![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsummgp0 | Structured version Visualization version GIF version |
Description: If one factor in a finite group sum of the multiplicative group of a commutative ring is 0, the whole "sum" (i.e. product) is 0. (Contributed by AV, 3-Jan-2019.) |
Ref | Expression |
---|---|
gsummgp0.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
gsummgp0.0 | ⊢ 0 = (0g‘𝑅) |
gsummgp0.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
gsummgp0.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
gsummgp0.a | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) |
gsummgp0.e | ⊢ ((𝜑 ∧ 𝑛 = 𝑖) → 𝐴 = 𝐵) |
gsummgp0.b | ⊢ (𝜑 → ∃𝑖 ∈ 𝑁 𝐵 = 0 ) |
Ref | Expression |
---|---|
gsummgp0 | ⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ 𝐴)) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummgp0.b | . 2 ⊢ (𝜑 → ∃𝑖 ∈ 𝑁 𝐵 = 0 ) | |
2 | difsnid 4835 | . . . . . . 7 ⊢ (𝑖 ∈ 𝑁 → ((𝑁 ∖ {𝑖}) ∪ {𝑖}) = 𝑁) | |
3 | 2 | eqcomd 2746 | . . . . . 6 ⊢ (𝑖 ∈ 𝑁 → 𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖})) |
4 | 3 | ad2antrl 727 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖})) |
5 | 4 | mpteq1d 5261 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝑛 ∈ 𝑁 ↦ 𝐴) = (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴)) |
6 | 5 | oveq2d 7464 | . . 3 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ 𝐴)) = (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴))) |
7 | gsummgp0.g | . . . . 5 ⊢ 𝐺 = (mulGrp‘𝑅) | |
8 | eqid 2740 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
9 | 7, 8 | mgpbas 20167 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝐺) |
10 | eqid 2740 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
11 | 7, 10 | mgpplusg 20165 | . . . 4 ⊢ (.r‘𝑅) = (+g‘𝐺) |
12 | gsummgp0.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
13 | 7 | crngmgp 20268 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
15 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝐺 ∈ CMnd) |
16 | gsummgp0.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
17 | diffi 9242 | . . . . . 6 ⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝑖}) ∈ Fin) | |
18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑁 ∖ {𝑖}) ∈ Fin) |
19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝑁 ∖ {𝑖}) ∈ Fin) |
20 | simpl 482 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝜑) | |
21 | eldifi 4154 | . . . . 5 ⊢ (𝑛 ∈ (𝑁 ∖ {𝑖}) → 𝑛 ∈ 𝑁) | |
22 | gsummgp0.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) | |
23 | 20, 21, 22 | syl2an 595 | . . . 4 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) ∧ 𝑛 ∈ (𝑁 ∖ {𝑖})) → 𝐴 ∈ (Base‘𝑅)) |
24 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝑖 ∈ 𝑁) | |
25 | neldifsnd 4818 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → ¬ 𝑖 ∈ (𝑁 ∖ {𝑖})) | |
26 | crngring 20272 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
27 | 12, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) |
28 | ringmnd 20270 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | |
29 | gsummgp0.0 | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
30 | 8, 29 | mndidcl 18787 | . . . . . . 7 ⊢ (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅)) |
31 | 27, 28, 30 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 0 ∈ (Base‘𝑅)) |
32 | 31 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 0 ∈ (Base‘𝑅)) |
33 | eleq1 2832 | . . . . . 6 ⊢ (𝐵 = 0 → (𝐵 ∈ (Base‘𝑅) ↔ 0 ∈ (Base‘𝑅))) | |
34 | 33 | ad2antll 728 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝐵 ∈ (Base‘𝑅) ↔ 0 ∈ (Base‘𝑅))) |
35 | 32, 34 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝐵 ∈ (Base‘𝑅)) |
36 | gsummgp0.e | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 = 𝑖) → 𝐴 = 𝐵) | |
37 | 36 | adantlr 714 | . . . 4 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) ∧ 𝑛 = 𝑖) → 𝐴 = 𝐵) |
38 | 9, 11, 15, 19, 23, 24, 25, 35, 37 | gsumunsnd 20000 | . . 3 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴)) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅)𝐵)) |
39 | oveq2 7456 | . . . . 5 ⊢ (𝐵 = 0 → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅)𝐵) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅) 0 )) | |
40 | 39 | ad2antll 728 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅)𝐵) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅) 0 )) |
41 | 21, 22 | sylan2 592 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑁 ∖ {𝑖})) → 𝐴 ∈ (Base‘𝑅)) |
42 | 41 | ralrimiva 3152 | . . . . . . 7 ⊢ (𝜑 → ∀𝑛 ∈ (𝑁 ∖ {𝑖})𝐴 ∈ (Base‘𝑅)) |
43 | 9, 14, 18, 42 | gsummptcl 20009 | . . . . . 6 ⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅)) |
44 | 43 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅)) |
45 | 8, 10, 29 | ringrz 20317 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅) 0 ) = 0 ) |
46 | 27, 44, 45 | syl2an2r 684 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅) 0 ) = 0 ) |
47 | 40, 46 | eqtrd 2780 | . . 3 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅)𝐵) = 0 ) |
48 | 6, 38, 47 | 3eqtrd 2784 | . 2 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ 𝐴)) = 0 ) |
49 | 1, 48 | rexlimddv 3167 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ 𝐴)) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ∖ cdif 3973 ∪ cun 3974 {csn 4648 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 Basecbs 17258 .rcmulr 17312 0gc0g 17499 Σg cgsu 17500 Mndcmnd 18772 CMndccmn 19822 mulGrpcmgp 20161 Ringcrg 20260 CRingccrg 20261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-gsum 17502 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 |
This theorem is referenced by: smadiadetlem0 22688 |
Copyright terms: Public domain | W3C validator |