| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprodfvdvdsd | Structured version Visualization version GIF version | ||
| Description: A finite product of integers is divisible by any of its factors being function values. (Contributed by AV, 1-Aug-2021.) |
| Ref | Expression |
|---|---|
| fprodfvdvdsd.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodfvdvdsd.b | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| fprodfvdvdsd.f | ⊢ (𝜑 → 𝐹:𝐵⟶ℤ) |
| Ref | Expression |
|---|---|
| fprodfvdvdsd | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodfvdvdsd.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ Fin) |
| 3 | diffi 9139 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ {𝑥}) ∈ Fin) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin) |
| 5 | fprodfvdvdsd.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐵⟶ℤ) | |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → 𝐹:𝐵⟶ℤ) |
| 7 | fprodfvdvdsd.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 8 | 7 | ssdifssd 4110 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∖ {𝑥}) ⊆ 𝐵) |
| 9 | 8 | sselda 3946 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → 𝑘 ∈ 𝐵) |
| 10 | 6, 9 | ffvelcdmd 7057 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → (𝐹‘𝑘) ∈ ℤ) |
| 11 | 10 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → (𝐹‘𝑘) ∈ ℤ) |
| 12 | 4, 11 | fprodzcl 15920 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) ∈ ℤ) |
| 13 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐵⟶ℤ) |
| 14 | 7 | sselda 3946 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| 15 | 13, 14 | ffvelcdmd 7057 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℤ) |
| 16 | dvdsmul2 16248 | . . . 4 ⊢ ((∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) ∈ ℤ ∧ (𝐹‘𝑥) ∈ ℤ) → (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) | |
| 17 | 12, 15, 16 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) |
| 18 | 17 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) |
| 19 | neldifsnd 4757 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ (𝐴 ∖ {𝑥})) | |
| 20 | disjsn 4675 | . . . . . . 7 ⊢ (((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ (𝐴 ∖ {𝑥})) | |
| 21 | 19, 20 | sylibr 234 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅) |
| 22 | difsnid 4774 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴) | |
| 23 | 22 | eqcomd 2735 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝐴 = ((𝐴 ∖ {𝑥}) ∪ {𝑥})) |
| 24 | 23 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 = ((𝐴 ∖ {𝑥}) ∪ {𝑥})) |
| 25 | 13 | adantr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 𝐹:𝐵⟶ℤ) |
| 26 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ 𝐵) |
| 27 | 26 | sselda 3946 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐵) |
| 28 | 25, 27 | ffvelcdmd 7057 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ℤ) |
| 29 | 28 | zcnd 12639 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ℂ) |
| 30 | 21, 24, 2, 29 | fprodsplit 15932 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ 𝐴 (𝐹‘𝑘) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · ∏𝑘 ∈ {𝑥} (𝐹‘𝑘))) |
| 31 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 32 | 15 | zcnd 12639 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
| 33 | fveq2 6858 | . . . . . . . 8 ⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) | |
| 34 | 33 | prodsn 15928 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ ℂ) → ∏𝑘 ∈ {𝑥} (𝐹‘𝑘) = (𝐹‘𝑥)) |
| 35 | 31, 32, 34 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ {𝑥} (𝐹‘𝑘) = (𝐹‘𝑥)) |
| 36 | 35 | oveq2d 7403 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · ∏𝑘 ∈ {𝑥} (𝐹‘𝑘)) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) |
| 37 | 30, 36 | eqtrd 2764 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ 𝐴 (𝐹‘𝑘) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) |
| 38 | 37 | breq2d 5119 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘) ↔ (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥)))) |
| 39 | 38 | ralbidva 3154 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥)))) |
| 40 | 18, 39 | mpbird 257 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3911 ∪ cun 3912 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 {csn 4589 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 ℂcc 11066 · cmul 11073 ℤcz 12529 ∏cprod 15869 ∥ cdvds 16222 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-prod 15870 df-dvds 16223 |
| This theorem is referenced by: fproddvdsd 16305 aks4d1p9 42076 fmtnodvds 47545 |
| Copyright terms: Public domain | W3C validator |