| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumsplitsndif | Structured version Visualization version GIF version | ||
| Description: Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 31-Aug-2018.) |
| Ref | Expression |
|---|---|
| fsumsplitsndif | ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ 𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + ⦋𝑋 / 𝑘⦌𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neldifsnd 4753 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ¬ 𝑋 ∈ (𝐴 ∖ {𝑋})) | |
| 2 | disjsn 4671 | . . . . 5 ⊢ (((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ (𝐴 ∖ {𝑋})) | |
| 3 | 1, 2 | sylibr 234 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅) |
| 4 | uncom 4117 | . . . . 5 ⊢ ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = ({𝑋} ∪ (𝐴 ∖ {𝑋})) | |
| 5 | simp2 1137 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → 𝑋 ∈ 𝐴) | |
| 6 | 5 | snssd 4769 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → {𝑋} ⊆ 𝐴) |
| 7 | undif 4441 | . . . . . 6 ⊢ ({𝑋} ⊆ 𝐴 ↔ ({𝑋} ∪ (𝐴 ∖ {𝑋})) = 𝐴) | |
| 8 | 6, 7 | sylib 218 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ({𝑋} ∪ (𝐴 ∖ {𝑋})) = 𝐴) |
| 9 | 4, 8 | eqtr2id 2777 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → 𝐴 = ((𝐴 ∖ {𝑋}) ∪ {𝑋})) |
| 10 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → 𝐴 ∈ Fin) | |
| 11 | rspcsbela 4397 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) | |
| 12 | 11 | zcnd 12615 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℂ) |
| 13 | 12 | expcom 413 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ → (𝑥 ∈ 𝐴 → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℂ)) |
| 14 | 13 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → (𝑥 ∈ 𝐴 → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℂ)) |
| 15 | 14 | imp 406 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) ∧ 𝑥 ∈ 𝐴) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℂ) |
| 16 | 3, 9, 10, 15 | fsumsplit 15683 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑥 ∈ 𝐴 ⦋𝑥 / 𝑘⦌𝐵 = (Σ𝑥 ∈ (𝐴 ∖ {𝑋})⦋𝑥 / 𝑘⦌𝐵 + Σ𝑥 ∈ {𝑋}⦋𝑥 / 𝑘⦌𝐵)) |
| 17 | csbeq1a 3873 | . . . 4 ⊢ (𝑘 = 𝑥 → 𝐵 = ⦋𝑥 / 𝑘⦌𝐵) | |
| 18 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 19 | nfcsb1v 3883 | . . . 4 ⊢ Ⅎ𝑘⦋𝑥 / 𝑘⦌𝐵 | |
| 20 | 17, 18, 19 | cbvsum 15637 | . . 3 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑥 ∈ 𝐴 ⦋𝑥 / 𝑘⦌𝐵 |
| 21 | 17, 18, 19 | cbvsum 15637 | . . . 4 ⊢ Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 = Σ𝑥 ∈ (𝐴 ∖ {𝑋})⦋𝑥 / 𝑘⦌𝐵 |
| 22 | 17, 18, 19 | cbvsum 15637 | . . . 4 ⊢ Σ𝑘 ∈ {𝑋}𝐵 = Σ𝑥 ∈ {𝑋}⦋𝑥 / 𝑘⦌𝐵 |
| 23 | 21, 22 | oveq12i 7381 | . . 3 ⊢ (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + Σ𝑘 ∈ {𝑋}𝐵) = (Σ𝑥 ∈ (𝐴 ∖ {𝑋})⦋𝑥 / 𝑘⦌𝐵 + Σ𝑥 ∈ {𝑋}⦋𝑥 / 𝑘⦌𝐵) |
| 24 | 16, 20, 23 | 3eqtr4g 2789 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ 𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + Σ𝑘 ∈ {𝑋}𝐵)) |
| 25 | rspcsbela 4397 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑋 / 𝑘⦌𝐵 ∈ ℤ) | |
| 26 | 25 | zcnd 12615 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑋 / 𝑘⦌𝐵 ∈ ℂ) |
| 27 | 26 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑋 / 𝑘⦌𝐵 ∈ ℂ) |
| 28 | sumsns 15692 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ ⦋𝑋 / 𝑘⦌𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑋}𝐵 = ⦋𝑋 / 𝑘⦌𝐵) | |
| 29 | 5, 27, 28 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ {𝑋}𝐵 = ⦋𝑋 / 𝑘⦌𝐵) |
| 30 | 29 | oveq2d 7385 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + Σ𝑘 ∈ {𝑋}𝐵) = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + ⦋𝑋 / 𝑘⦌𝐵)) |
| 31 | 24, 30 | eqtrd 2764 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ 𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + ⦋𝑋 / 𝑘⦌𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⦋csb 3859 ∖ cdif 3908 ∪ cun 3909 ∩ cin 3910 ⊆ wss 3911 ∅c0 4292 {csn 4585 (class class class)co 7369 Fincfn 8895 ℂcc 11042 + caddc 11047 ℤcz 12505 Σcsu 15628 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |