶(0[,]+∞)) | 
| 57 | 44, 56 | sge0xrcl 46400 | . . . . . . . . . . 11
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) ∈
ℝ*) | 
| 58 |  | pnfxr 11315 | . . . . . . . . . . . 12
⊢ +∞
∈ ℝ* | 
| 59 | 58 | a1i 11 | . . . . . . . . . . 11
⊢ (𝜑 → +∞ ∈
ℝ*) | 
| 60 |  | hoidmv1lelem2.r | . . . . . . . . . . . . 13
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗))))) ∈ ℝ) | 
| 61 | 60 | rexrd 11311 | . . . . . . . . . . . 12
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗))))) ∈
ℝ*) | 
| 62 |  | nfv 1914 | . . . . . . . . . . . . 13
⊢
Ⅎ𝑗𝜑 | 
| 63 | 48 | rexrd 11311 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈
ℝ*) | 
| 64 |  | icombl 25599 | . . . . . . . . . . . . . . 15
⊢ (((𝐶‘𝑗) ∈ ℝ ∧ (𝐷‘𝑗) ∈ ℝ*) → ((𝐶‘𝑗)[,)(𝐷‘𝑗)) ∈ dom vol) | 
| 65 | 47, 63, 64 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)[,)(𝐷‘𝑗)) ∈ dom vol) | 
| 66 | 46, 65 | ffvelcdmd 7105 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗))) ∈ (0[,]+∞)) | 
| 67 | 47 | rexrd 11311 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈
ℝ*) | 
| 68 | 47 | leidd 11829 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ≤ (𝐶‘𝑗)) | 
| 69 |  | min1 13231 | . . . . . . . . . . . . . . . 16
⊢ (((𝐷‘𝑗) ∈ ℝ ∧ 𝑆 ∈ ℝ) → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ≤ (𝐷‘𝑗)) | 
| 70 | 48, 49, 69 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ≤ (𝐷‘𝑗)) | 
| 71 |  | icossico 13457 | . . . . . . . . . . . . . . 15
⊢ ((((𝐶‘𝑗) ∈ ℝ* ∧ (𝐷‘𝑗) ∈ ℝ*) ∧ ((𝐶‘𝑗) ≤ (𝐶‘𝑗) ∧ if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ≤ (𝐷‘𝑗))) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) ⊆ ((𝐶‘𝑗)[,)(𝐷‘𝑗))) | 
| 72 | 67, 63, 68, 70, 71 | syl22anc 839 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) ⊆ ((𝐶‘𝑗)[,)(𝐷‘𝑗))) | 
| 73 |  | volss 25568 | . . . . . . . . . . . . . 14
⊢ ((((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) ∈ dom vol ∧ ((𝐶‘𝑗)[,)(𝐷‘𝑗)) ∈ dom vol ∧ ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) ⊆ ((𝐶‘𝑗)[,)(𝐷‘𝑗))) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))) ≤ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗)))) | 
| 74 | 53, 65, 72, 73 | syl3anc 1373 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))) ≤ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗)))) | 
| 75 | 62, 44, 54, 66, 74 | sge0lempt 46425 | . . . . . . . . . . . 12
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗)))))) | 
| 76 | 60 | ltpnfd 13163 | . . . . . . . . . . . 12
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗))))) < +∞) | 
| 77 | 57, 61, 59, 75, 76 | xrlelttrd 13202 | . . . . . . . . . . 11
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) < +∞) | 
| 78 | 57, 59, 77 | xrltned 45368 | . . . . . . . . . 10
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) ≠ +∞) | 
| 79 | 78 | neneqd 2945 | . . . . . . . . 9
⊢ (𝜑 → ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) = +∞) | 
| 80 | 44, 56 | sge0repnf 46401 | . . . . . . . . 9
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) ∈ ℝ ↔ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) = +∞)) | 
| 81 | 79, 80 | mpbird 257 | . . . . . . . 8
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) ∈ ℝ) | 
| 82 | 40, 81 | readdcld 11290 | . . . . . . 7
⊢ (𝜑 → ((𝑀 − 𝑆) +
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))))) ∈ ℝ) | 
| 83 | 9 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑀 ∈ ℝ) | 
| 84 | 48, 83 | ifcld 4572 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀) ∈ ℝ) | 
| 85 | 84 | rexrd 11311 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀) ∈
ℝ*) | 
| 86 |  | icombl 25599 | . . . . . . . . . . . . . 14
⊢ (((𝐶‘𝑗) ∈ ℝ ∧ if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀) ∈ ℝ*) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)) ∈ dom vol) | 
| 87 | 47, 85, 86 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)) ∈ dom vol) | 
| 88 | 46, 87 | ffvelcdmd 7105 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))) ∈ (0[,]+∞)) | 
| 89 |  | eqid 2737 | . . . . . . . . . . . 12
⊢ (𝑗 ∈ ℕ ↦
(vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)))) | 
| 90 | 88, 89 | fmptd 7134 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)))):ℕ⟶(0[,]+∞)) | 
| 91 | 44, 90 | sge0xrcl 46400 | . . . . . . . . . 10
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) ∈
ℝ*) | 
| 92 |  | min1 13231 | . . . . . . . . . . . . . . 15
⊢ (((𝐷‘𝑗) ∈ ℝ ∧ 𝑀 ∈ ℝ) → if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀) ≤ (𝐷‘𝑗)) | 
| 93 | 48, 83, 92 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀) ≤ (𝐷‘𝑗)) | 
| 94 |  | icossico 13457 | . . . . . . . . . . . . . 14
⊢ ((((𝐶‘𝑗) ∈ ℝ* ∧ (𝐷‘𝑗) ∈ ℝ*) ∧ ((𝐶‘𝑗) ≤ (𝐶‘𝑗) ∧ if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀) ≤ (𝐷‘𝑗))) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)) ⊆ ((𝐶‘𝑗)[,)(𝐷‘𝑗))) | 
| 95 | 67, 63, 68, 93, 94 | syl22anc 839 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)) ⊆ ((𝐶‘𝑗)[,)(𝐷‘𝑗))) | 
| 96 |  | volss 25568 | . . . . . . . . . . . . 13
⊢ ((((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)) ∈ dom vol ∧ ((𝐶‘𝑗)[,)(𝐷‘𝑗)) ∈ dom vol ∧ ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)) ⊆ ((𝐶‘𝑗)[,)(𝐷‘𝑗))) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))) ≤ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗)))) | 
| 97 | 87, 65, 95, 96 | syl3anc 1373 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))) ≤ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗)))) | 
| 98 | 62, 44, 88, 66, 97 | sge0lempt 46425 | . . . . . . . . . . 11
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)(𝐷‘𝑗)))))) | 
| 99 | 91, 61, 59, 98, 76 | xrlelttrd 13202 | . . . . . . . . . 10
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) < +∞) | 
| 100 | 91, 59, 99 | xrltned 45368 | . . . . . . . . 9
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) ≠ +∞) | 
| 101 | 100 | neneqd 2945 | . . . . . . . 8
⊢ (𝜑 → ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) = +∞) | 
| 102 | 44, 90 | sge0repnf 46401 | . . . . . . . 8
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) ∈ ℝ ↔ ¬
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) = +∞)) | 
| 103 | 101, 102 | mpbird 257 | . . . . . . 7
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) ∈ ℝ) | 
| 104 |  | hoidmv1lelem2.e | . . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈ 𝑈) | 
| 105 |  | hoidmv1lelem2.u | . . . . . . . . . . 11
⊢ 𝑈 = {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))))} | 
| 106 | 104, 105 | eleqtrdi 2851 | . . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))))}) | 
| 107 |  | oveq1 7438 | . . . . . . . . . . . 12
⊢ (𝑧 = 𝑆 → (𝑧 − 𝐴) = (𝑆 − 𝐴)) | 
| 108 |  | simpl 482 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 = 𝑆 ∧ 𝑗 ∈ ℕ) → 𝑧 = 𝑆) | 
| 109 | 108 | breq2d 5155 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑧 = 𝑆 ∧ 𝑗 ∈ ℕ) → ((𝐷‘𝑗) ≤ 𝑧 ↔ (𝐷‘𝑗) ≤ 𝑆)) | 
| 110 | 109, 108 | ifbieq2d 4552 | . . . . . . . . . . . . . . . 16
⊢ ((𝑧 = 𝑆 ∧ 𝑗 ∈ ℕ) → if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) = if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) | 
| 111 | 110 | oveq2d 7447 | . . . . . . . . . . . . . . 15
⊢ ((𝑧 = 𝑆 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)) = ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))) | 
| 112 | 111 | fveq2d 6910 | . . . . . . . . . . . . . 14
⊢ ((𝑧 = 𝑆 ∧ 𝑗 ∈ ℕ) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))) = (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))) | 
| 113 | 112 | mpteq2dva 5242 | . . . . . . . . . . . . 13
⊢ (𝑧 = 𝑆 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) | 
| 114 | 113 | fveq2d 6910 | . . . . . . . . . . . 12
⊢ (𝑧 = 𝑆 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))))) | 
| 115 | 107, 114 | breq12d 5156 | . . . . . . . . . . 11
⊢ (𝑧 = 𝑆 → ((𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) ↔ (𝑆 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))))) | 
| 116 | 115 | elrab 3692 | . . . . . . . . . 10
⊢ (𝑆 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))))} ↔ (𝑆 ∈ (𝐴[,]𝐵) ∧ (𝑆 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))))) | 
| 117 | 106, 116 | sylib 218 | . . . . . . . . 9
⊢ (𝜑 → (𝑆 ∈ (𝐴[,]𝐵) ∧ (𝑆 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))))) | 
| 118 | 117 | simprd 495 | . . . . . . . 8
⊢ (𝜑 → (𝑆 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))))) | 
| 119 | 41, 81, 40, 118 | leadd2dd 11878 | . . . . . . 7
⊢ (𝜑 → ((𝑀 − 𝑆) + (𝑆 − 𝐴)) ≤ ((𝑀 − 𝑆) +
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))))) | 
| 120 |  | difssd 4137 | . . . . . . . . . 10
⊢ (𝜑 → (ℕ ∖ {𝐾}) ⊆
ℕ) | 
| 121 | 62, 44, 54, 81, 120 | sge0ssrempt 46420 | . . . . . . . . 9
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) ∈ ℝ) | 
| 122 |  | difexg 5329 | . . . . . . . . . . . . . . 15
⊢ (ℕ
∈ V → (ℕ ∖ {𝐾}) ∈ V) | 
| 123 | 43, 122 | ax-mp 5 | . . . . . . . . . . . . . 14
⊢ (ℕ
∖ {𝐾}) ∈
V | 
| 124 | 123 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝜑 → (ℕ ∖ {𝐾}) ∈ V) | 
| 125 | 45 | a1i 11 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {𝐾})) → vol:dom
vol⟶(0[,]+∞)) | 
| 126 |  | simpl 482 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {𝐾})) → 𝜑) | 
| 127 |  | eldifi 4131 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (ℕ ∖ {𝐾}) → 𝑗 ∈ ℕ) | 
| 128 | 127 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {𝐾})) → 𝑗 ∈ ℕ) | 
| 129 | 126, 128,
47 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {𝐾})) → (𝐶‘𝑗) ∈ ℝ) | 
| 130 | 128, 85 | syldan 591 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {𝐾})) → if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀) ∈
ℝ*) | 
| 131 | 129, 130,
86 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {𝐾})) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)) ∈ dom vol) | 
| 132 | 125, 131 | ffvelcdmd 7105 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {𝐾})) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))) ∈ (0[,]+∞)) | 
| 133 | 62, 124, 132 | sge0xrclmpt 46443 | . . . . . . . . . . . 12
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) ∈
ℝ*) | 
| 134 | 44, 88, 120 | sge0lessmpt 46414 | . . . . . . . . . . . . 13
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)))))) | 
| 135 | 133, 91, 59, 134, 99 | xrlelttrd 13202 | . . . . . . . . . . . 12
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) < +∞) | 
| 136 | 133, 59, 135 | xrltned 45368 | . . . . . . . . . . 11
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) ≠ +∞) | 
| 137 | 136 | neneqd 2945 | . . . . . . . . . 10
⊢ (𝜑 → ¬
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) = +∞) | 
| 138 | 62, 124, 132 | sge0repnfmpt 46454 | . . . . . . . . . 10
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) ∈ ℝ ↔ ¬
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) = +∞)) | 
| 139 | 137, 138 | mpbird 257 | . . . . . . . . 9
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) ∈ ℝ) | 
| 140 | 9, 11 | resubcld 11691 | . . . . . . . . 9
⊢ (𝜑 → (𝑀 − (𝐶‘𝐾)) ∈ ℝ) | 
| 141 | 128, 54 | syldan 591 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {𝐾})) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))) ∈ (0[,]+∞)) | 
| 142 | 128, 53 | syldan 591 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {𝐾})) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) ∈ dom vol) | 
| 143 | 128, 67 | syldan 591 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {𝐾})) → (𝐶‘𝑗) ∈
ℝ*) | 
| 144 | 128, 68 | syldan 591 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {𝐾})) → (𝐶‘𝑗) ≤ (𝐶‘𝑗)) | 
| 145 |  | iftrue 4531 | . . . . . . . . . . . . . . . 16
⊢ ((𝐷‘𝑗) ≤ 𝑆 → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) = (𝐷‘𝑗)) | 
| 146 | 145 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑆) → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) = (𝐷‘𝑗)) | 
| 147 | 48 | leidd 11829 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ≤ (𝐷‘𝑗)) | 
| 148 | 147 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑆) → (𝐷‘𝑗) ≤ (𝐷‘𝑗)) | 
| 149 | 48 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑆) → (𝐷‘𝑗) ∈ ℝ) | 
| 150 | 83 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑆) → 𝑀 ∈ ℝ) | 
| 151 | 49 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑆) → 𝑆 ∈ ℝ) | 
| 152 |  | simpr 484 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑆) → (𝐷‘𝑗) ≤ 𝑆) | 
| 153 | 20, 22 | jca 511 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑆 < (𝐷‘𝐾) ∧ 𝑆 < 𝐵)) | 
| 154 |  | ltmin 13236 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑆 ∈ ℝ ∧ (𝐷‘𝐾) ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑆 < if((𝐷‘𝐾) ≤ 𝐵, (𝐷‘𝐾), 𝐵) ↔ (𝑆 < (𝐷‘𝐾) ∧ 𝑆 < 𝐵))) | 
| 155 | 16, 7, 2, 154 | syl3anc 1373 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → (𝑆 < if((𝐷‘𝐾) ≤ 𝐵, (𝐷‘𝐾), 𝐵) ↔ (𝑆 < (𝐷‘𝐾) ∧ 𝑆 < 𝐵))) | 
| 156 | 153, 155 | mpbird 257 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑆 < if((𝐷‘𝐾) ≤ 𝐵, (𝐷‘𝐾), 𝐵)) | 
| 157 | 156, 29 | breqtrd 5169 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑆 < 𝑀) | 
| 158 | 157 | ad2antrr 726 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑆) → 𝑆 < 𝑀) | 
| 159 | 149, 151,
150, 152, 158 | lelttrd 11419 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑆) → (𝐷‘𝑗) < 𝑀) | 
| 160 | 149, 150,
159 | ltled 11409 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑆) → (𝐷‘𝑗) ≤ 𝑀) | 
| 161 | 148, 160 | jca 511 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑆) → ((𝐷‘𝑗) ≤ (𝐷‘𝑗) ∧ (𝐷‘𝑗) ≤ 𝑀)) | 
| 162 |  | lemin 13234 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐷‘𝑗) ∈ ℝ ∧ (𝐷‘𝑗) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((𝐷‘𝑗) ≤ if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀) ↔ ((𝐷‘𝑗) ≤ (𝐷‘𝑗) ∧ (𝐷‘𝑗) ≤ 𝑀))) | 
| 163 | 149, 149,
150, 162 | syl3anc 1373 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑆) → ((𝐷‘𝑗) ≤ if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀) ↔ ((𝐷‘𝑗) ≤ (𝐷‘𝑗) ∧ (𝐷‘𝑗) ≤ 𝑀))) | 
| 164 | 161, 163 | mpbird 257 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑆) → (𝐷‘𝑗) ≤ if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)) | 
| 165 | 146, 164 | eqbrtrd 5165 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ (𝐷‘𝑗) ≤ 𝑆) → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ≤ if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)) | 
| 166 |  | iffalse 4534 | . . . . . . . . . . . . . . . 16
⊢ (¬
(𝐷‘𝑗) ≤ 𝑆 → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) = 𝑆) | 
| 167 | 166 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑆) → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) = 𝑆) | 
| 168 | 49 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑆) → 𝑆 ∈ ℝ) | 
| 169 | 84 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑆) → if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀) ∈ ℝ) | 
| 170 |  | simpr 484 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑆) → ¬ (𝐷‘𝑗) ≤ 𝑆) | 
| 171 | 48 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑆) → (𝐷‘𝑗) ∈ ℝ) | 
| 172 | 168, 171 | ltnled 11408 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑆) → (𝑆 < (𝐷‘𝑗) ↔ ¬ (𝐷‘𝑗) ≤ 𝑆)) | 
| 173 | 170, 172 | mpbird 257 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑆) → 𝑆 < (𝐷‘𝑗)) | 
| 174 | 157 | ad2antrr 726 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑆) → 𝑆 < 𝑀) | 
| 175 | 173, 174 | jca 511 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑆) → (𝑆 < (𝐷‘𝑗) ∧ 𝑆 < 𝑀)) | 
| 176 | 83 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑆) → 𝑀 ∈ ℝ) | 
| 177 |  | ltmin 13236 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑆 ∈ ℝ ∧ (𝐷‘𝑗) ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑆 < if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀) ↔ (𝑆 < (𝐷‘𝑗) ∧ 𝑆 < 𝑀))) | 
| 178 | 168, 171,
176, 177 | syl3anc 1373 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑆) → (𝑆 < if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀) ↔ (𝑆 < (𝐷‘𝑗) ∧ 𝑆 < 𝑀))) | 
| 179 | 175, 178 | mpbird 257 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑆) → 𝑆 < if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)) | 
| 180 | 168, 169,
179 | ltled 11409 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑆) → 𝑆 ≤ if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)) | 
| 181 | 167, 180 | eqbrtrd 5165 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ ¬ (𝐷‘𝑗) ≤ 𝑆) → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ≤ if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)) | 
| 182 | 165, 181 | pm2.61dan 813 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ≤ if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)) | 
| 183 | 128, 182 | syldan 591 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {𝐾})) → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ≤ if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)) | 
| 184 |  | icossico 13457 | . . . . . . . . . . . 12
⊢ ((((𝐶‘𝑗) ∈ ℝ* ∧ if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀) ∈ ℝ*) ∧ ((𝐶‘𝑗) ≤ (𝐶‘𝑗) ∧ if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) ≤ if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) ⊆ ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))) | 
| 185 | 143, 130,
144, 183, 184 | syl22anc 839 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {𝐾})) → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) ⊆ ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))) | 
| 186 |  | volss 25568 | . . . . . . . . . . 11
⊢ ((((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) ∈ dom vol ∧ ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)) ∈ dom vol ∧ ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) ⊆ ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))) ≤ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)))) | 
| 187 | 142, 131,
185, 186 | syl3anc 1373 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (ℕ ∖ {𝐾})) → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))) ≤ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)))) | 
| 188 | 62, 124, 141, 132, 187 | sge0lempt 46425 | . . . . . . . . 9
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) ≤
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)))))) | 
| 189 | 121, 139,
140, 188 | leadd2dd 11878 | . . . . . . . 8
⊢ (𝜑 → ((𝑀 − (𝐶‘𝐾)) +
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))))) ≤ ((𝑀 − (𝐶‘𝐾)) +
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))))) | 
| 190 |  | difsnid 4810 | . . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ ℕ → ((ℕ
∖ {𝐾}) ∪ {𝐾}) = ℕ) | 
| 191 | 6, 190 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → ((ℕ ∖ {𝐾}) ∪ {𝐾}) = ℕ) | 
| 192 | 191 | eqcomd 2743 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ℕ = ((ℕ
∖ {𝐾}) ∪ {𝐾})) | 
| 193 | 192 | mpteq1d 5237 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))) = (𝑗 ∈ ((ℕ ∖ {𝐾}) ∪ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) | 
| 194 | 193 | fveq2d 6910 | . . . . . . . . . . . 12
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) =
(Σ^‘(𝑗 ∈ ((ℕ ∖ {𝐾}) ∪ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))))) | 
| 195 |  | neldifsnd 4793 | . . . . . . . . . . . . 13
⊢ (𝜑 → ¬ 𝐾 ∈ (ℕ ∖ {𝐾})) | 
| 196 |  | fveq2 6906 | . . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝐾 → (𝐶‘𝑗) = (𝐶‘𝐾)) | 
| 197 |  | fveq2 6906 | . . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝐾 → (𝐷‘𝑗) = (𝐷‘𝐾)) | 
| 198 | 197 | breq1d 5153 | . . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝐾 → ((𝐷‘𝑗) ≤ 𝑆 ↔ (𝐷‘𝐾) ≤ 𝑆)) | 
| 199 | 198, 197 | ifbieq1d 4550 | . . . . . . . . . . . . . . 15
⊢ (𝑗 = 𝐾 → if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆) = if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆)) | 
| 200 | 196, 199 | oveq12d 7449 | . . . . . . . . . . . . . 14
⊢ (𝑗 = 𝐾 → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)) = ((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆))) | 
| 201 | 200 | fveq2d 6910 | . . . . . . . . . . . . 13
⊢ (𝑗 = 𝐾 → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))) = (vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆)))) | 
| 202 | 45 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (𝜑 → vol:dom
vol⟶(0[,]+∞)) | 
| 203 | 7, 16 | ifcld 4572 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆) ∈ ℝ) | 
| 204 | 203 | rexrd 11311 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆) ∈
ℝ*) | 
| 205 |  | icombl 25599 | . . . . . . . . . . . . . . 15
⊢ (((𝐶‘𝐾) ∈ ℝ ∧ if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆) ∈ ℝ*) → ((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆)) ∈ dom vol) | 
| 206 | 11, 204, 205 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆)) ∈ dom vol) | 
| 207 | 202, 206 | ffvelcdmd 7105 | . . . . . . . . . . . . 13
⊢ (𝜑 → (vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆))) ∈ (0[,]+∞)) | 
| 208 | 62, 124, 6, 195, 141, 201, 207 | sge0splitsn 46456 | . . . . . . . . . . . 12
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ((ℕ ∖ {𝐾}) ∪ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) =
((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) +𝑒
(vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆))))) | 
| 209 |  | volicore 46596 | . . . . . . . . . . . . . . 15
⊢ (((𝐶‘𝐾) ∈ ℝ ∧ if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆) ∈ ℝ) → (vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆))) ∈ ℝ) | 
| 210 | 11, 203, 209 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆))) ∈ ℝ) | 
| 211 |  | rexadd 13274 | . . . . . . . . . . . . . 14
⊢
(((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) ∈ ℝ ∧
(vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆))) ∈ ℝ) →
((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) +𝑒
(vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆)))) =
((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) + (vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆))))) | 
| 212 | 121, 210,
211 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) +𝑒
(vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆)))) =
((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) + (vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆))))) | 
| 213 |  | volico 45998 | . . . . . . . . . . . . . . . 16
⊢ (((𝐶‘𝐾) ∈ ℝ ∧ if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆) ∈ ℝ) → (vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆))) = if((𝐶‘𝐾) < if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆), (if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆) − (𝐶‘𝐾)), 0)) | 
| 214 | 11, 203, 213 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆))) = if((𝐶‘𝐾) < if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆), (if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆) − (𝐶‘𝐾)), 0)) | 
| 215 | 16, 7 | ltnled 11408 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑆 < (𝐷‘𝐾) ↔ ¬ (𝐷‘𝐾) ≤ 𝑆)) | 
| 216 | 20, 215 | mpbid 232 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → ¬ (𝐷‘𝐾) ≤ 𝑆) | 
| 217 | 216 | iffalsed 4536 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆) = 𝑆) | 
| 218 | 217 | breq2d 5155 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐶‘𝐾) < if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆) ↔ (𝐶‘𝐾) < 𝑆)) | 
| 219 | 218 | ifbid 4549 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → if((𝐶‘𝐾) < if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆), (if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆) − (𝐶‘𝐾)), 0) = if((𝐶‘𝐾) < 𝑆, (if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆) − (𝐶‘𝐾)), 0)) | 
| 220 | 217 | oveq1d 7446 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆) − (𝐶‘𝐾)) = (𝑆 − (𝐶‘𝐾))) | 
| 221 | 220 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝐶‘𝐾) < 𝑆) → (if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆) − (𝐶‘𝐾)) = (𝑆 − (𝐶‘𝐾))) | 
| 222 | 217, 204 | eqeltrrd 2842 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑆 ∈
ℝ*) | 
| 223 | 222 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ¬ (𝐶‘𝐾) < 𝑆) → 𝑆 ∈
ℝ*) | 
| 224 | 18 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ¬ (𝐶‘𝐾) < 𝑆) → (𝐶‘𝐾) ∈
ℝ*) | 
| 225 |  | simpr 484 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ¬ (𝐶‘𝐾) < 𝑆) → ¬ (𝐶‘𝐾) < 𝑆) | 
| 226 | 16 | adantr 480 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ ¬ (𝐶‘𝐾) < 𝑆) → 𝑆 ∈ ℝ) | 
| 227 | 11 | adantr 480 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ ¬ (𝐶‘𝐾) < 𝑆) → (𝐶‘𝐾) ∈ ℝ) | 
| 228 | 226, 227 | lenltd 11407 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ ¬ (𝐶‘𝐾) < 𝑆) → (𝑆 ≤ (𝐶‘𝐾) ↔ ¬ (𝐶‘𝐾) < 𝑆)) | 
| 229 | 225, 228 | mpbird 257 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ¬ (𝐶‘𝐾) < 𝑆) → 𝑆 ≤ (𝐶‘𝐾)) | 
| 230 |  | icogelb 13438 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐶‘𝐾) ∈ ℝ* ∧ (𝐷‘𝐾) ∈ ℝ* ∧ 𝑆 ∈ ((𝐶‘𝐾)[,)(𝐷‘𝐾))) → (𝐶‘𝐾) ≤ 𝑆) | 
| 231 | 18, 12, 15, 230 | syl3anc 1373 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝐶‘𝐾) ≤ 𝑆) | 
| 232 | 231 | adantr 480 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ ¬ (𝐶‘𝐾) < 𝑆) → (𝐶‘𝐾) ≤ 𝑆) | 
| 233 | 223, 224,
229, 232 | xrletrid 13197 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ¬ (𝐶‘𝐾) < 𝑆) → 𝑆 = (𝐶‘𝐾)) | 
| 234 | 233 | oveq1d 7446 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ (𝐶‘𝐾) < 𝑆) → (𝑆 − (𝐶‘𝐾)) = ((𝐶‘𝐾) − (𝐶‘𝐾))) | 
| 235 | 227 | recnd 11289 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ¬ (𝐶‘𝐾) < 𝑆) → (𝐶‘𝐾) ∈ ℂ) | 
| 236 | 235 | subidd 11608 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ (𝐶‘𝐾) < 𝑆) → ((𝐶‘𝐾) − (𝐶‘𝐾)) = 0) | 
| 237 | 234, 236 | eqtr2d 2778 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ (𝐶‘𝐾) < 𝑆) → 0 = (𝑆 − (𝐶‘𝐾))) | 
| 238 | 221, 237 | ifeqda 4562 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → if((𝐶‘𝐾) < 𝑆, (if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆) − (𝐶‘𝐾)), 0) = (𝑆 − (𝐶‘𝐾))) | 
| 239 | 214, 219,
238 | 3eqtrd 2781 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆))) = (𝑆 − (𝐶‘𝐾))) | 
| 240 | 239 | oveq2d 7447 | . . . . . . . . . . . . 13
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) + (vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆)))) =
((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) + (𝑆 − (𝐶‘𝐾)))) | 
| 241 | 121 | recnd 11289 | . . . . . . . . . . . . . 14
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) ∈ ℂ) | 
| 242 | 11 | recnd 11289 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐶‘𝐾) ∈ ℂ) | 
| 243 | 36, 242 | subcld 11620 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑆 − (𝐶‘𝐾)) ∈ ℂ) | 
| 244 | 241, 243 | addcomd 11463 | . . . . . . . . . . . . 13
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) + (𝑆 − (𝐶‘𝐾))) = ((𝑆 − (𝐶‘𝐾)) +
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))))) | 
| 245 | 212, 240,
244 | 3eqtrd 2781 | . . . . . . . . . . . 12
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) +𝑒
(vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑆, (𝐷‘𝐾), 𝑆)))) = ((𝑆 − (𝐶‘𝐾)) +
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))))) | 
| 246 | 194, 208,
245 | 3eqtrd 2781 | . . . . . . . . . . 11
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))) = ((𝑆 − (𝐶‘𝐾)) +
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))))) | 
| 247 | 246 | oveq2d 7447 | . . . . . . . . . 10
⊢ (𝜑 → ((𝑀 − 𝑆) +
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))))) = ((𝑀 − 𝑆) + ((𝑆 − (𝐶‘𝐾)) +
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))))))) | 
| 248 | 40 | recnd 11289 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑀 − 𝑆) ∈ ℂ) | 
| 249 | 248, 243,
241 | addassd 11283 | . . . . . . . . . . 11
⊢ (𝜑 → (((𝑀 − 𝑆) + (𝑆 − (𝐶‘𝐾))) +
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))))) = ((𝑀 − 𝑆) + ((𝑆 − (𝐶‘𝐾)) +
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))))))) | 
| 250 | 249 | eqcomd 2743 | . . . . . . . . . 10
⊢ (𝜑 → ((𝑀 − 𝑆) + ((𝑆 − (𝐶‘𝐾)) +
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))))) = (((𝑀 − 𝑆) + (𝑆 − (𝐶‘𝐾))) +
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))))) | 
| 251 | 35, 36, 242 | npncand 11644 | . . . . . . . . . . 11
⊢ (𝜑 → ((𝑀 − 𝑆) + (𝑆 − (𝐶‘𝐾))) = (𝑀 − (𝐶‘𝐾))) | 
| 252 | 251 | oveq1d 7446 | . . . . . . . . . 10
⊢ (𝜑 → (((𝑀 − 𝑆) + (𝑆 − (𝐶‘𝐾))) +
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))))) = ((𝑀 − (𝐶‘𝐾)) +
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))))) | 
| 253 | 247, 250,
252 | 3eqtrd 2781 | . . . . . . . . 9
⊢ (𝜑 → ((𝑀 − 𝑆) +
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))))) = ((𝑀 − (𝐶‘𝐾)) +
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆))))))) | 
| 254 | 192 | mpteq1d 5237 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)))) = (𝑗 ∈ ((ℕ ∖ {𝐾}) ∪ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) | 
| 255 | 254 | fveq2d 6910 | . . . . . . . . . 10
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) =
(Σ^‘(𝑗 ∈ ((ℕ ∖ {𝐾}) ∪ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)))))) | 
| 256 | 197 | breq1d 5153 | . . . . . . . . . . . . . 14
⊢ (𝑗 = 𝐾 → ((𝐷‘𝑗) ≤ 𝑀 ↔ (𝐷‘𝐾) ≤ 𝑀)) | 
| 257 | 256, 197 | ifbieq1d 4550 | . . . . . . . . . . . . 13
⊢ (𝑗 = 𝐾 → if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀) = if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀)) | 
| 258 | 196, 257 | oveq12d 7449 | . . . . . . . . . . . 12
⊢ (𝑗 = 𝐾 → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)) = ((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀))) | 
| 259 | 258 | fveq2d 6910 | . . . . . . . . . . 11
⊢ (𝑗 = 𝐾 → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))) = (vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀)))) | 
| 260 | 7, 9 | ifcld 4572 | . . . . . . . . . . . . . 14
⊢ (𝜑 → if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀) ∈ ℝ) | 
| 261 | 260 | rexrd 11311 | . . . . . . . . . . . . 13
⊢ (𝜑 → if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀) ∈
ℝ*) | 
| 262 |  | icombl 25599 | . . . . . . . . . . . . 13
⊢ (((𝐶‘𝐾) ∈ ℝ ∧ if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀) ∈ ℝ*) → ((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀)) ∈ dom vol) | 
| 263 | 11, 261, 262 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (𝜑 → ((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀)) ∈ dom vol) | 
| 264 | 202, 263 | ffvelcdmd 7105 | . . . . . . . . . . 11
⊢ (𝜑 → (vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀))) ∈ (0[,]+∞)) | 
| 265 | 62, 124, 6, 195, 132, 259, 264 | sge0splitsn 46456 | . . . . . . . . . 10
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ((ℕ ∖ {𝐾}) ∪ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) =
((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) +𝑒
(vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀))))) | 
| 266 |  | volicore 46596 | . . . . . . . . . . . . 13
⊢ (((𝐶‘𝐾) ∈ ℝ ∧ if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀) ∈ ℝ) → (vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀))) ∈ ℝ) | 
| 267 | 11, 260, 266 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (𝜑 → (vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀))) ∈ ℝ) | 
| 268 |  | rexadd 13274 | . . . . . . . . . . . 12
⊢
(((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) ∈ ℝ ∧
(vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀))) ∈ ℝ) →
((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) +𝑒
(vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀)))) =
((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) + (vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀))))) | 
| 269 | 139, 267,
268 | syl2anc 584 | . . . . . . . . . . 11
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) +𝑒
(vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀)))) =
((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) + (vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀))))) | 
| 270 |  | volico 45998 | . . . . . . . . . . . . . 14
⊢ (((𝐶‘𝐾) ∈ ℝ ∧ if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀) ∈ ℝ) → (vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀))) = if((𝐶‘𝐾) < if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀), (if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀) − (𝐶‘𝐾)), 0)) | 
| 271 | 11, 260, 270 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ (𝜑 → (vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀))) = if((𝐶‘𝐾) < if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀), (if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀) − (𝐶‘𝐾)), 0)) | 
| 272 | 20, 157 | jca 511 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑆 < (𝐷‘𝐾) ∧ 𝑆 < 𝑀)) | 
| 273 |  | ltmin 13236 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑆 ∈ ℝ ∧ (𝐷‘𝐾) ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑆 < if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀) ↔ (𝑆 < (𝐷‘𝐾) ∧ 𝑆 < 𝑀))) | 
| 274 | 16, 7, 9, 273 | syl3anc 1373 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑆 < if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀) ↔ (𝑆 < (𝐷‘𝐾) ∧ 𝑆 < 𝑀))) | 
| 275 | 272, 274 | mpbird 257 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑆 < if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀)) | 
| 276 | 11, 16, 260, 231, 275 | lelttrd 11419 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐶‘𝐾) < if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀)) | 
| 277 | 276 | iftrued 4533 | . . . . . . . . . . . . 13
⊢ (𝜑 → if((𝐶‘𝐾) < if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀), (if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀) − (𝐶‘𝐾)), 0) = (if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀) − (𝐶‘𝐾))) | 
| 278 |  | iftrue 4531 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐷‘𝐾) ≤ 𝑀 → if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀) = (𝐷‘𝐾)) | 
| 279 | 278 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝐷‘𝐾) ≤ 𝑀) → if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀) = (𝐷‘𝐾)) | 
| 280 | 12 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝐷‘𝐾) ≤ 𝑀) → (𝐷‘𝐾) ∈
ℝ*) | 
| 281 | 9 | rexrd 11311 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑀 ∈
ℝ*) | 
| 282 | 281 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝐷‘𝐾) ≤ 𝑀) → 𝑀 ∈
ℝ*) | 
| 283 |  | simpr 484 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝐷‘𝐾) ≤ 𝑀) → (𝐷‘𝐾) ≤ 𝑀) | 
| 284 |  | min1 13231 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐷‘𝐾) ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((𝐷‘𝐾) ≤ 𝐵, (𝐷‘𝐾), 𝐵) ≤ (𝐷‘𝐾)) | 
| 285 | 7, 2, 284 | syl2anc 584 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → if((𝐷‘𝐾) ≤ 𝐵, (𝐷‘𝐾), 𝐵) ≤ (𝐷‘𝐾)) | 
| 286 | 4, 285 | eqbrtrd 5165 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑀 ≤ (𝐷‘𝐾)) | 
| 287 | 286 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝐷‘𝐾) ≤ 𝑀) → 𝑀 ≤ (𝐷‘𝐾)) | 
| 288 | 280, 282,
