Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumsplitsndif Structured version   Visualization version   GIF version

Theorem fsumsplitsndif 47347
Description: Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 31-Aug-2018.)
Assertion
Ref Expression
fsumsplitsndif ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + 𝑋 / 𝑘𝐵))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑋
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumsplitsndif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neldifsnd 4753 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → ¬ 𝑋 ∈ (𝐴 ∖ {𝑋}))
2 disjsn 4671 . . . . 5 (((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ (𝐴 ∖ {𝑋}))
31, 2sylibr 234 . . . 4 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅)
4 uncom 4117 . . . . 5 ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = ({𝑋} ∪ (𝐴 ∖ {𝑋}))
5 simp2 1137 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑋𝐴)
65snssd 4769 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → {𝑋} ⊆ 𝐴)
7 undif 4441 . . . . . 6 ({𝑋} ⊆ 𝐴 ↔ ({𝑋} ∪ (𝐴 ∖ {𝑋})) = 𝐴)
86, 7sylib 218 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → ({𝑋} ∪ (𝐴 ∖ {𝑋})) = 𝐴)
94, 8eqtr2id 2777 . . . 4 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝐴 = ((𝐴 ∖ {𝑋}) ∪ {𝑋}))
10 simp1 1136 . . . 4 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝐴 ∈ Fin)
11 rspcsbela 4397 . . . . . . . 8 ((𝑥𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑥 / 𝑘𝐵 ∈ ℤ)
1211zcnd 12615 . . . . . . 7 ((𝑥𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑥 / 𝑘𝐵 ∈ ℂ)
1312expcom 413 . . . . . 6 (∀𝑘𝐴 𝐵 ∈ ℤ → (𝑥𝐴𝑥 / 𝑘𝐵 ∈ ℂ))
14133ad2ant3 1135 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → (𝑥𝐴𝑥 / 𝑘𝐵 ∈ ℂ))
1514imp 406 . . . 4 (((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) ∧ 𝑥𝐴) → 𝑥 / 𝑘𝐵 ∈ ℂ)
163, 9, 10, 15fsumsplit 15683 . . 3 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑥𝐴 𝑥 / 𝑘𝐵 = (Σ𝑥 ∈ (𝐴 ∖ {𝑋})𝑥 / 𝑘𝐵 + Σ𝑥 ∈ {𝑋}𝑥 / 𝑘𝐵))
17 csbeq1a 3873 . . . 4 (𝑘 = 𝑥𝐵 = 𝑥 / 𝑘𝐵)
18 nfcv 2891 . . . 4 𝑥𝐵
19 nfcsb1v 3883 . . . 4 𝑘𝑥 / 𝑘𝐵
2017, 18, 19cbvsum 15637 . . 3 Σ𝑘𝐴 𝐵 = Σ𝑥𝐴 𝑥 / 𝑘𝐵
2117, 18, 19cbvsum 15637 . . . 4 Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 = Σ𝑥 ∈ (𝐴 ∖ {𝑋})𝑥 / 𝑘𝐵
2217, 18, 19cbvsum 15637 . . . 4 Σ𝑘 ∈ {𝑋}𝐵 = Σ𝑥 ∈ {𝑋}𝑥 / 𝑘𝐵
2321, 22oveq12i 7381 . . 3 𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + Σ𝑘 ∈ {𝑋}𝐵) = (Σ𝑥 ∈ (𝐴 ∖ {𝑋})𝑥 / 𝑘𝐵 + Σ𝑥 ∈ {𝑋}𝑥 / 𝑘𝐵)
2416, 20, 233eqtr4g 2789 . 2 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + Σ𝑘 ∈ {𝑋}𝐵))
25 rspcsbela 4397 . . . . . 6 ((𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑋 / 𝑘𝐵 ∈ ℤ)
2625zcnd 12615 . . . . 5 ((𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑋 / 𝑘𝐵 ∈ ℂ)
27263adant1 1130 . . . 4 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑋 / 𝑘𝐵 ∈ ℂ)
28 sumsns 15692 . . . 4 ((𝑋𝐴𝑋 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑋}𝐵 = 𝑋 / 𝑘𝐵)
295, 27, 28syl2anc 584 . . 3 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ {𝑋}𝐵 = 𝑋 / 𝑘𝐵)
3029oveq2d 7385 . 2 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + Σ𝑘 ∈ {𝑋}𝐵) = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + 𝑋 / 𝑘𝐵))
3124, 30eqtrd 2764 1 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + 𝑋 / 𝑘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  csb 3859  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292  {csn 4585  (class class class)co 7369  Fincfn 8895  cc 11042   + caddc 11047  cz 12505  Σcsu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator