| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprodfvdvdsd | Structured version Visualization version GIF version | ||
| Description: A finite product of integers is divisible by any of its factors being function values. (Contributed by AV, 1-Aug-2021.) |
| Ref | Expression |
|---|---|
| fprodfvdvdsd.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodfvdvdsd.b | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| fprodfvdvdsd.f | ⊢ (𝜑 → 𝐹:𝐵⟶ℤ) |
| Ref | Expression |
|---|---|
| fprodfvdvdsd | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodfvdvdsd.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ Fin) |
| 3 | diffi 9194 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ {𝑥}) ∈ Fin) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin) |
| 5 | fprodfvdvdsd.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐵⟶ℤ) | |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → 𝐹:𝐵⟶ℤ) |
| 7 | fprodfvdvdsd.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 8 | 7 | ssdifssd 4127 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∖ {𝑥}) ⊆ 𝐵) |
| 9 | 8 | sselda 3963 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → 𝑘 ∈ 𝐵) |
| 10 | 6, 9 | ffvelcdmd 7080 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → (𝐹‘𝑘) ∈ ℤ) |
| 11 | 10 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → (𝐹‘𝑘) ∈ ℤ) |
| 12 | 4, 11 | fprodzcl 15975 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) ∈ ℤ) |
| 13 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐵⟶ℤ) |
| 14 | 7 | sselda 3963 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| 15 | 13, 14 | ffvelcdmd 7080 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℤ) |
| 16 | dvdsmul2 16303 | . . . 4 ⊢ ((∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) ∈ ℤ ∧ (𝐹‘𝑥) ∈ ℤ) → (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) | |
| 17 | 12, 15, 16 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) |
| 18 | 17 | ralrimiva 3133 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) |
| 19 | neldifsnd 4774 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ (𝐴 ∖ {𝑥})) | |
| 20 | disjsn 4692 | . . . . . . 7 ⊢ (((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ (𝐴 ∖ {𝑥})) | |
| 21 | 19, 20 | sylibr 234 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅) |
| 22 | difsnid 4791 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴) | |
| 23 | 22 | eqcomd 2742 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝐴 = ((𝐴 ∖ {𝑥}) ∪ {𝑥})) |
| 24 | 23 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 = ((𝐴 ∖ {𝑥}) ∪ {𝑥})) |
| 25 | 13 | adantr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 𝐹:𝐵⟶ℤ) |
| 26 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ 𝐵) |
| 27 | 26 | sselda 3963 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐵) |
| 28 | 25, 27 | ffvelcdmd 7080 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ℤ) |
| 29 | 28 | zcnd 12703 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ℂ) |
| 30 | 21, 24, 2, 29 | fprodsplit 15987 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ 𝐴 (𝐹‘𝑘) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · ∏𝑘 ∈ {𝑥} (𝐹‘𝑘))) |
| 31 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 32 | 15 | zcnd 12703 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
| 33 | fveq2 6881 | . . . . . . . 8 ⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) | |
| 34 | 33 | prodsn 15983 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ ℂ) → ∏𝑘 ∈ {𝑥} (𝐹‘𝑘) = (𝐹‘𝑥)) |
| 35 | 31, 32, 34 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ {𝑥} (𝐹‘𝑘) = (𝐹‘𝑥)) |
| 36 | 35 | oveq2d 7426 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · ∏𝑘 ∈ {𝑥} (𝐹‘𝑘)) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) |
| 37 | 30, 36 | eqtrd 2771 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ 𝐴 (𝐹‘𝑘) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) |
| 38 | 37 | breq2d 5136 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘) ↔ (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥)))) |
| 39 | 38 | ralbidva 3162 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥)))) |
| 40 | 18, 39 | mpbird 257 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∖ cdif 3928 ∪ cun 3929 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 {csn 4606 class class class wbr 5124 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 Fincfn 8964 ℂcc 11132 · cmul 11139 ℤcz 12593 ∏cprod 15924 ∥ cdvds 16277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-prod 15925 df-dvds 16278 |
| This theorem is referenced by: fproddvdsd 16359 aks4d1p9 42106 fmtnodvds 47525 |
| Copyright terms: Public domain | W3C validator |