| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprodfvdvdsd | Structured version Visualization version GIF version | ||
| Description: A finite product of integers is divisible by any of its factors being function values. (Contributed by AV, 1-Aug-2021.) |
| Ref | Expression |
|---|---|
| fprodfvdvdsd.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodfvdvdsd.b | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| fprodfvdvdsd.f | ⊢ (𝜑 → 𝐹:𝐵⟶ℤ) |
| Ref | Expression |
|---|---|
| fprodfvdvdsd | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodfvdvdsd.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ∈ Fin) |
| 3 | diffi 9145 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ {𝑥}) ∈ Fin) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐴 ∖ {𝑥}) ∈ Fin) |
| 5 | fprodfvdvdsd.f | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝐵⟶ℤ) | |
| 6 | 5 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → 𝐹:𝐵⟶ℤ) |
| 7 | fprodfvdvdsd.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 8 | 7 | ssdifssd 4113 | . . . . . . . 8 ⊢ (𝜑 → (𝐴 ∖ {𝑥}) ⊆ 𝐵) |
| 9 | 8 | sselda 3949 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → 𝑘 ∈ 𝐵) |
| 10 | 6, 9 | ffvelcdmd 7060 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → (𝐹‘𝑘) ∈ ℤ) |
| 11 | 10 | adantlr 715 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ (𝐴 ∖ {𝑥})) → (𝐹‘𝑘) ∈ ℤ) |
| 12 | 4, 11 | fprodzcl 15927 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) ∈ ℤ) |
| 13 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐹:𝐵⟶ℤ) |
| 14 | 7 | sselda 3949 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| 15 | 13, 14 | ffvelcdmd 7060 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℤ) |
| 16 | dvdsmul2 16255 | . . . 4 ⊢ ((∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) ∈ ℤ ∧ (𝐹‘𝑥) ∈ ℤ) → (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) | |
| 17 | 12, 15, 16 | syl2anc 584 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) |
| 18 | 17 | ralrimiva 3126 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) |
| 19 | neldifsnd 4760 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ 𝑥 ∈ (𝐴 ∖ {𝑥})) | |
| 20 | disjsn 4678 | . . . . . . 7 ⊢ (((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅ ↔ ¬ 𝑥 ∈ (𝐴 ∖ {𝑥})) | |
| 21 | 19, 20 | sylibr 234 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐴 ∖ {𝑥}) ∩ {𝑥}) = ∅) |
| 22 | difsnid 4777 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) ∪ {𝑥}) = 𝐴) | |
| 23 | 22 | eqcomd 2736 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝐴 = ((𝐴 ∖ {𝑥}) ∪ {𝑥})) |
| 24 | 23 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 = ((𝐴 ∖ {𝑥}) ∪ {𝑥})) |
| 25 | 13 | adantr 480 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 𝐹:𝐵⟶ℤ) |
| 26 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐴 ⊆ 𝐵) |
| 27 | 26 | sselda 3949 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐵) |
| 28 | 25, 27 | ffvelcdmd 7060 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ℤ) |
| 29 | 28 | zcnd 12646 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ℂ) |
| 30 | 21, 24, 2, 29 | fprodsplit 15939 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ 𝐴 (𝐹‘𝑘) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · ∏𝑘 ∈ {𝑥} (𝐹‘𝑘))) |
| 31 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 32 | 15 | zcnd 12646 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℂ) |
| 33 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) | |
| 34 | 33 | prodsn 15935 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝐹‘𝑥) ∈ ℂ) → ∏𝑘 ∈ {𝑥} (𝐹‘𝑘) = (𝐹‘𝑥)) |
| 35 | 31, 32, 34 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ {𝑥} (𝐹‘𝑘) = (𝐹‘𝑥)) |
| 36 | 35 | oveq2d 7406 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · ∏𝑘 ∈ {𝑥} (𝐹‘𝑘)) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) |
| 37 | 30, 36 | eqtrd 2765 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∏𝑘 ∈ 𝐴 (𝐹‘𝑘) = (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥))) |
| 38 | 37 | breq2d 5122 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘) ↔ (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥)))) |
| 39 | 38 | ralbidva 3155 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ (∏𝑘 ∈ (𝐴 ∖ {𝑥})(𝐹‘𝑘) · (𝐹‘𝑥)))) |
| 40 | 18, 39 | mpbird 257 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∥ ∏𝑘 ∈ 𝐴 (𝐹‘𝑘)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∖ cdif 3914 ∪ cun 3915 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 {csn 4592 class class class wbr 5110 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 ℂcc 11073 · cmul 11080 ℤcz 12536 ∏cprod 15876 ∥ cdvds 16229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-prod 15877 df-dvds 16230 |
| This theorem is referenced by: fproddvdsd 16312 aks4d1p9 42083 fmtnodvds 47549 |
| Copyright terms: Public domain | W3C validator |