Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumnncl Structured version   Visualization version   GIF version

Theorem fsumnncl 44962
Description: Closure of a nonempty, finite sum of positive integers. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsumnncl.an0 (𝜑𝐴 ≠ ∅)
fsumnncl.afi (𝜑𝐴 ∈ Fin)
fsumnncl.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ)
Assertion
Ref Expression
fsumnncl (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℕ)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumnncl
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fsumnncl.afi . . . 4 (𝜑𝐴 ∈ Fin)
2 fsumnncl.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ)
32nnnn0d 12568 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ0)
41, 3fsumnn0cl 15720 . . 3 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℕ0)
5 fsumnncl.an0 . . . . 5 (𝜑𝐴 ≠ ∅)
6 n0 4348 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑗 𝑗𝐴)
75, 6sylib 217 . . . 4 (𝜑 → ∃𝑗 𝑗𝐴)
8 0red 11253 . . . . . . . 8 ((𝜑𝑗𝐴) → 0 ∈ ℝ)
9 nfv 1909 . . . . . . . . . . . 12 𝑘(𝜑𝑗𝐴)
10 nfcsb1v 3917 . . . . . . . . . . . . 13 𝑘𝑗 / 𝑘𝐵
1110nfel1 2915 . . . . . . . . . . . 12 𝑘𝑗 / 𝑘𝐵 ∈ ℕ
129, 11nfim 1891 . . . . . . . . . . 11 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℕ)
13 eleq1w 2811 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
1413anbi2d 628 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
15 csbeq1a 3906 . . . . . . . . . . . . 13 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
1615eleq1d 2813 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝐵 ∈ ℕ ↔ 𝑗 / 𝑘𝐵 ∈ ℕ))
1714, 16imbi12d 343 . . . . . . . . . . 11 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℕ) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℕ)))
1812, 17, 2chvarfv 2228 . . . . . . . . . 10 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℕ)
1918nnred 12263 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℝ)
208, 19readdcld 11279 . . . . . . . 8 ((𝜑𝑗𝐴) → (0 + 𝑗 / 𝑘𝐵) ∈ ℝ)
21 diffi 9208 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝐴 ∖ {𝑗}) ∈ Fin)
221, 21syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∖ {𝑗}) ∈ Fin)
23 eldifi 4125 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝐴 ∖ {𝑗}) → 𝑘𝐴)
2423adantl 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝑘𝐴)
2524, 3syldan 589 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝐵 ∈ ℕ0)
2622, 25fsumnn0cl 15720 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 ∈ ℕ0)
2726nn0red 12569 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 ∈ ℝ)
2827adantr 479 . . . . . . . . 9 ((𝜑𝑗𝐴) → Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 ∈ ℝ)
2928, 19readdcld 11279 . . . . . . . 8 ((𝜑𝑗𝐴) → (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵) ∈ ℝ)
3018nnrpd 13052 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℝ+)
318, 30ltaddrpd 13087 . . . . . . . 8 ((𝜑𝑗𝐴) → 0 < (0 + 𝑗 / 𝑘𝐵))
3226nn0ge0d 12571 . . . . . . . . . 10 (𝜑 → 0 ≤ Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵)
3332adantr 479 . . . . . . . . 9 ((𝜑𝑗𝐴) → 0 ≤ Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵)
348, 28, 19, 33leadd1dd 11864 . . . . . . . 8 ((𝜑𝑗𝐴) → (0 + 𝑗 / 𝑘𝐵) ≤ (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵))
358, 20, 29, 31, 34ltletrd 11410 . . . . . . 7 ((𝜑𝑗𝐴) → 0 < (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵))
36 difsnid 4816 . . . . . . . . . . 11 (𝑗𝐴 → ((𝐴 ∖ {𝑗}) ∪ {𝑗}) = 𝐴)
3736adantl 480 . . . . . . . . . 10 ((𝜑𝑗𝐴) → ((𝐴 ∖ {𝑗}) ∪ {𝑗}) = 𝐴)
3837eqcomd 2733 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝐴 = ((𝐴 ∖ {𝑗}) ∪ {𝑗}))
3938sumeq1d 15685 . . . . . . . 8 ((𝜑𝑗𝐴) → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ((𝐴 ∖ {𝑗}) ∪ {𝑗})𝐵)
4022adantr 479 . . . . . . . . 9 ((𝜑𝑗𝐴) → (𝐴 ∖ {𝑗}) ∈ Fin)
41 simpr 483 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗𝐴)
42 neldifsnd 4799 . . . . . . . . 9 ((𝜑𝑗𝐴) → ¬ 𝑗 ∈ (𝐴 ∖ {𝑗}))
43 simpl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝜑)
4443, 24, 2syl2anc 582 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝐵 ∈ ℕ)
4544nncnd 12264 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝐵 ∈ ℂ)
4645adantlr 713 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝐵 ∈ ℂ)
47 nnsscn 12253 . . . . . . . . . . 11 ℕ ⊆ ℂ
4847a1i 11 . . . . . . . . . 10 ((𝜑𝑗𝐴) → ℕ ⊆ ℂ)
4948, 18sseldd 3981 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
509, 10, 40, 41, 42, 46, 15, 49fsumsplitsn 15728 . . . . . . . 8 ((𝜑𝑗𝐴) → Σ𝑘 ∈ ((𝐴 ∖ {𝑗}) ∪ {𝑗})𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵))
5139, 50eqtr2d 2768 . . . . . . 7 ((𝜑𝑗𝐴) → (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵) = Σ𝑘𝐴 𝐵)
5235, 51breqtrd 5176 . . . . . 6 ((𝜑𝑗𝐴) → 0 < Σ𝑘𝐴 𝐵)
5352ex 411 . . . . 5 (𝜑 → (𝑗𝐴 → 0 < Σ𝑘𝐴 𝐵))
5453exlimdv 1928 . . . 4 (𝜑 → (∃𝑗 𝑗𝐴 → 0 < Σ𝑘𝐴 𝐵))
557, 54mpd 15 . . 3 (𝜑 → 0 < Σ𝑘𝐴 𝐵)
564, 55jca 510 . 2 (𝜑 → (Σ𝑘𝐴 𝐵 ∈ ℕ0 ∧ 0 < Σ𝑘𝐴 𝐵))
57 elnnnn0b 12552 . 2 𝑘𝐴 𝐵 ∈ ℕ ↔ (Σ𝑘𝐴 𝐵 ∈ ℕ0 ∧ 0 < Σ𝑘𝐴 𝐵))
5856, 57sylibr 233 1 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wex 1773  wcel 2098  wne 2936  csb 3892  cdif 3944  cun 3945  wss 3947  c0 4324  {csn 4630   class class class wbr 5150  (class class class)co 7424  Fincfn 8968  cc 11142  cr 11143  0cc0 11144   + caddc 11147   < clt 11284  cle 11285  cn 12248  0cn0 12508  Σcsu 15670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-inf2 9670  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-sup 9471  df-oi 9539  df-card 9968  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-n0 12509  df-z 12595  df-uz 12859  df-rp 13013  df-fz 13523  df-fzo 13666  df-seq 14005  df-exp 14065  df-hash 14328  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221  df-clim 15470  df-sum 15671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator