Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumnncl Structured version   Visualization version   GIF version

Theorem fsumnncl 45587
Description: Closure of a nonempty, finite sum of positive integers. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsumnncl.an0 (𝜑𝐴 ≠ ∅)
fsumnncl.afi (𝜑𝐴 ∈ Fin)
fsumnncl.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ)
Assertion
Ref Expression
fsumnncl (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℕ)
Distinct variable groups:   𝐴,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumnncl
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 fsumnncl.afi . . . 4 (𝜑𝐴 ∈ Fin)
2 fsumnncl.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ)
32nnnn0d 12587 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ0)
41, 3fsumnn0cl 15772 . . 3 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℕ0)
5 fsumnncl.an0 . . . . 5 (𝜑𝐴 ≠ ∅)
6 n0 4353 . . . . 5 (𝐴 ≠ ∅ ↔ ∃𝑗 𝑗𝐴)
75, 6sylib 218 . . . 4 (𝜑 → ∃𝑗 𝑗𝐴)
8 0red 11264 . . . . . . . 8 ((𝜑𝑗𝐴) → 0 ∈ ℝ)
9 nfv 1914 . . . . . . . . . . . 12 𝑘(𝜑𝑗𝐴)
10 nfcsb1v 3923 . . . . . . . . . . . . 13 𝑘𝑗 / 𝑘𝐵
1110nfel1 2922 . . . . . . . . . . . 12 𝑘𝑗 / 𝑘𝐵 ∈ ℕ
129, 11nfim 1896 . . . . . . . . . . 11 𝑘((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℕ)
13 eleq1w 2824 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → (𝑘𝐴𝑗𝐴))
1413anbi2d 630 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((𝜑𝑘𝐴) ↔ (𝜑𝑗𝐴)))
15 csbeq1a 3913 . . . . . . . . . . . . 13 (𝑘 = 𝑗𝐵 = 𝑗 / 𝑘𝐵)
1615eleq1d 2826 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (𝐵 ∈ ℕ ↔ 𝑗 / 𝑘𝐵 ∈ ℕ))
1714, 16imbi12d 344 . . . . . . . . . . 11 (𝑘 = 𝑗 → (((𝜑𝑘𝐴) → 𝐵 ∈ ℕ) ↔ ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℕ)))
1812, 17, 2chvarfv 2240 . . . . . . . . . 10 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℕ)
1918nnred 12281 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℝ)
208, 19readdcld 11290 . . . . . . . 8 ((𝜑𝑗𝐴) → (0 + 𝑗 / 𝑘𝐵) ∈ ℝ)
21 diffi 9215 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝐴 ∖ {𝑗}) ∈ Fin)
221, 21syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴 ∖ {𝑗}) ∈ Fin)
23 eldifi 4131 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝐴 ∖ {𝑗}) → 𝑘𝐴)
2423adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝑘𝐴)
2524, 3syldan 591 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝐵 ∈ ℕ0)
2622, 25fsumnn0cl 15772 . . . . . . . . . . 11 (𝜑 → Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 ∈ ℕ0)
2726nn0red 12588 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 ∈ ℝ)
2827adantr 480 . . . . . . . . 9 ((𝜑𝑗𝐴) → Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 ∈ ℝ)
