![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fprodfvdvdsd | Structured version Visualization version GIF version |
Description: A finite product of integers is divisible by any of its factors being function values. (Contributed by AV, 1-Aug-2021.) |
Ref | Expression |
---|---|
fprodfvdvdsd.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fprodfvdvdsd.b | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
fprodfvdvdsd.f | ⊢ (𝜑 → 𝐹:𝐵⟶ℤ) |
Ref | Expression |
---|---|
fprodfvdvdsd | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodfvdvdsd.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
2 | 1 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ Fin) |
3 | diffi 9123 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ {𝑥}) ∈ Fin) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin) |
5 | fprodfvdvdsd.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐵⟶ℤ) | |
6 | 5 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → 𝐹:𝐵⟶ℤ) |
7 | fprodfvdvdsd.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
8 | 7 | ssdifssd 4102 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∖ {𝑥}) ⊆ 𝐵) |
9 | 8 | sselda 3944 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → 𝑘 ∈ 𝐵) |
10 | 6, 9 | ffvelcdmd 7036 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → (𝐹‘𝑘) ∈ ℤ) |
11 | 10 | adantlr 713 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → (𝐹‘𝑘) ∈ ℤ) |
12 | 4, 11 | fprodzcl 15837 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) ∈ ℤ) |
13 | 5 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐵⟶ℤ) |
14 | 7 | sselda 3944 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
15 | 13, 14 | ffvelcdmd 7036 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℤ) |
16 | dvdsmul2 16161 | . . . 4 ⊢ ((∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) ∈ ℤ ∧ (𝐹‘𝑥) ∈ ℤ) → (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) | |
17 | 12, 15, 16 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) |
18 | 17 | ralrimiva 3143 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) |
19 | neldifsnd 4753 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ (𝐴 ∖ {𝑥})) | |
20 | disjsn 4672 | . . . . . . 7 ⊢ (((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ (𝐴 ∖ {𝑥})) | |
21 | 19, 20 | sylibr 233 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅) |
22 | difsnid 4770 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴) | |
23 | 22 | eqcomd 2742 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝐴 = ((𝐴 ∖ {𝑥}) ∪ {𝑥})) |
24 | 23 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 = ((𝐴 ∖ {𝑥}) ∪ {𝑥})) |
25 | 13 | adantr 481 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 𝐹:𝐵⟶ℤ) |
26 | 7 | adantr 481 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ 𝐵) |
27 | 26 | sselda 3944 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐵) |
28 | 25, 27 | ffvelcdmd 7036 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ℤ) |
29 | 28 | zcnd 12608 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ℂ) |
30 | 21, 24, 2, 29 | fprodsplit 15849 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ 𝐴 (𝐹‘𝑘) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · ∏𝑘 ∈ {𝑥} (𝐹‘𝑘))) |
31 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
32 | 15 | zcnd 12608 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
33 | fveq2 6842 | . . . . . . . 8 ⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) | |
34 | 33 | prodsn 15845 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ ℂ) → ∏𝑘 ∈ {𝑥} (𝐹‘𝑘) = (𝐹‘𝑥)) |
35 | 31, 32, 34 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ {𝑥} (𝐹‘𝑘) = (𝐹‘𝑥)) |
36 | 35 | oveq2d 7373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · ∏𝑘 ∈ {𝑥} (𝐹‘𝑘)) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) |
37 | 30, 36 | eqtrd 2776 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ 𝐴 (𝐹‘𝑘) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) |
38 | 37 | breq2d 5117 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘) ↔ (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥)))) |
39 | 38 | ralbidva 3172 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥)))) |
40 | 18, 39 | mpbird 256 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 ∖ cdif 3907 ∪ cun 3908 ∩ cin 3909 ⊆ wss 3910 ∅c0 4282 {csn 4586 class class class wbr 5105 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 Fincfn 8883 ℂcc 11049 · cmul 11056 ℤcz 12499 ∏cprod 15788 ∥ cdvds 16136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-sup 9378 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-n0 12414 df-z 12500 df-uz 12764 df-rp 12916 df-fz 13425 df-fzo 13568 df-seq 13907 df-exp 13968 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-clim 15370 df-prod 15789 df-dvds 16137 |
This theorem is referenced by: fproddvdsd 16217 aks4d1p9 40545 fmtnodvds 45726 |
Copyright terms: Public domain | W3C validator |