Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumsplitsndif Structured version   Visualization version   GIF version

Theorem fsumsplitsndif 47298
Description: Separate out a term in a finite sum by splitting the sum into two parts. (Contributed by Alexander van der Vekens, 31-Aug-2018.)
Assertion
Ref Expression
fsumsplitsndif ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + 𝑋 / 𝑘𝐵))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑋
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumsplitsndif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neldifsnd 4798 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → ¬ 𝑋 ∈ (𝐴 ∖ {𝑋}))
2 disjsn 4716 . . . . 5 (((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ (𝐴 ∖ {𝑋}))
31, 2sylibr 234 . . . 4 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → ((𝐴 ∖ {𝑋}) ∩ {𝑋}) = ∅)
4 uncom 4168 . . . . 5 ((𝐴 ∖ {𝑋}) ∪ {𝑋}) = ({𝑋} ∪ (𝐴 ∖ {𝑋}))
5 simp2 1136 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑋𝐴)
65snssd 4814 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → {𝑋} ⊆ 𝐴)
7 undif 4488 . . . . . 6 ({𝑋} ⊆ 𝐴 ↔ ({𝑋} ∪ (𝐴 ∖ {𝑋})) = 𝐴)
86, 7sylib 218 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → ({𝑋} ∪ (𝐴 ∖ {𝑋})) = 𝐴)
94, 8eqtr2id 2788 . . . 4 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝐴 = ((𝐴 ∖ {𝑋}) ∪ {𝑋}))
10 simp1 1135 . . . 4 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝐴 ∈ Fin)
11 rspcsbela 4444 . . . . . . . 8 ((𝑥𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑥 / 𝑘𝐵 ∈ ℤ)
1211zcnd 12721 . . . . . . 7 ((𝑥𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑥 / 𝑘𝐵 ∈ ℂ)
1312expcom 413 . . . . . 6 (∀𝑘𝐴 𝐵 ∈ ℤ → (𝑥𝐴𝑥 / 𝑘𝐵 ∈ ℂ))
14133ad2ant3 1134 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → (𝑥𝐴𝑥 / 𝑘𝐵 ∈ ℂ))
1514imp 406 . . . 4 (((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) ∧ 𝑥𝐴) → 𝑥 / 𝑘𝐵 ∈ ℂ)
163, 9, 10, 15fsumsplit 15774 . . 3 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑥𝐴 𝑥 / 𝑘𝐵 = (Σ𝑥 ∈ (𝐴 ∖ {𝑋})𝑥 / 𝑘𝐵 + Σ𝑥 ∈ {𝑋}𝑥 / 𝑘𝐵))
17 csbeq1a 3922 . . . 4 (𝑘 = 𝑥𝐵 = 𝑥 / 𝑘𝐵)
18 nfcv 2903 . . . 4 𝑥𝐵
19 nfcsb1v 3933 . . . 4 𝑘𝑥 / 𝑘𝐵
2017, 18, 19cbvsum 15728 . . 3 Σ𝑘𝐴 𝐵 = Σ𝑥𝐴 𝑥 / 𝑘𝐵
2117, 18, 19cbvsum 15728 . . . 4 Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 = Σ𝑥 ∈ (𝐴 ∖ {𝑋})𝑥 / 𝑘𝐵
2217, 18, 19cbvsum 15728 . . . 4 Σ𝑘 ∈ {𝑋}𝐵 = Σ𝑥 ∈ {𝑋}𝑥 / 𝑘𝐵
2321, 22oveq12i 7443 . . 3 𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + Σ𝑘 ∈ {𝑋}𝐵) = (Σ𝑥 ∈ (𝐴 ∖ {𝑋})𝑥 / 𝑘𝐵 + Σ𝑥 ∈ {𝑋}𝑥 / 𝑘𝐵)
2416, 20, 233eqtr4g 2800 . 2 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + Σ𝑘 ∈ {𝑋}𝐵))
25 rspcsbela 4444 . . . . . 6 ((𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑋 / 𝑘𝐵 ∈ ℤ)
2625zcnd 12721 . . . . 5 ((𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑋 / 𝑘𝐵 ∈ ℂ)
27263adant1 1129 . . . 4 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → 𝑋 / 𝑘𝐵 ∈ ℂ)
28 sumsns 15783 . . . 4 ((𝑋𝐴𝑋 / 𝑘𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑋}𝐵 = 𝑋 / 𝑘𝐵)
295, 27, 28syl2anc 584 . . 3 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘 ∈ {𝑋}𝐵 = 𝑋 / 𝑘𝐵)
3029oveq2d 7447 . 2 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + Σ𝑘 ∈ {𝑋}𝐵) = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + 𝑋 / 𝑘𝐵))
3124, 30eqtrd 2775 1 ((𝐴 ∈ Fin ∧ 𝑋𝐴 ∧ ∀𝑘𝐴 𝐵 ∈ ℤ) → Σ𝑘𝐴 𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑋})𝐵 + 𝑋 / 𝑘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  csb 3908  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339  {csn 4631  (class class class)co 7431  Fincfn 8984  cc 11151   + caddc 11156  cz 12611  Σcsu 15719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator