MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodfvdvdsd Structured version   Visualization version   GIF version

Theorem fprodfvdvdsd 16263
Description: A finite product of integers is divisible by any of its factors being function values. (Contributed by AV, 1-Aug-2021.)
Hypotheses
Ref Expression
fprodfvdvdsd.a (𝜑𝐴 ∈ Fin)
fprodfvdvdsd.b (𝜑𝐴𝐵)
fprodfvdvdsd.f (𝜑𝐹:𝐵⟶ℤ)
Assertion
Ref Expression
fprodfvdvdsd (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∥ ∏𝑘𝐴 (𝐹𝑘))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑘)   𝐹(𝑥)

Proof of Theorem fprodfvdvdsd
StepHypRef Expression
1 fprodfvdvdsd.a . . . . . . 7 (𝜑𝐴 ∈ Fin)
21adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴 ∈ Fin)
3 diffi 9099 . . . . . 6 (𝐴 ∈ Fin → (𝐴 ∖ {𝑥}) ∈ Fin)
42, 3syl 17 . . . . 5 ((𝜑𝑥𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin)
5 fprodfvdvdsd.f . . . . . . . 8 (𝜑𝐹:𝐵⟶ℤ)
65adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑥})) → 𝐹:𝐵⟶ℤ)
7 fprodfvdvdsd.b . . . . . . . . 9 (𝜑𝐴𝐵)
87ssdifssd 4100 . . . . . . . 8 (𝜑 → (𝐴 ∖ {𝑥}) ⊆ 𝐵)
98sselda 3937 . . . . . . 7 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑥})) → 𝑘𝐵)
106, 9ffvelcdmd 7023 . . . . . 6 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑥})) → (𝐹𝑘) ∈ ℤ)
1110adantlr 715 . . . . 5 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → (𝐹𝑘) ∈ ℤ)
124, 11fprodzcl 15879 . . . 4 ((𝜑𝑥𝐴) → ∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) ∈ ℤ)
135adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝐹:𝐵⟶ℤ)
147sselda 3937 . . . . 5 ((𝜑𝑥𝐴) → 𝑥𝐵)
1513, 14ffvelcdmd 7023 . . . 4 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℤ)
16 dvdsmul2 16207 . . . 4 ((∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) ∈ ℤ ∧ (𝐹𝑥) ∈ ℤ) → (𝐹𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥)))
1712, 15, 16syl2anc 584 . . 3 ((𝜑𝑥𝐴) → (𝐹𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥)))
1817ralrimiva 3121 . 2 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥)))
19 neldifsnd 4747 . . . . . . 7 ((𝜑𝑥𝐴) → ¬ 𝑥 ∈ (𝐴 ∖ {𝑥}))
20 disjsn 4665 . . . . . . 7 (((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ (𝐴 ∖ {𝑥}))
2119, 20sylibr 234 . . . . . 6 ((𝜑𝑥𝐴) → ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅)
22 difsnid 4764 . . . . . . . 8 (𝑥𝐴 → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴)
2322eqcomd 2735 . . . . . . 7 (𝑥𝐴𝐴 = ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
2423adantl 481 . . . . . 6 ((𝜑𝑥𝐴) → 𝐴 = ((𝐴 ∖ {𝑥}) ∪ {𝑥}))
2513adantr 480 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → 𝐹:𝐵⟶ℤ)
267adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐴𝐵)
2726sselda 3937 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → 𝑘𝐵)
2825, 27ffvelcdmd 7023 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℤ)
2928zcnd 12599 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
3021, 24, 2, 29fprodsplit 15891 . . . . 5 ((𝜑𝑥𝐴) → ∏𝑘𝐴 (𝐹𝑘) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · ∏𝑘 ∈ {𝑥} (𝐹𝑘)))
31 simpr 484 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
3215zcnd 12599 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
33 fveq2 6826 . . . . . . . 8 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
3433prodsn 15887 . . . . . . 7 ((𝑥𝐴 ∧ (𝐹𝑥) ∈ ℂ) → ∏𝑘 ∈ {𝑥} (𝐹𝑘) = (𝐹𝑥))
3531, 32, 34syl2anc 584 . . . . . 6 ((𝜑𝑥𝐴) → ∏𝑘 ∈ {𝑥} (𝐹𝑘) = (𝐹𝑥))
3635oveq2d 7369 . . . . 5 ((𝜑𝑥𝐴) → (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · ∏𝑘 ∈ {𝑥} (𝐹𝑘)) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥)))
3730, 36eqtrd 2764 . . . 4 ((𝜑𝑥𝐴) → ∏𝑘𝐴 (𝐹𝑘) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥)))
3837breq2d 5107 . . 3 ((𝜑𝑥𝐴) → ((𝐹𝑥) ∥ ∏𝑘𝐴 (𝐹𝑘) ↔ (𝐹𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥))))
3938ralbidva 3150 . 2 (𝜑 → (∀𝑥𝐴 (𝐹𝑥) ∥ ∏𝑘𝐴 (𝐹𝑘) ↔ ∀𝑥𝐴 (𝐹𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹𝑘) · (𝐹𝑥))))
4018, 39mpbird 257 1 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) ∥ ∏𝑘𝐴 (𝐹𝑘))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  {csn 4579   class class class wbr 5095  wf 6482  cfv 6486  (class class class)co 7353  Fincfn 8879  cc 11026   · cmul 11033  cz 12489  cprod 15828  cdvds 16181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-prod 15829  df-dvds 16182
This theorem is referenced by:  fproddvdsd  16264  aks4d1p9  42061  fmtnodvds  47529
  Copyright terms: Public domain W3C validator