Proof of Theorem gsummgp0
Step | Hyp | Ref
| Expression |
1 | | gsummgp0.b |
. 2
⊢ (𝜑 → ∃𝑖 ∈ 𝑁 𝐵 = 0 ) |
2 | | difsnid 4698 |
. . . . . . 7
⊢ (𝑖 ∈ 𝑁 → ((𝑁 ∖ {𝑖}) ∪ {𝑖}) = 𝑁) |
3 | 2 | eqcomd 2765 |
. . . . . 6
⊢ (𝑖 ∈ 𝑁 → 𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖})) |
4 | 3 | ad2antrl 728 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖})) |
5 | 4 | mpteq1d 5119 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝑛 ∈ 𝑁 ↦ 𝐴) = (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴)) |
6 | 5 | oveq2d 7164 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝐺 Σg
(𝑛 ∈ 𝑁 ↦ 𝐴)) = (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴))) |
7 | | gsummgp0.g |
. . . . 5
⊢ 𝐺 = (mulGrp‘𝑅) |
8 | | eqid 2759 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
9 | 7, 8 | mgpbas 19303 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘𝐺) |
10 | | eqid 2759 |
. . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) |
11 | 7, 10 | mgpplusg 19301 |
. . . 4
⊢
(.r‘𝑅) = (+g‘𝐺) |
12 | | gsummgp0.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ CRing) |
13 | 7 | crngmgp 19363 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
14 | 12, 13 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ CMnd) |
15 | 14 | adantr 485 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝐺 ∈ CMnd) |
16 | | gsummgp0.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ Fin) |
17 | | diffi 8769 |
. . . . . 6
⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝑖}) ∈ Fin) |
18 | 16, 17 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑁 ∖ {𝑖}) ∈ Fin) |
19 | 18 | adantr 485 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝑁 ∖ {𝑖}) ∈ Fin) |
20 | | simpl 487 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝜑) |
21 | | eldifi 4033 |
. . . . 5
⊢ (𝑛 ∈ (𝑁 ∖ {𝑖}) → 𝑛 ∈ 𝑁) |
22 | | gsummgp0.a |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) |
23 | 20, 21, 22 | syl2an 599 |
. . . 4
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) ∧ 𝑛 ∈ (𝑁 ∖ {𝑖})) → 𝐴 ∈ (Base‘𝑅)) |
24 | | simprl 771 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝑖 ∈ 𝑁) |
25 | | neldifsnd 4681 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → ¬ 𝑖 ∈ (𝑁 ∖ {𝑖})) |
26 | | crngring 19367 |
. . . . . . . 8
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
27 | 12, 26 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
28 | | ringmnd 19365 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
29 | | gsummgp0.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑅) |
30 | 8, 29 | mndidcl 17982 |
. . . . . . 7
⊢ (𝑅 ∈ Mnd → 0 ∈
(Base‘𝑅)) |
31 | 27, 28, 30 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → 0 ∈ (Base‘𝑅)) |
32 | 31 | adantr 485 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 0 ∈
(Base‘𝑅)) |
33 | | eleq1 2840 |
. . . . . 6
⊢ (𝐵 = 0 → (𝐵 ∈ (Base‘𝑅) ↔ 0 ∈ (Base‘𝑅))) |
34 | 33 | ad2antll 729 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝐵 ∈ (Base‘𝑅) ↔ 0 ∈ (Base‘𝑅))) |
35 | 32, 34 | mpbird 260 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝐵 ∈ (Base‘𝑅)) |
36 | | gsummgp0.e |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 = 𝑖) → 𝐴 = 𝐵) |
37 | 36 | adantlr 715 |
. . . 4
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) ∧ 𝑛 = 𝑖) → 𝐴 = 𝐵) |
38 | 9, 11, 15, 19, 23, 24, 25, 35, 37 | gsumunsnd 19136 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝐺 Σg
(𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴)) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅)𝐵)) |
39 | | oveq2 7156 |
. . . . 5
⊢ (𝐵 = 0 → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅)𝐵) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅) 0 )) |
40 | 39 | ad2antll 729 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → ((𝐺 Σg
(𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅)𝐵) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅) 0 )) |
41 | 21, 22 | sylan2 596 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑁 ∖ {𝑖})) → 𝐴 ∈ (Base‘𝑅)) |
42 | 41 | ralrimiva 3114 |
. . . . . . 7
⊢ (𝜑 → ∀𝑛 ∈ (𝑁 ∖ {𝑖})𝐴 ∈ (Base‘𝑅)) |
43 | 9, 14, 18, 42 | gsummptcl 19145 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅)) |
44 | 43 | adantr 485 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝐺 Σg
(𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅)) |
45 | 8, 10, 29 | ringrz 19399 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝐺 Σg
(𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅) 0 ) = 0 ) |
46 | 27, 44, 45 | syl2an2r 685 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → ((𝐺 Σg
(𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅) 0 ) = 0 ) |
47 | 40, 46 | eqtrd 2794 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → ((𝐺 Σg
(𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅)𝐵) = 0 ) |
48 | 6, 38, 47 | 3eqtrd 2798 |
. 2
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝐺 Σg
(𝑛 ∈ 𝑁 ↦ 𝐴)) = 0 ) |
49 | 1, 48 | rexlimddv 3216 |
1
⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ 𝐴)) = 0 ) |