| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprodfvdvdsd | Structured version Visualization version GIF version | ||
| Description: A finite product of integers is divisible by any of its factors being function values. (Contributed by AV, 1-Aug-2021.) |
| Ref | Expression |
|---|---|
| fprodfvdvdsd.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodfvdvdsd.b | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| fprodfvdvdsd.f | ⊢ (𝜑 → 𝐹:𝐵⟶ℤ) |
| Ref | Expression |
|---|---|
| fprodfvdvdsd | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodfvdvdsd.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ Fin) |
| 3 | diffi 9094 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ {𝑥}) ∈ Fin) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin) |
| 5 | fprodfvdvdsd.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐵⟶ℤ) | |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → 𝐹:𝐵⟶ℤ) |
| 7 | fprodfvdvdsd.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 8 | 7 | ssdifssd 4098 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∖ {𝑥}) ⊆ 𝐵) |
| 9 | 8 | sselda 3931 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → 𝑘 ∈ 𝐵) |
| 10 | 6, 9 | ffvelcdmd 7027 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → (𝐹‘𝑘) ∈ ℤ) |
| 11 | 10 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → (𝐹‘𝑘) ∈ ℤ) |
| 12 | 4, 11 | fprodzcl 15871 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) ∈ ℤ) |
| 13 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐵⟶ℤ) |
| 14 | 7 | sselda 3931 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| 15 | 13, 14 | ffvelcdmd 7027 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℤ) |
| 16 | dvdsmul2 16199 | . . . 4 ⊢ ((∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) ∈ ℤ ∧ (𝐹‘𝑥) ∈ ℤ) → (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) | |
| 17 | 12, 15, 16 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) |
| 18 | 17 | ralrimiva 3126 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) |
| 19 | neldifsnd 4746 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ (𝐴 ∖ {𝑥})) | |
| 20 | disjsn 4665 | . . . . . . 7 ⊢ (((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ (𝐴 ∖ {𝑥})) | |
| 21 | 19, 20 | sylibr 234 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅) |
| 22 | difsnid 4763 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴) | |
| 23 | 22 | eqcomd 2739 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝐴 = ((𝐴 ∖ {𝑥}) ∪ {𝑥})) |
| 24 | 23 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 = ((𝐴 ∖ {𝑥}) ∪ {𝑥})) |
| 25 | 13 | adantr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 𝐹:𝐵⟶ℤ) |
| 26 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ 𝐵) |
| 27 | 26 | sselda 3931 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐵) |
| 28 | 25, 27 | ffvelcdmd 7027 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ℤ) |
| 29 | 28 | zcnd 12588 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ℂ) |
| 30 | 21, 24, 2, 29 | fprodsplit 15883 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ 𝐴 (𝐹‘𝑘) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · ∏𝑘 ∈ {𝑥} (𝐹‘𝑘))) |
| 31 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 32 | 15 | zcnd 12588 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
| 33 | fveq2 6831 | . . . . . . . 8 ⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) | |
| 34 | 33 | prodsn 15879 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ ℂ) → ∏𝑘 ∈ {𝑥} (𝐹‘𝑘) = (𝐹‘𝑥)) |
| 35 | 31, 32, 34 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ {𝑥} (𝐹‘𝑘) = (𝐹‘𝑥)) |
| 36 | 35 | oveq2d 7371 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · ∏𝑘 ∈ {𝑥} (𝐹‘𝑘)) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) |
| 37 | 30, 36 | eqtrd 2768 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ 𝐴 (𝐹‘𝑘) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) |
| 38 | 37 | breq2d 5107 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘) ↔ (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥)))) |
| 39 | 38 | ralbidva 3155 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥)))) |
| 40 | 18, 39 | mpbird 257 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ∖ cdif 3896 ∪ cun 3897 ∩ cin 3898 ⊆ wss 3899 ∅c0 4284 {csn 4577 class class class wbr 5095 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 Fincfn 8878 ℂcc 11014 · cmul 11021 ℤcz 12478 ∏cprod 15820 ∥ cdvds 16173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9541 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-sup 9336 df-oi 9406 df-card 9842 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-n0 12392 df-z 12479 df-uz 12743 df-rp 12901 df-fz 13418 df-fzo 13565 df-seq 13919 df-exp 13979 df-hash 14248 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-clim 15405 df-prod 15821 df-dvds 16174 |
| This theorem is referenced by: fproddvdsd 16256 aks4d1p9 42191 fmtnodvds 47658 |
| Copyright terms: Public domain | W3C validator |