MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummgp0 Structured version   Visualization version   GIF version

Theorem gsummgp0 19280
Description: If one factor in a finite group sum of the multiplicative group of a commutative ring is 0, the whole "sum" (i.e. product) is 0. (Contributed by AV, 3-Jan-2019.)
Hypotheses
Ref Expression
gsummgp0.g 𝐺 = (mulGrp‘𝑅)
gsummgp0.0 0 = (0g𝑅)
gsummgp0.r (𝜑𝑅 ∈ CRing)
gsummgp0.n (𝜑𝑁 ∈ Fin)
gsummgp0.a ((𝜑𝑛𝑁) → 𝐴 ∈ (Base‘𝑅))
gsummgp0.e ((𝜑𝑛 = 𝑖) → 𝐴 = 𝐵)
gsummgp0.b (𝜑 → ∃𝑖𝑁 𝐵 = 0 )
Assertion
Ref Expression
gsummgp0 (𝜑 → (𝐺 Σg (𝑛𝑁𝐴)) = 0 )
Distinct variable groups:   𝐴,𝑖   𝐵,𝑛   𝑖,𝑛,𝐺   𝑖,𝑁,𝑛   𝑅,𝑛   𝜑,𝑖,𝑛   0 ,𝑖,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑖)   𝑅(𝑖)

Proof of Theorem gsummgp0
StepHypRef Expression
1 gsummgp0.b . 2 (𝜑 → ∃𝑖𝑁 𝐵 = 0 )
2 difsnid 4741 . . . . . . 7 (𝑖𝑁 → ((𝑁 ∖ {𝑖}) ∪ {𝑖}) = 𝑁)
32eqcomd 2830 . . . . . 6 (𝑖𝑁𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖}))
43ad2antrl 724 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝑁 = ((𝑁 ∖ {𝑖}) ∪ {𝑖}))
54mpteq1d 5151 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝑛𝑁𝐴) = (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴))
65oveq2d 7167 . . 3 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝐺 Σg (𝑛𝑁𝐴)) = (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴)))
7 gsummgp0.g . . . . 5 𝐺 = (mulGrp‘𝑅)
8 eqid 2824 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
97, 8mgpbas 19167 . . . 4 (Base‘𝑅) = (Base‘𝐺)
10 eqid 2824 . . . . 5 (.r𝑅) = (.r𝑅)
117, 10mgpplusg 19165 . . . 4 (.r𝑅) = (+g𝐺)
12 gsummgp0.r . . . . . 6 (𝜑𝑅 ∈ CRing)
137crngmgp 19227 . . . . . 6 (𝑅 ∈ CRing → 𝐺 ∈ CMnd)
1412, 13syl 17 . . . . 5 (𝜑𝐺 ∈ CMnd)
1514adantr 481 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝐺 ∈ CMnd)
16 gsummgp0.n . . . . . 6 (𝜑𝑁 ∈ Fin)
17 diffi 8742 . . . . . 6 (𝑁 ∈ Fin → (𝑁 ∖ {𝑖}) ∈ Fin)
1816, 17syl 17 . . . . 5 (𝜑 → (𝑁 ∖ {𝑖}) ∈ Fin)
1918adantr 481 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝑁 ∖ {𝑖}) ∈ Fin)
20 simpl 483 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝜑)
21 eldifi 4106 . . . . 5 (𝑛 ∈ (𝑁 ∖ {𝑖}) → 𝑛𝑁)
22 gsummgp0.a . . . . 5 ((𝜑𝑛𝑁) → 𝐴 ∈ (Base‘𝑅))
2320, 21, 22syl2an 595 . . . 4 (((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) ∧ 𝑛 ∈ (𝑁 ∖ {𝑖})) → 𝐴 ∈ (Base‘𝑅))
24 simprl 767 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝑖𝑁)
25 neldifsnd 4724 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → ¬ 𝑖 ∈ (𝑁 ∖ {𝑖}))
26 crngring 19230 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2712, 26syl 17 . . . . . . 7 (𝜑𝑅 ∈ Ring)
28 ringmnd 19228 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
29 gsummgp0.0 . . . . . . . 8 0 = (0g𝑅)
308, 29mndidcl 17916 . . . . . . 7 (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅))
3127, 28, 303syl 18 . . . . . 6 (𝜑0 ∈ (Base‘𝑅))
3231adantr 481 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 0 ∈ (Base‘𝑅))
33 eleq1 2904 . . . . . 6 (𝐵 = 0 → (𝐵 ∈ (Base‘𝑅) ↔ 0 ∈ (Base‘𝑅)))
3433ad2antll 725 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝐵 ∈ (Base‘𝑅) ↔ 0 ∈ (Base‘𝑅)))
3532, 34mpbird 258 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → 𝐵 ∈ (Base‘𝑅))
36 gsummgp0.e . . . . 5 ((𝜑𝑛 = 𝑖) → 𝐴 = 𝐵)
3736adantlr 711 . . . 4 (((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) ∧ 𝑛 = 𝑖) → 𝐴 = 𝐵)
389, 11, 15, 19, 23, 24, 25, 35, 37gsumunsnd 19000 . . 3 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝐺 Σg (𝑛 ∈ ((𝑁 ∖ {𝑖}) ∪ {𝑖}) ↦ 𝐴)) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅)𝐵))
39 oveq2 7159 . . . . 5 (𝐵 = 0 → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅)𝐵) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅) 0 ))
4039ad2antll 725 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅)𝐵) = ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅) 0 ))
4121, 22sylan2 592 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑁 ∖ {𝑖})) → 𝐴 ∈ (Base‘𝑅))
4241ralrimiva 3186 . . . . . . 7 (𝜑 → ∀𝑛 ∈ (𝑁 ∖ {𝑖})𝐴 ∈ (Base‘𝑅))
439, 14, 18, 42gsummptcl 19009 . . . . . 6 (𝜑 → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅))
4443adantr 481 . . . . 5 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅))
458, 10, 29ringrz 19260 . . . . 5 ((𝑅 ∈ Ring ∧ (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴)) ∈ (Base‘𝑅)) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅) 0 ) = 0 )
4627, 44, 45syl2an2r 681 . . . 4 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅) 0 ) = 0 )
4740, 46eqtrd 2860 . . 3 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → ((𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝑖}) ↦ 𝐴))(.r𝑅)𝐵) = 0 )
486, 38, 473eqtrd 2864 . 2 ((𝜑 ∧ (𝑖𝑁𝐵 = 0 )) → (𝐺 Σg (𝑛𝑁𝐴)) = 0 )
491, 48rexlimddv 3295 1 (𝜑 → (𝐺 Σg (𝑛𝑁𝐴)) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2106  wrex 3143  cdif 3936  cun 3937  {csn 4563  cmpt 5142  cfv 6351  (class class class)co 7151  Fincfn 8501  Basecbs 16475  .rcmulr 16558  0gc0g 16705   Σg cgsu 16706  Mndcmnd 17902  CMndccmn 18828  mulGrpcmgp 19161  Ringcrg 19219  CRingccrg 19220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7402  df-om 7572  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-fzo 13027  df-seq 13363  df-hash 13684  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-submnd 17947  df-grp 18038  df-mulg 18157  df-cntz 18379  df-cmn 18830  df-mgp 19162  df-ring 19221  df-cring 19222
This theorem is referenced by:  smadiadetlem0  21186
  Copyright terms: Public domain W3C validator