| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fsumsplitsndif | Structured version Visualization version GIF version | ||
| Description: Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 31-Aug-2018.) |
| Ref | Expression |
|---|---|
| fsumsplitsndif | ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ 𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + ⦋𝑋 / 𝑘⦌𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neldifsnd 4744 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ¬ 𝑋 ∈ (𝐴 ∖ {𝑋})) | |
| 2 | disjsn 4663 | . . . . 5 ⊢ (((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ (𝐴 ∖ {𝑋})) | |
| 3 | 1, 2 | sylibr 234 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅) |
| 4 | uncom 4109 | . . . . 5 ⊢ ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = ({𝑋} ∪ (𝐴 ∖ {𝑋})) | |
| 5 | simp2 1137 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → 𝑋 ∈ 𝐴) | |
| 6 | 5 | snssd 4760 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → {𝑋} ⊆ 𝐴) |
| 7 | undif 4433 | . . . . . 6 ⊢ ({𝑋} ⊆ 𝐴 ↔ ({𝑋} ∪ (𝐴 ∖ {𝑋})) = 𝐴) | |
| 8 | 6, 7 | sylib 218 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ({𝑋} ∪ (𝐴 ∖ {𝑋})) = 𝐴) |
| 9 | 4, 8 | eqtr2id 2777 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → 𝐴 = ((𝐴 ∖ {𝑋}) ∪ {𝑋})) |
| 10 | simp1 1136 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → 𝐴 ∈ Fin) | |
| 11 | rspcsbela 4389 | . . . . . . . 8 ⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) | |
| 12 | 11 | zcnd 12581 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℂ) |
| 13 | 12 | expcom 413 | . . . . . 6 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ → (𝑥 ∈ 𝐴 → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℂ)) |
| 14 | 13 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → (𝑥 ∈ 𝐴 → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℂ)) |
| 15 | 14 | imp 406 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) ∧ 𝑥 ∈ 𝐴) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℂ) |
| 16 | 3, 9, 10, 15 | fsumsplit 15648 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑥 ∈ 𝐴 ⦋𝑥 / 𝑘⦌𝐵 = (Σ𝑥 ∈ (𝐴 ∖ {𝑋})⦋𝑥 / 𝑘⦌𝐵 + Σ𝑥 ∈ {𝑋}⦋𝑥 / 𝑘⦌𝐵)) |
| 17 | csbeq1a 3865 | . . . 4 ⊢ (𝑘 = 𝑥 → 𝐵 = ⦋𝑥 / 𝑘⦌𝐵) | |
| 18 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 19 | nfcsb1v 3875 | . . . 4 ⊢ Ⅎ𝑘⦋𝑥 / 𝑘⦌𝐵 | |
| 20 | 17, 18, 19 | cbvsum 15602 | . . 3 ⊢ Σ𝑘 ∈ 𝐴 𝐵 = Σ𝑥 ∈ 𝐴 ⦋𝑥 / 𝑘⦌𝐵 |
| 21 | 17, 18, 19 | cbvsum 15602 | . . . 4 ⊢ Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 = Σ𝑥 ∈ (𝐴 ∖ {𝑋})⦋𝑥 / 𝑘⦌𝐵 |
| 22 | 17, 18, 19 | cbvsum 15602 | . . . 4 ⊢ Σ𝑘 ∈ {𝑋}𝐵 = Σ𝑥 ∈ {𝑋}⦋𝑥 / 𝑘⦌𝐵 |
| 23 | 21, 22 | oveq12i 7361 | . . 3 ⊢ (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + Σ𝑘 ∈ {𝑋}𝐵) = (Σ𝑥 ∈ (𝐴 ∖ {𝑋})⦋𝑥 / 𝑘⦌𝐵 + Σ𝑥 ∈ {𝑋}⦋𝑥 / 𝑘⦌𝐵) |
| 24 | 16, 20, 23 | 3eqtr4g 2789 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ 𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + Σ𝑘 ∈ {𝑋}𝐵)) |
| 25 | rspcsbela 4389 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑋 / 𝑘⦌𝐵 ∈ ℤ) | |
| 26 | 25 | zcnd 12581 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑋 / 𝑘⦌𝐵 ∈ ℂ) |
| 27 | 26 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → ⦋𝑋 / 𝑘⦌𝐵 ∈ ℂ) |
| 28 | sumsns 15657 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ ⦋𝑋 / 𝑘⦌𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑋}𝐵 = ⦋𝑋 / 𝑘⦌𝐵) | |
| 29 | 5, 27, 28 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ {𝑋}𝐵 = ⦋𝑋 / 𝑘⦌𝐵) |
| 30 | 29 | oveq2d 7365 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + Σ𝑘 ∈ {𝑋}𝐵) = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + ⦋𝑋 / 𝑘⦌𝐵)) |
| 31 | 24, 30 | eqtrd 2764 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐴 ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ 𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + ⦋𝑋 / 𝑘⦌𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⦋csb 3851 ∖ cdif 3900 ∪ cun 3901 ∩ cin 3902 ⊆ wss 3903 ∅c0 4284 {csn 4577 (class class class)co 7349 Fincfn 8872 ℂcc 11007 + caddc 11012 ℤcz 12471 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |