MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummgp0 Structured version   Visualization version   GIF version

Theorem gsummgp0 19419
Description: If one factor in a finite group sum of the multiplicative group of a commutative ring is 0, the whole "sum" (i.e. product) is 0. (Contributed by AV, 3-Jan-2019.)
Hypotheses
Ref Expression
gsummgp0.g 𝐺 = (mulGrp‘𝑅)
gsummgp0.0 0 = (0g𝑅)
gsummgp0.r (𝜑𝑅 ∈ CRing)
gsummgp0.n (𝜑𝑁 ∈ Fin)
gsummgp0.a ((𝜑𝑛𝑁) → 𝐴 ∈ (Base‘𝑅))
gsummgp0.e ((𝜑𝑛 = 𝑖) → 𝐴 = 𝐵)
gsummgp0.b (𝜑 → ∃𝑖𝑁 𝐵 = 0 )
Assertion
Ref Expression
gsummgp0 (𝜑 → (𝐺 Σg (𝑛𝑁𝐴)) = 0 )
Distinct variable groups:   𝐴,𝑖   𝐵,𝑛   𝑖,𝑛,𝐺   𝑖,𝑁,𝑛   𝑅,𝑛   𝜑,𝑖,𝑛   0 ,𝑖,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑖)   𝑅(𝑖)

Proof of Theorem gsummgp0
StepHypRef Expression
1 gsummgp0.b . 2 (𝜑 → ∃𝑖𝑁 𝐵 = 0 )
2 difsnid 4698 . . . . . . 7 (𝑖𝑁 → ((𝑁 ∖ {𝑖}) ∪ {𝑖}) = 𝑁)
32eqcomd 2765 . . . . . 6 (𝑖𝑁𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖}))
43ad2antrl 728 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖}))
54mpteq1d 5119 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝑛𝑁𝐴) = (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴))
65oveq2d 7164 . . 3 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝐺 Σg (𝑛𝑁𝐴)) = (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴)))
7 gsummgp0.g . . . . 5 𝐺 = (mulGrp‘𝑅)
8 eqid 2759 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
97, 8mgpbas 19303 . . . 4 (Base‘𝑅) = (Base‘𝐺)
10 eqid 2759 . . . . 5 (.r𝑅) = (.r𝑅)
117, 10mgpplusg 19301 . . . 4 (.r𝑅) = (+g𝐺)
12 gsummgp0.r . . . . . 6 (𝜑𝑅 ∈ CRing)
137crngmgp 19363 . . . . . 6 (𝑅 ∈ CRing → 𝐺 ∈ CMnd)
1412, 13syl 17 . . . . 5 (𝜑𝐺 ∈ CMnd)
1514adantr 485 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝐺 ∈ CMnd)
16 gsummgp0.n . . . . . 6 (𝜑𝑁 ∈ Fin)
17 diffi 8769 . . . . . 6 (𝑁 ∈ Fin → (𝑁 ∖ {𝑖}) ∈ Fin)
1816, 17syl 17 . . . . 5 (𝜑 → (𝑁 ∖ {𝑖}) ∈ Fin)
1918adantr 485 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝑁 ∖ {𝑖}) ∈ Fin)
20 simpl 487 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝜑)
21 eldifi 4033 . . . . 5 (𝑛 ∈ (𝑁 ∖ {𝑖}) → 𝑛𝑁)
22 gsummgp0.a . . . . 5 ((𝜑𝑛𝑁) → 𝐴 ∈ (Base‘𝑅))
2320, 21, 22syl2an 599 . . . 4 (((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) ∧ 𝑛 ∈ (𝑁 ∖ {𝑖})) → 𝐴 ∈ (Base‘𝑅))
24 simprl 771 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝑖𝑁)
25 neldifsnd 4681 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → ¬ 𝑖 ∈ (𝑁 ∖ {𝑖}))
26 crngring 19367 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2712, 26syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
28 ringmnd 19365 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
29 gsummgp0.0 . . . . . . . 8 0 = (0g𝑅)
308, 29mndidcl 17982 . . . . . . 7 (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅))
3127, 28, 303syl 18 . . . . . 6 (𝜑0 ∈ (Base‘𝑅))
3231adantr 485 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 0 ∈ (Base‘𝑅))
33 eleq1 2840 . . . . . 6 (𝐵 = 0 → (𝐵 ∈ (Base‘𝑅) ↔ 0 ∈ (Base‘𝑅)))
3433ad2antll 729 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝐵 ∈ (Base‘𝑅) ↔ 0 ∈ (Base‘𝑅)))
3532, 34mpbird 260 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝐵 ∈ (Base‘𝑅))
36 gsummgp0.e . . . . 5 ((𝜑𝑛 = 𝑖) → 𝐴 = 𝐵)
3736adantlr 715 . . . 4 (((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) ∧ 𝑛 = 𝑖) → 𝐴 = 𝐵)
389, 11, 15, 19, 23, 24, 25, 35, 37gsumunsnd 19136 . . 3 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴)) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅)𝐵))
39 oveq2 7156 . . . . 5 (𝐵 = 0 → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅)𝐵) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅) 0 ))
4039ad2antll 729 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅)𝐵) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅) 0 ))
4121, 22sylan2 596 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑁 ∖ {𝑖})) → 𝐴 ∈ (Base‘𝑅))
4241ralrimiva 3114 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (𝑁 ∖ {𝑖})𝐴 ∈ (Base‘𝑅))
439, 14, 18, 42gsummptcl 19145 . . . . . 6 (𝜑 → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅))
4443adantr 485 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅))
458, 10, 29ringrz 19399 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅) 0 ) = 0 )
4627, 44, 45syl2an2r 685 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅) 0 ) = 0 )
4740, 46eqtrd 2794 . . 3 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅)𝐵) = 0 )
486, 38, 473eqtrd 2798 . 2 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝐺 Σg (𝑛𝑁𝐴)) = 0 )
491, 48rexlimddv 3216 1 (𝜑 → (𝐺 Σg (𝑛𝑁𝐴)) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  wrex 3072  cdif 3856  cun 3857  {csn 4520  cmpt 5110  cfv 6333  (class class class)co 7148  Fincfn 8525  Basecbs 16531  .rcmulr 16614  0gc0g 16761   Σg cgsu 16762  Mndcmnd 17967  CMndccmn 18963  mulGrpcmgp 19297  Ringcrg 19355  CRingccrg 19356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-cnex 10621  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-se 5482  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7403  df-om 7578  df-1st 7691  df-2nd 7692  df-supp 7834  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-1o 8110  df-oadd 8114  df-er 8297  df-en 8526  df-dom 8527  df-sdom 8528  df-fin 8529  df-fsupp 8857  df-oi 8997  df-card 9391  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901  df-nn 11665  df-2 11727  df-n0 11925  df-z 12011  df-uz 12273  df-fz 12930  df-fzo 13073  df-seq 13409  df-hash 13731  df-ndx 16534  df-slot 16535  df-base 16537  df-sets 16538  df-ress 16539  df-plusg 16626  df-0g 16763  df-gsum 16764  df-mre 16905  df-mrc 16906  df-acs 16908  df-mgm 17908  df-sgrp 17957  df-mnd 17968  df-submnd 18013  df-grp 18162  df-mulg 18282  df-cntz 18504  df-cmn 18965  df-mgp 19298  df-ring 19357  df-cring 19358
This theorem is referenced by:  smadiadetlem0  21351
  Copyright terms: Public domain W3C validator