2928, 19readdcld 11290 . . . . . . . 8 ((𝜑𝑗𝐴) → (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵) ∈ ℝ)
3018nnrpd 13075 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℝ+)
318, 30ltaddrpd 13110 . . . . . . . 8 ((𝜑𝑗𝐴) → 0 < (0 + 𝑗 / 𝑘𝐵))
3226nn0ge0d 12590 . . . . . . . . . 10 (𝜑 → 0 ≤ Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵)
3332adantr 480 . . . . . . . . 9 ((𝜑𝑗𝐴) → 0 ≤ Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵)
348, 28, 19, 33leadd1dd 11877 . . . . . . . 8 ((𝜑𝑗𝐴) → (0 + 𝑗 / 𝑘𝐵) ≤ (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵))
358, 20, 29, 31, 34ltletrd 11421 . . . . . . 7 ((𝜑𝑗𝐴) → 0 < (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵))
36 difsnid 4810 . . . . . . . . . . 11 (𝑗𝐴 → ((𝐴 ∖ {𝑗}) ∪ {𝑗}) = 𝐴)
3736adantl 481 . . . . . . . . . 10 ((𝜑𝑗𝐴) → ((𝐴 ∖ {𝑗}) ∪ {𝑗}) = 𝐴)
3837eqcomd 2743 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝐴 = ((𝐴 ∖ {𝑗}) ∪ {𝑗}))
3938sumeq1d 15736 . . . . . . . 8 ((𝜑𝑗𝐴) → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ((𝐴 ∖ {𝑗}) ∪ {𝑗})𝐵)
4022adantr 480 . . . . . . . . 9 ((𝜑𝑗𝐴) → (𝐴 ∖ {𝑗}) ∈ Fin)
41 simpr 484 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗𝐴)
42 neldifsnd 4793 . . . . . . . . 9 ((𝜑𝑗𝐴) → ¬ 𝑗 ∈ (𝐴 ∖ {𝑗}))
43 simpl 482 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝜑)
4443, 24, 2syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝐵 ∈ ℕ)
4544nncnd 12282 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝐵 ∈ ℂ)
4645adantlr 715 . . . . . . . . 9 (((𝜑𝑗𝐴) ∧ 𝑘 ∈ (𝐴 ∖ {𝑗})) → 𝐵 ∈ ℂ)
47 nnsscn 12271 . . . . . . . . . . 11 ℕ ⊆ ℂ
4847a1i 11 . . . . . . . . . 10 ((𝜑𝑗𝐴) → ℕ ⊆ ℂ)
4948, 18sseldd 3984 . . . . . . . . 9 ((𝜑𝑗𝐴) → 𝑗 / 𝑘𝐵 ∈ ℂ)
509, 10, 40, 41, 42, 46, 15, 49fsumsplitsn 15780 . . . . . . . 8 ((𝜑𝑗𝐴) → Σ𝑘 ∈ ((𝐴 ∖ {𝑗}) ∪ {𝑗})𝐵 = (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵))
5139, 50eqtr2d 2778 . . . . . . 7 ((𝜑𝑗𝐴) → (Σ𝑘 ∈ (𝐴 ∖ {𝑗})𝐵 + 𝑗 / 𝑘𝐵) = Σ𝑘𝐴 𝐵)
5235, 51breqtrd 5169 . . . . . 6 ((𝜑𝑗𝐴) → 0 < Σ𝑘𝐴 𝐵)
5352ex 412 . . . . 5 (𝜑 → (𝑗𝐴 → 0 < Σ𝑘𝐴 𝐵))
5453exlimdv 1933 . . . 4 (𝜑 → (∃𝑗 𝑗𝐴 → 0 < Σ𝑘𝐴 𝐵))
557, 54mpd 15 . . 3 (𝜑 → 0 < Σ𝑘𝐴 𝐵)
564, 55jca 511 . 2 (𝜑 → (Σ𝑘𝐴 𝐵 ∈ ℕ0 ∧ 0 < Σ𝑘𝐴 𝐵))
57 elnnnn0b 12570 . 2 𝑘𝐴 𝐵 ∈ ℕ ↔ (Σ𝑘𝐴 𝐵 ∈ ℕ0 ∧ 0 < Σ𝑘𝐴 𝐵))
5856, 57sylibr 234 1 (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2940  csb 3899  cdif 3948  cun 3949  wss 3951  c0 4333  {csn 4626   class class class wbr 5143  (class class class)co 7431  Fincfn 8985  cc 11153  cr 11154  0cc0 11155   + caddc 11158   < clt 11295  cle 11296  cn 12266  0cn0 12526  Σcsu 15722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator