![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumsplitsndif | Structured version Visualization version GIF version |
Description: Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 31-Aug-2018.) |
Ref | Expression |
---|---|
fsumsplitsndif | ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ 𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + ⦋𝑋 / 𝑘⦌𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neldifsnd 4788 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ¬ 𝑋 ∈ (𝐴 ∖ {𝑋})) | |
2 | disjsn 4707 | . . . . 5 ⊢ (((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ (𝐴 ∖ {𝑋})) | |
3 | 1, 2 | sylibr 233 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅) |
4 | uncom 4145 | . . . . 5 ⊢ ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = ({𝑋} ∪ (𝐴 ∖ {𝑋})) | |
5 | simp2 1134 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → 𝑋 ∈ 𝐴) | |
6 | 5 | snssd 4804 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → {𝑋} ⊆ 𝐴) |
7 | undif 4473 | . . . . . 6 ⊢ ({𝑋} ⊆ 𝐴 ↔ ({𝑋} ∪ (𝐴 ∖ {𝑋})) = 𝐴) | |
8 | 6, 7 | sylib 217 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ({𝑋} ∪ (𝐴 ∖ {𝑋})) = 𝐴) |
9 | 4, 8 | eqtr2id 2777 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → 𝐴 = ((𝐴 ∖ {𝑋}) ∪ {𝑋})) |
10 | simp1 1133 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → 𝐴 ∈ Fin) | |
11 | rspcsbela 4427 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) | |
12 | 11 | zcnd 12664 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℂ) |
13 | 12 | expcom 413 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ → (𝑥 ∈ 𝐴 → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℂ)) |
14 | 13 | 3ad2ant3 1132 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → (𝑥 ∈ 𝐴 → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℂ)) |
15 | 14 | imp 406 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) ∧ 𝑥 ∈ 𝐴) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℂ) |
16 | 3, 9, 10, 15 | fsumsplit 15684 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑥 ∈ 𝐴 ⦋𝑥 / 𝑘⦌𝐵 = (Σ𝑥 ∈ (𝐴 ∖ {𝑋})⦋𝑥 / 𝑘⦌𝐵 + Σ𝑥 ∈ {𝑋}⦋𝑥 / 𝑘⦌𝐵)) |
17 | nfcv 2895 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
18 | nfcsb1v 3910 | . . . 4 ⊢ Ⅎ𝑘⦋𝑥 / 𝑘⦌𝐵 | |
19 | csbeq1a 3899 | . . . 4 ⊢ (𝑘 = 𝑥 → 𝐵 = ⦋𝑥 / 𝑘⦌𝐵) | |
20 | 17, 18, 19 | cbvsumi 15640 | . . 3 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑥 ∈ 𝐴 ⦋𝑥 / 𝑘⦌𝐵 |
21 | 17, 18, 19 | cbvsumi 15640 | . . . 4 ⊢ Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 = Σ𝑥 ∈ (𝐴 ∖ {𝑋})⦋𝑥 / 𝑘⦌𝐵 |
22 | 17, 18, 19 | cbvsumi 15640 | . . . 4 ⊢ Σ𝑘 ∈ {𝑋}𝐵 = Σ𝑥 ∈ {𝑋}⦋𝑥 / 𝑘⦌𝐵 |
23 | 21, 22 | oveq12i 7413 | . . 3 ⊢ (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + Σ𝑘 ∈ {𝑋}𝐵) = (Σ𝑥 ∈ (𝐴 ∖ {𝑋})⦋𝑥 / 𝑘⦌𝐵 + Σ𝑥 ∈ {𝑋}⦋𝑥 / 𝑘⦌𝐵) |
24 | 16, 20, 23 | 3eqtr4g 2789 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ 𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + Σ𝑘 ∈ {𝑋}𝐵)) |
25 | rspcsbela 4427 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑋 / 𝑘⦌𝐵 ∈ ℤ) | |
26 | 25 | zcnd 12664 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑋 / 𝑘⦌𝐵 ∈ ℂ) |
27 | 26 | 3adant1 1127 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑋 / 𝑘⦌𝐵 ∈ ℂ) |
28 | sumsns 15693 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ ⦋𝑋 / 𝑘⦌𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑋}𝐵 = ⦋𝑋 / 𝑘⦌𝐵) | |
29 | 5, 27, 28 | syl2anc 583 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ {𝑋}𝐵 = ⦋𝑋 / 𝑘⦌𝐵) |
30 | 29 | oveq2d 7417 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + Σ𝑘 ∈ {𝑋}𝐵) = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + ⦋𝑋 / 𝑘⦌𝐵)) |
31 | 24, 30 | eqtrd 2764 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ 𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + ⦋𝑋 / 𝑘⦌𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ⦋csb 3885 ∖ cdif 3937 ∪ cun 3938 ∩ cin 3939 ⊆ wss 3940 ∅c0 4314 {csn 4620 (class class class)co 7401 Fincfn 8935 ℂcc 11104 + caddc 11109 ℤcz 12555 Σcsu 15629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-rp 12972 df-fz 13482 df-fzo 13625 df-seq 13964 df-exp 14025 df-hash 14288 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-clim 15429 df-sum 15630 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |