| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummgp0 | Structured version Visualization version GIF version | ||
| Description: If one factor in a finite group sum of the multiplicative group of a commutative ring is 0, the whole "sum" (i.e. product) is 0. (Contributed by AV, 3-Jan-2019.) |
| Ref | Expression |
|---|---|
| gsummgp0.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| gsummgp0.0 | ⊢ 0 = (0g‘𝑅) |
| gsummgp0.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| gsummgp0.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
| gsummgp0.a | ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) |
| gsummgp0.e | ⊢ ((𝜑 ∧ 𝑛 = 𝑖) → 𝐴 = 𝐵) |
| gsummgp0.b | ⊢ (𝜑 → ∃𝑖 ∈ 𝑁 𝐵 = 0 ) |
| Ref | Expression |
|---|---|
| gsummgp0 | ⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ 𝐴)) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummgp0.b | . 2 ⊢ (𝜑 → ∃𝑖 ∈ 𝑁 𝐵 = 0 ) | |
| 2 | difsnid 4791 | . . . . . . 7 ⊢ (𝑖 ∈ 𝑁 → ((𝑁 ∖ {𝑖}) ∪ {𝑖}) = 𝑁) | |
| 3 | 2 | eqcomd 2742 | . . . . . 6 ⊢ (𝑖 ∈ 𝑁 → 𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖})) |
| 4 | 3 | ad2antrl 728 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖})) |
| 5 | 4 | mpteq1d 5215 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝑛 ∈ 𝑁 ↦ 𝐴) = (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴)) |
| 6 | 5 | oveq2d 7426 | . . 3 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ 𝐴)) = (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴))) |
| 7 | gsummgp0.g | . . . . 5 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 8 | eqid 2736 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 9 | 7, 8 | mgpbas 20110 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝐺) |
| 10 | eqid 2736 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 11 | 7, 10 | mgpplusg 20109 | . . . 4 ⊢ (.r‘𝑅) = (+g‘𝐺) |
| 12 | gsummgp0.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 13 | 7 | crngmgp 20206 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
| 14 | 12, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝐺 ∈ CMnd) |
| 16 | gsummgp0.n | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
| 17 | diffi 9194 | . . . . . 6 ⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝑖}) ∈ Fin) | |
| 18 | 16, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑁 ∖ {𝑖}) ∈ Fin) |
| 19 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝑁 ∖ {𝑖}) ∈ Fin) |
| 20 | simpl 482 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝜑) | |
| 21 | eldifi 4111 | . . . . 5 ⊢ (𝑛 ∈ (𝑁 ∖ {𝑖}) → 𝑛 ∈ 𝑁) | |
| 22 | gsummgp0.a | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) | |
| 23 | 20, 21, 22 | syl2an 596 | . . . 4 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) ∧ 𝑛 ∈ (𝑁 ∖ {𝑖})) → 𝐴 ∈ (Base‘𝑅)) |
| 24 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝑖 ∈ 𝑁) | |
| 25 | neldifsnd 4774 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → ¬ 𝑖 ∈ (𝑁 ∖ {𝑖})) | |
| 26 | crngring 20210 | . . . . . . . 8 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 27 | 12, 26 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 28 | ringmnd 20208 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | |
| 29 | gsummgp0.0 | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
| 30 | 8, 29 | mndidcl 18732 | . . . . . . 7 ⊢ (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅)) |
| 31 | 27, 28, 30 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 0 ∈ (Base‘𝑅)) |
| 32 | 31 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 0 ∈ (Base‘𝑅)) |
| 33 | eleq1 2823 | . . . . . 6 ⊢ (𝐵 = 0 → (𝐵 ∈ (Base‘𝑅) ↔ 0 ∈ (Base‘𝑅))) | |
| 34 | 33 | ad2antll 729 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝐵 ∈ (Base‘𝑅) ↔ 0 ∈ (Base‘𝑅))) |
| 35 | 32, 34 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → 𝐵 ∈ (Base‘𝑅)) |
| 36 | gsummgp0.e | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 = 𝑖) → 𝐴 = 𝐵) | |
| 37 | 36 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) ∧ 𝑛 = 𝑖) → 𝐴 = 𝐵) |
| 38 | 9, 11, 15, 19, 23, 24, 25, 35, 37 | gsumunsnd 19944 | . . 3 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴)) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅)𝐵)) |
| 39 | oveq2 7418 | . . . . 5 ⊢ (𝐵 = 0 → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅)𝐵) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅) 0 )) | |
| 40 | 39 | ad2antll 729 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅)𝐵) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅) 0 )) |
| 41 | 21, 22 | sylan2 593 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑁 ∖ {𝑖})) → 𝐴 ∈ (Base‘𝑅)) |
| 42 | 41 | ralrimiva 3133 | . . . . . . 7 ⊢ (𝜑 → ∀𝑛 ∈ (𝑁 ∖ {𝑖})𝐴 ∈ (Base‘𝑅)) |
| 43 | 9, 14, 18, 42 | gsummptcl 19953 | . . . . . 6 ⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅)) |
| 44 | 43 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅)) |
| 45 | 8, 10, 29 | ringrz 20259 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅) 0 ) = 0 ) |
| 46 | 27, 44, 45 | syl2an2r 685 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅) 0 ) = 0 ) |
| 47 | 40, 46 | eqtrd 2771 | . . 3 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r‘𝑅)𝐵) = 0 ) |
| 48 | 6, 38, 47 | 3eqtrd 2775 | . 2 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑁 ∧ 𝐵 = 0 )) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ 𝐴)) = 0 ) |
| 49 | 1, 48 | rexlimddv 3148 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ 𝐴)) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ∖ cdif 3928 ∪ cun 3929 {csn 4606 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 Fincfn 8964 Basecbs 17233 .rcmulr 17277 0gc0g 17458 Σg cgsu 17459 Mndcmnd 18717 CMndccmn 19766 mulGrpcmgp 20105 Ringcrg 20198 CRingccrg 20199 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-0g 17460 df-gsum 17461 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-mulg 19056 df-cntz 19305 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 |
| This theorem is referenced by: smadiadetlem0 22604 |
| Copyright terms: Public domain | W3C validator |