MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummgp0 Structured version   Visualization version   GIF version

Theorem gsummgp0 20032
Description: If one factor in a finite group sum of the multiplicative group of a commutative ring is 0, the whole "sum" (i.e. product) is 0. (Contributed by AV, 3-Jan-2019.)
Hypotheses
Ref Expression
gsummgp0.g 𝐺 = (mulGrp‘𝑅)
gsummgp0.0 0 = (0g𝑅)
gsummgp0.r (𝜑𝑅 ∈ CRing)
gsummgp0.n (𝜑𝑁 ∈ Fin)
gsummgp0.a ((𝜑𝑛𝑁) → 𝐴 ∈ (Base‘𝑅))
gsummgp0.e ((𝜑𝑛 = 𝑖) → 𝐴 = 𝐵)
gsummgp0.b (𝜑 → ∃𝑖𝑁 𝐵 = 0 )
Assertion
Ref Expression
gsummgp0 (𝜑 → (𝐺 Σg (𝑛𝑁𝐴)) = 0 )
Distinct variable groups:   𝐴,𝑖   𝐵,𝑛   𝑖,𝑛,𝐺   𝑖,𝑁,𝑛   𝑅,𝑛   𝜑,𝑖,𝑛   0 ,𝑖,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑖)   𝑅(𝑖)

Proof of Theorem gsummgp0
StepHypRef Expression
1 gsummgp0.b . 2 (𝜑 → ∃𝑖𝑁 𝐵 = 0 )
2 difsnid 4770 . . . . . . 7 (𝑖𝑁 → ((𝑁 ∖ {𝑖}) ∪ {𝑖}) = 𝑁)
32eqcomd 2742 . . . . . 6 (𝑖𝑁𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖}))
43ad2antrl 726 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖}))
54mpteq1d 5200 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝑛𝑁𝐴) = (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴))
65oveq2d 7373 . . 3 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝐺 Σg (𝑛𝑁𝐴)) = (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴)))
7 gsummgp0.g . . . . 5 𝐺 = (mulGrp‘𝑅)
8 eqid 2736 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
97, 8mgpbas 19902 . . . 4 (Base‘𝑅) = (Base‘𝐺)
10 eqid 2736 . . . . 5 (.r𝑅) = (.r𝑅)
117, 10mgpplusg 19900 . . . 4 (.r𝑅) = (+g𝐺)
12 gsummgp0.r . . . . . 6 (𝜑𝑅 ∈ CRing)
137crngmgp 19972 . . . . . 6 (𝑅 ∈ CRing → 𝐺 ∈ CMnd)
1412, 13syl 17 . . . . 5 (𝜑𝐺 ∈ CMnd)
1514adantr 481 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝐺 ∈ CMnd)
16 gsummgp0.n . . . . . 6 (𝜑𝑁 ∈ Fin)
17 diffi 9123 . . . . . 6 (𝑁 ∈ Fin → (𝑁 ∖ {𝑖}) ∈ Fin)
1816, 17syl 17 . . . . 5 (𝜑 → (𝑁 ∖ {𝑖}) ∈ Fin)
1918adantr 481 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝑁 ∖ {𝑖}) ∈ Fin)
20 simpl 483 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝜑)
21 eldifi 4086 . . . . 5 (𝑛 ∈ (𝑁 ∖ {𝑖}) → 𝑛𝑁)
22 gsummgp0.a . . . . 5 ((𝜑𝑛𝑁) → 𝐴 ∈ (Base‘𝑅))
2320, 21, 22syl2an 596 . . . 4 (((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) ∧ 𝑛 ∈ (𝑁 ∖ {𝑖})) → 𝐴 ∈ (Base‘𝑅))
24 simprl 769 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝑖𝑁)
25 neldifsnd 4753 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → ¬ 𝑖 ∈ (𝑁 ∖ {𝑖}))
26 crngring 19976 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2712, 26syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
28 ringmnd 19974 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
29 gsummgp0.0 . . . . . . . 8 0 = (0g𝑅)
308, 29mndidcl 18571 . . . . . . 7 (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅))
3127, 28, 303syl 18 . . . . . 6 (𝜑0 ∈ (Base‘𝑅))
3231adantr 481 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 0 ∈ (Base‘𝑅))
33 eleq1 2825 . . . . . 6 (𝐵 = 0 → (𝐵 ∈ (Base‘𝑅) ↔ 0 ∈ (Base‘𝑅)))
3433ad2antll 727 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝐵 ∈ (Base‘𝑅) ↔ 0 ∈ (Base‘𝑅)))
3532, 34mpbird 256 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝐵 ∈ (Base‘𝑅))
36 gsummgp0.e . . . . 5 ((𝜑𝑛 = 𝑖) → 𝐴 = 𝐵)
3736adantlr 713 . . . 4 (((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) ∧ 𝑛 = 𝑖) → 𝐴 = 𝐵)
389, 11, 15, 19, 23, 24, 25, 35, 37gsumunsnd 19735 . . 3 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴)) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅)𝐵))
39 oveq2 7365 . . . . 5 (𝐵 = 0 → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅)𝐵) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅) 0 ))
4039ad2antll 727 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅)𝐵) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅) 0 ))
4121, 22sylan2 593 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑁 ∖ {𝑖})) → 𝐴 ∈ (Base‘𝑅))
4241ralrimiva 3143 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (𝑁 ∖ {𝑖})𝐴 ∈ (Base‘𝑅))
439, 14, 18, 42gsummptcl 19744 . . . . . 6 (𝜑 → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅))
4443adantr 481 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅))
458, 10, 29ringrz 20012 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅) 0 ) = 0 )
4627, 44, 45syl2an2r 683 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅) 0 ) = 0 )
4740, 46eqtrd 2776 . . 3 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅)𝐵) = 0 )
486, 38, 473eqtrd 2780 . 2 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝐺 Σg (𝑛𝑁𝐴)) = 0 )
491, 48rexlimddv 3158 1 (𝜑 → (𝐺 Σg (𝑛𝑁𝐴)) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3073  cdif 3907  cun 3908  {csn 4586  cmpt 5188  cfv 6496  (class class class)co 7357  Fincfn 8883  Basecbs 17083  .rcmulr 17134  0gc0g 17321   Σg cgsu 17322  Mndcmnd 18556  CMndccmn 19562  mulGrpcmgp 19896  Ringcrg 19964  CRingccrg 19965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-gsum 17324  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-mgp 19897  df-ring 19966  df-cring 19967
This theorem is referenced by:  smadiadetlem0  22010
  Copyright terms: Public domain W3C validator