MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodfvdvdsd Structured version   Visualization version   GIF version

Theorem fprodfvdvdsd 16358
Description: A finite product of integers is divisible by any of its factors being function values. (Contributed by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
fprodfvdvdsd.a (𝜑𝐴 ∈ Fin)
fprodfvdvdsd.b (𝜑𝐴𝐵)
fprodfvdvdsd.f (𝜑𝐹:𝐵⟶ℤ)
Assertion
Ref Expression
fprodfvdvdsd (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∥ ∏𝑘𝐴 (𝐹𝑘))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑘)   𝐹(𝑥)

Proof of Theorem fprodfvdvdsd
StepHypRef Expression
1 fprodfvdvdsd.a . . . . . . 7 (𝜑𝐴 ∈ Fin)
21adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴 ∈ Fin)
3 diffi 9194 . . . . . 6 (𝐴 ∈ Fin → (𝐴 ∖ {𝑥}) ∈ Fin)
42, 3syl 17 . . . . 5 ((𝜑𝑥𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin)
5 fprodfvdvdsd.f . . . . . . . 8 (𝜑𝐹:𝐵⟶ℤ)
65adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑥})) → 𝐹:𝐵⟶ℤ)
7 fprodfvdvdsd.b . . . . . . . . 9 (𝜑𝐴𝐵)
87ssdifssd 4127 . . . . . . . 8 (𝜑 → (𝐴 ∖ {𝑥}) ⊆ 𝐵)
98sselda 3963 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑥})) → 𝑘𝐵)
106, 9ffvelcdmd 7080 . . . . . 6 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑥})) → (𝐹𝑘) ∈ ℤ)
1110adantlr 715 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → (𝐹𝑘) ∈ ℤ)
124, 11fprodzcl 15975 . . . 4 ((𝜑𝑥𝐴) → ∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) ∈ ℤ)
135adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝐹:𝐵⟶ℤ)
147sselda 3963 . . . . 5 ((𝜑𝑥𝐴) → 𝑥𝐵)
1513, 14ffvelcdmd 7080 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℤ)
16 dvdsmul2 16303 . . . 4 ((∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) ∈ ℤ ∧ (𝐹𝑥) ∈ ℤ) → (𝐹𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥)))
1712, 15, 16syl2anc 584 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥)))
1817ralrimiva 3133 . 2 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥)))
19 neldifsnd 4774 . . . . . . 7 ((𝜑𝑥𝐴) → ¬ 𝑥 ∈ (𝐴 ∖ {𝑥}))
20 disjsn 4692 . . . . . . 7 (((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ (𝐴 ∖ {𝑥}))
2119, 20sylibr 234 . . . . . 6 ((𝜑𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅)
22 difsnid 4791 . . . . . . . 8 (𝑥𝐴 → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴)
2322eqcomd 2742 . . . . . . 7 (𝑥𝐴𝐴 = ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
2423adantl 481 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴 = ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
2513adantr 480 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → 𝐹:𝐵⟶ℤ)
267adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐴𝐵)
2726sselda 3963 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → 𝑘𝐵)
2825, 27ffvelcdmd 7080 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℤ)
2928zcnd 12703 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
3021, 24, 2, 29fprodsplit 15987 . . . . 5 ((𝜑𝑥𝐴) → ∏𝑘𝐴 (𝐹𝑘) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · ∏𝑘 ∈ {𝑥} (𝐹𝑘)))
31 simpr 484 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
3215zcnd 12703 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
33 fveq2 6881 . . . . . . . 8 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
3433prodsn 15983 . . . . . . 7 ((𝑥𝐴 ∧ (𝐹𝑥) ∈ ℂ) → ∏𝑘 ∈ {𝑥} (𝐹𝑘) = (𝐹𝑥))
3531, 32, 34syl2anc 584 . . . . . 6 ((𝜑𝑥𝐴) → ∏𝑘 ∈ {𝑥} (𝐹𝑘) = (𝐹𝑥))
3635oveq2d 7426 . . . . 5 ((𝜑𝑥𝐴) → (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · ∏𝑘 ∈ {𝑥} (𝐹𝑘)) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥)))
3730, 36eqtrd 2771 . . . 4 ((𝜑𝑥𝐴) → ∏𝑘𝐴 (𝐹𝑘) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥)))
3837breq2d 5136 . . 3 ((𝜑𝑥𝐴) → ((𝐹𝑥) ∥ ∏𝑘𝐴 (𝐹𝑘) ↔ (𝐹𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥))))
3938ralbidva 3162 . 2 (𝜑 → (∀𝑥𝐴 (𝐹𝑥) ∥ ∏𝑘𝐴 (𝐹𝑘) ↔ ∀𝑥𝐴 (𝐹𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥))))
4018, 39mpbird 257 1 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∥ ∏𝑘𝐴 (𝐹𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3052  cdif 3928  cun 3929  cin 3930  wss 3931  c0 4313  {csn 4606   class class class wbr 5124  wf 6532  cfv 6536  (class class class)co 7410  Fincfn 8964  cc 11132   · cmul 11139  cz 12593  cprod 15924  cdvds 16277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-prod 15925  df-dvds 16278
This theorem is referenced by:  fproddvdsd  16359  aks4d1p9  42106  fmtnodvds  47525
  Copyright terms: Public domain W3C validator