283, 287 | xrletrid 13197 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝐷‘𝐾) ≤ 𝑀) → (𝐷‘𝐾) = 𝑀) | 
| 289 | 279, 288 | eqtrd 2777 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝐷‘𝐾) ≤ 𝑀) → if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀) = 𝑀) | 
| 290 |  | simpr 484 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ ¬ (𝐷‘𝐾) ≤ 𝑀) → ¬ (𝐷‘𝐾) ≤ 𝑀) | 
| 291 | 290 | iffalsed 4536 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ¬ (𝐷‘𝐾) ≤ 𝑀) → if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀) = 𝑀) | 
| 292 | 289, 291 | pm2.61dan 813 | . . . . . . . . . . . . . 14
⊢ (𝜑 → if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀) = 𝑀) | 
| 293 | 292 | oveq1d 7446 | . . . . . . . . . . . . 13
⊢ (𝜑 → (if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀) − (𝐶‘𝐾)) = (𝑀 − (𝐶‘𝐾))) | 
| 294 | 271, 277,
293 | 3eqtrd 2781 | . . . . . . . . . . . 12
⊢ (𝜑 → (vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀))) = (𝑀 − (𝐶‘𝐾))) | 
| 295 | 294 | oveq2d 7447 | . . . . . . . . . . 11
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) + (vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀)))) =
((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) + (𝑀 − (𝐶‘𝐾)))) | 
| 296 | 139 | recnd 11289 | . . . . . . . . . . . 12
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) ∈ ℂ) | 
| 297 | 35, 242 | subcld 11620 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑀 − (𝐶‘𝐾)) ∈ ℂ) | 
| 298 | 296, 297 | addcomd 11463 | . . . . . . . . . . 11
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) + (𝑀 − (𝐶‘𝐾))) = ((𝑀 − (𝐶‘𝐾)) +
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))))) | 
| 299 | 269, 295,
298 | 3eqtrd 2781 | . . . . . . . . . 10
⊢ (𝜑 →
((Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) +𝑒
(vol‘((𝐶‘𝐾)[,)if((𝐷‘𝐾) ≤ 𝑀, (𝐷‘𝐾), 𝑀)))) = ((𝑀 − (𝐶‘𝐾)) +
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))))) | 
| 300 | 255, 265,
299 | 3eqtrd 2781 | . . . . . . . . 9
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) = ((𝑀 − (𝐶‘𝐾)) +
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))))) | 
| 301 | 253, 300 | breq12d 5156 | . . . . . . . 8
⊢ (𝜑 → (((𝑀 − 𝑆) +
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) ↔ ((𝑀 − (𝐶‘𝐾)) +
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))))) ≤ ((𝑀 − (𝐶‘𝐾)) +
(Σ^‘(𝑗 ∈ (ℕ ∖ {𝐾}) ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)))))))) | 
| 302 | 189, 301 | mpbird 257 | . . . . . . 7
⊢ (𝜑 → ((𝑀 − 𝑆) +
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑆, (𝐷‘𝑗), 𝑆)))))) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)))))) | 
| 303 | 42, 82, 103, 119, 302 | letrd 11418 | . . . . . 6
⊢ (𝜑 → ((𝑀 − 𝑆) + (𝑆 − 𝐴)) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)))))) | 
| 304 | 39, 303 | eqbrtrd 5165 | . . . . 5
⊢ (𝜑 → (𝑀 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)))))) | 
| 305 | 34, 304 | jca 511 | . . . 4
⊢ (𝜑 → (𝑀 ∈ (𝐴[,]𝐵) ∧ (𝑀 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))))) | 
| 306 |  | oveq1 7438 | . . . . . 6
⊢ (𝑧 = 𝑀 → (𝑧 − 𝐴) = (𝑀 − 𝐴)) | 
| 307 |  | breq2 5147 | . . . . . . . . . . 11
⊢ (𝑧 = 𝑀 → ((𝐷‘𝑗) ≤ 𝑧 ↔ (𝐷‘𝑗) ≤ 𝑀)) | 
| 308 |  | id 22 | . . . . . . . . . . 11
⊢ (𝑧 = 𝑀 → 𝑧 = 𝑀) | 
| 309 | 307, 308 | ifbieq2d 4552 | . . . . . . . . . 10
⊢ (𝑧 = 𝑀 → if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧) = if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)) | 
| 310 | 309 | oveq2d 7447 | . . . . . . . . 9
⊢ (𝑧 = 𝑀 → ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)) = ((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))) | 
| 311 | 310 | fveq2d 6910 | . . . . . . . 8
⊢ (𝑧 = 𝑀 → (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))) = (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)))) | 
| 312 | 311 | mpteq2dv 5244 | . . . . . . 7
⊢ (𝑧 = 𝑀 → (𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))) = (𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))) | 
| 313 | 312 | fveq2d 6910 | . . . . . 6
⊢ (𝑧 = 𝑀 →
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀)))))) | 
| 314 | 306, 313 | breq12d 5156 | . . . . 5
⊢ (𝑧 = 𝑀 → ((𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧))))) ↔ (𝑀 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))))) | 
| 315 | 314 | elrab 3692 | . . . 4
⊢ (𝑀 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))))} ↔ (𝑀 ∈ (𝐴[,]𝐵) ∧ (𝑀 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑀, (𝐷‘𝑗), 𝑀))))))) | 
| 316 | 305, 315 | sylibr 234 | . . 3
⊢ (𝜑 → 𝑀 ∈ {𝑧 ∈ (𝐴[,]𝐵) ∣ (𝑧 − 𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ (vol‘((𝐶‘𝑗)[,)if((𝐷‘𝑗) ≤ 𝑧, (𝐷‘𝑗), 𝑧)))))}) | 
| 317 | 316, 105 | eleqtrrdi 2852 | . 2
⊢ (𝜑 → 𝑀 ∈ 𝑈) | 
| 318 | 272 | simprd 495 | . 2
⊢ (𝜑 → 𝑆 < 𝑀) | 
| 319 |  | breq2 5147 | . . 3
⊢ (𝑢 = 𝑀 → (𝑆 < 𝑢 ↔ 𝑆 < 𝑀)) | 
| 320 | 319 | rspcev 3622 | . 2
⊢ ((𝑀 ∈ 𝑈 ∧ 𝑆 < 𝑀) → ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) | 
| 321 | 317, 318,
320 | syl2anc 584 | 1
⊢ (𝜑 → ∃𝑢 ∈ 𝑈 𝑆 < 𝑢) |