Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumnncl Structured version   Visualization version   GIF version

Theorem fsumnncl 43003
Description: Closure of a nonempty, finite sum of positive integers. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsumnncl.an0 (𝜑𝐴 ≠ ∅)
fsumnncl.afi (𝜑𝐴 ∈ Fin)
fsumnncl.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ)
Assertion
Ref Expression
fsumnncl (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℕ)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumnncl
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fsumnncl.afi . . . 4 (𝜑𝐴 ∈ Fin)
2 fsumnncl.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ)
32nnnn0d 12223 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ0)
41, 3fsumnn0cl 15376 . . 3 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℕ0)
5 fsumnncl.an0 . . . . 5 (𝜑𝐴 ≠ ∅)
6 n0 4277 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑗 𝑗𝐴)
75, 6sylib 217 . . . 4 (𝜑 → ∃𝑗 𝑗𝐴)
8 0red 10909 . . . . . . . 8 ((𝜑𝑗𝐴) → 0 ∈ ℝ)
9 nfv 1918 . . . . . . . . . . . 12 𝑘(𝜑𝑗𝐴)
10 nfcsb1v 3853 . . . . . . . . . . . . 13 𝑘𝑗 / 𝑘𝐵
1110nfel1 2922 . . . . . . . . . . . 12 𝑘𝑗 / 𝑘𝐵 ∈ ℕ
129, 11nfim 1900 . . . . . . . . . . 11 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℕ)
13 eleq1w 2821 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
1413anbi2d 628 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
15 csbeq1a 3842 . . . . . . . . . . . . 13 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
1615eleq1d 2823 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝐵 ∈ ℕ ↔ 𝑗 / 𝑘𝐵 ∈ ℕ))
1714, 16imbi12d 344 . . . . . . . . . . 11 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℕ) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℕ)))
1812, 17, 2chvarfv 2236 . . . . . . . . . 10 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℕ)
1918nnred 11918 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℝ)
208, 19readdcld 10935 . . . . . . . 8 ((𝜑𝑗𝐴) → (0 + 𝑗 / 𝑘𝐵) ∈ ℝ)
21 diffi 8979 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝐴 ∖ {𝑗}) ∈ Fin)
221, 21syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∖ {𝑗}) ∈ Fin)
23 eldifi 4057 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝐴 ∖ {𝑗}) → 𝑘𝐴)
2423adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝑘𝐴)
2524, 3syldan 590 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝐵 ∈ ℕ0)
2622, 25fsumnn0cl 15376 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 ∈ ℕ0)
2726nn0red 12224 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 ∈ ℝ)
2827adantr 480 . . . . . . . . 9 ((𝜑𝑗𝐴) → Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 ∈ ℝ)
2928, 19readdcld 10935 . . . . . . . 8 ((𝜑𝑗𝐴) → (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵) ∈ ℝ)
3018nnrpd 12699 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℝ+)
318, 30ltaddrpd 12734 . . . . . . . 8 ((𝜑𝑗𝐴) → 0 < (0 + 𝑗 / 𝑘𝐵))
3226nn0ge0d 12226 . . . . . . . . . 10 (𝜑 → 0 ≤ Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵)
3332adantr 480 . . . . . . . . 9 ((𝜑𝑗𝐴) → 0 ≤ Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵)
348, 28, 19, 33leadd1dd 11519 . . . . . . . 8 ((𝜑𝑗𝐴) → (0 + 𝑗 / 𝑘𝐵) ≤ (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵))
358, 20, 29, 31, 34ltletrd 11065 . . . . . . 7 ((𝜑𝑗𝐴) → 0 < (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵))
36 difsnid 4740 . . . . . . . . . . 11 (𝑗𝐴 → ((𝐴 ∖ {𝑗}) ∪ {𝑗}) = 𝐴)
3736adantl 481 . . . . . . . . . 10 ((𝜑𝑗𝐴) → ((𝐴 ∖ {𝑗}) ∪ {𝑗}) = 𝐴)
3837eqcomd 2744 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝐴 = ((𝐴 ∖ {𝑗}) ∪ {𝑗}))
3938sumeq1d 15341 . . . . . . . 8 ((𝜑𝑗𝐴) → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ((𝐴 ∖ {𝑗}) ∪ {𝑗})𝐵)
4022adantr 480 . . . . . . . . 9 ((𝜑𝑗𝐴) → (𝐴 ∖ {𝑗}) ∈ Fin)
41 simpr 484 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗𝐴)
42 neldifsnd 4723 . . . . . . . . 9 ((𝜑𝑗𝐴) → ¬ 𝑗 ∈ (𝐴 ∖ {𝑗}))
43 simpl 482 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝜑)
4443, 24, 2syl2anc 583 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝐵 ∈ ℕ)
4544nncnd 11919 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝐵 ∈ ℂ)
4645adantlr 711 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝐵 ∈ ℂ)
47 nnsscn 11908 . . . . . . . . . . 11 ℕ ⊆ ℂ
4847a1i 11 . . . . . . . . . 10 ((𝜑𝑗𝐴) → ℕ ⊆ ℂ)
4948, 18sseldd 3918 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
509, 10, 40, 41, 42, 46, 15, 49fsumsplitsn 15384 . . . . . . . 8 ((𝜑𝑗𝐴) → Σ𝑘 ∈ ((𝐴 ∖ {𝑗}) ∪ {𝑗})𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵))
5139, 50eqtr2d 2779 . . . . . . 7 ((𝜑𝑗𝐴) → (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵) = Σ𝑘𝐴 𝐵)
5235, 51breqtrd 5096 . . . . . 6 ((𝜑𝑗𝐴) → 0 < Σ𝑘𝐴 𝐵)
5352ex 412 . . . . 5 (𝜑 → (𝑗𝐴 → 0 < Σ𝑘𝐴 𝐵))
5453exlimdv 1937 . . . 4 (𝜑 → (∃𝑗 𝑗𝐴 → 0 < Σ𝑘𝐴 𝐵))
557, 54mpd 15 . . 3 (𝜑 → 0 < Σ𝑘𝐴 𝐵)
564, 55jca 511 . 2 (𝜑 → (Σ𝑘𝐴 𝐵 ∈ ℕ0 ∧ 0 < Σ𝑘𝐴 𝐵))
57 elnnnn0b 12207 . 2 𝑘𝐴 𝐵 ∈ ℕ ↔ (Σ𝑘𝐴 𝐵 ∈ ℕ0 ∧ 0 < Σ𝑘𝐴 𝐵))
5856, 57sylibr 233 1 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  csb 3828  cdif 3880  cun 3881  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  (class class class)co 7255  Fincfn 8691  cc 10800  cr 10801  0cc0 10802   + caddc 10805   < clt 10940  cle 10941  cn 11903  0cn0 12163  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator