Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumnncl Structured version   Visualization version   GIF version

Theorem fsumnncl 44586
Description: Closure of a nonempty, finite sum of positive integers. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsumnncl.an0 (𝜑𝐴 ≠ ∅)
fsumnncl.afi (𝜑𝐴 ∈ Fin)
fsumnncl.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ)
Assertion
Ref Expression
fsumnncl (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℕ)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumnncl
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fsumnncl.afi . . . 4 (𝜑𝐴 ∈ Fin)
2 fsumnncl.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ)
32nnnn0d 12536 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ0)
41, 3fsumnn0cl 15686 . . 3 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℕ0)
5 fsumnncl.an0 . . . . 5 (𝜑𝐴 ≠ ∅)
6 n0 4345 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑗 𝑗𝐴)
75, 6sylib 217 . . . 4 (𝜑 → ∃𝑗 𝑗𝐴)
8 0red 11221 . . . . . . . 8 ((𝜑𝑗𝐴) → 0 ∈ ℝ)
9 nfv 1915 . . . . . . . . . . . 12 𝑘(𝜑𝑗𝐴)
10 nfcsb1v 3917 . . . . . . . . . . . . 13 𝑘𝑗 / 𝑘𝐵
1110nfel1 2917 . . . . . . . . . . . 12 𝑘𝑗 / 𝑘𝐵 ∈ ℕ
129, 11nfim 1897 . . . . . . . . . . 11 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℕ)
13 eleq1w 2814 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
1413anbi2d 627 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
15 csbeq1a 3906 . . . . . . . . . . . . 13 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
1615eleq1d 2816 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝐵 ∈ ℕ ↔ 𝑗 / 𝑘𝐵 ∈ ℕ))
1714, 16imbi12d 343 . . . . . . . . . . 11 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℕ) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℕ)))
1812, 17, 2chvarfv 2231 . . . . . . . . . 10 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℕ)
1918nnred 12231 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℝ)
208, 19readdcld 11247 . . . . . . . 8 ((𝜑𝑗𝐴) → (0 + 𝑗 / 𝑘𝐵) ∈ ℝ)
21 diffi 9181 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝐴 ∖ {𝑗}) ∈ Fin)
221, 21syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∖ {𝑗}) ∈ Fin)
23 eldifi 4125 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝐴 ∖ {𝑗}) → 𝑘𝐴)
2423adantl 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝑘𝐴)
2524, 3syldan 589 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝐵 ∈ ℕ0)
2622, 25fsumnn0cl 15686 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 ∈ ℕ0)
2726nn0red 12537 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 ∈ ℝ)
2827adantr 479 . . . . . . . . 9 ((𝜑𝑗𝐴) → Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 ∈ ℝ)
2928, 19readdcld 11247 . . . . . . . 8 ((𝜑𝑗𝐴) → (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵) ∈ ℝ)
3018nnrpd 13018 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℝ+)
318, 30ltaddrpd 13053 . . . . . . . 8 ((𝜑𝑗𝐴) → 0 < (0 + 𝑗 / 𝑘𝐵))
3226nn0ge0d 12539 . . . . . . . . . 10 (𝜑 → 0 ≤ Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵)
3332adantr 479 . . . . . . . . 9 ((𝜑𝑗𝐴) → 0 ≤ Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵)
348, 28, 19, 33leadd1dd 11832 . . . . . . . 8 ((𝜑𝑗𝐴) → (0 + 𝑗 / 𝑘𝐵) ≤ (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵))
358, 20, 29, 31, 34ltletrd 11378 . . . . . . 7 ((𝜑𝑗𝐴) → 0 < (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵))
36 difsnid 4812 . . . . . . . . . . 11 (𝑗𝐴 → ((𝐴 ∖ {𝑗}) ∪ {𝑗}) = 𝐴)
3736adantl 480 . . . . . . . . . 10 ((𝜑𝑗𝐴) → ((𝐴 ∖ {𝑗}) ∪ {𝑗}) = 𝐴)
3837eqcomd 2736 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝐴 = ((𝐴 ∖ {𝑗}) ∪ {𝑗}))
3938sumeq1d 15651 . . . . . . . 8 ((𝜑𝑗𝐴) → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ((𝐴 ∖ {𝑗}) ∪ {𝑗})𝐵)
4022adantr 479 . . . . . . . . 9 ((𝜑𝑗𝐴) → (𝐴 ∖ {𝑗}) ∈ Fin)
41 simpr 483 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗𝐴)
42 neldifsnd 4795 . . . . . . . . 9 ((𝜑𝑗𝐴) → ¬ 𝑗 ∈ (𝐴 ∖ {𝑗}))
43 simpl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝜑)
4443, 24, 2syl2anc 582 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝐵 ∈ ℕ)
4544nncnd 12232 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝐵 ∈ ℂ)
4645adantlr 711 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝐵 ∈ ℂ)
47 nnsscn 12221 . . . . . . . . . . 11 ℕ ⊆ ℂ
4847a1i 11 . . . . . . . . . 10 ((𝜑𝑗𝐴) → ℕ ⊆ ℂ)
4948, 18sseldd 3982 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
509, 10, 40, 41, 42, 46, 15, 49fsumsplitsn 15694 . . . . . . . 8 ((𝜑𝑗𝐴) → Σ𝑘 ∈ ((𝐴 ∖ {𝑗}) ∪ {𝑗})𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵))
5139, 50eqtr2d 2771 . . . . . . 7 ((𝜑𝑗𝐴) → (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵) = Σ𝑘𝐴 𝐵)
5235, 51breqtrd 5173 . . . . . 6 ((𝜑𝑗𝐴) → 0 < Σ𝑘𝐴 𝐵)
5352ex 411 . . . . 5 (𝜑 → (𝑗𝐴 → 0 < Σ𝑘𝐴 𝐵))
5453exlimdv 1934 . . . 4 (𝜑 → (∃𝑗 𝑗𝐴 → 0 < Σ𝑘𝐴 𝐵))
557, 54mpd 15 . . 3 (𝜑 → 0 < Σ𝑘𝐴 𝐵)
564, 55jca 510 . 2 (𝜑 → (Σ𝑘𝐴 𝐵 ∈ ℕ0 ∧ 0 < Σ𝑘𝐴 𝐵))
57 elnnnn0b 12520 . 2 𝑘𝐴 𝐵 ∈ ℕ ↔ (Σ𝑘𝐴 𝐵 ∈ ℕ0 ∧ 0 < Σ𝑘𝐴 𝐵))
5856, 57sylibr 233 1 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wex 1779  wcel 2104  wne 2938  csb 3892  cdif 3944  cun 3945  wss 3947  c0 4321  {csn 4627   class class class wbr 5147  (class class class)co 7411  Fincfn 8941  cc 11110  cr 11111  0cc0 11112   + caddc 11115   < clt 11252  cle 11253  cn 12216  0cn0 12476  Σcsu 15636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12979  df-fz 13489  df-fzo 13632  df-seq 13971  df-exp 14032  df-hash 14295  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-clim 15436  df-sum 15637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator